1
|
Wang D, Xu R, Liu S, Sun X, Zhang T, Shi L, Wang Y. Enhancing the application of probiotics in probiotic food products from the perspective of improving stress resistance by regulating cell physiological function: A review. Food Res Int 2025; 199:115369. [PMID: 39658167 DOI: 10.1016/j.foodres.2024.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/28/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Probiotic foods are foods containing probiotics, including dairy and non-dairy products, that exert significant beneficial impacts on human health. Benefiting from the rapid progress in systems biology, diverse types of probiotics with prominent health-promoting functionalities are unraveled, albeit such functions could be substantially influenced by the stress environments. Here, we conducted a comprehensive review to characterize the state-of-the-art research on probiotic foods and specific probiotics employed in their production. We summarized the detrimental effects of various environmental stresses, including those encountered during industrial fermentation and storage (in vitro), as well as in vivo conditions such as digestion and intestinal colonization, on the biological functions of probiotics. Furthermore, this review outlines the recent advancements in elucidating the mechanisms of stress resistance, which are expected to enhance targeted probiotic applications and optimize their functional properties. Additionally, we summarized various strategies aimed at improving stress tolerance by regulating cell physiological function, specifically adaptive laboratory evolution, preadaptation treatment, exogenous supplementation, and molecular biological manipulation. This review underscores the significance of enhancing our understanding of stress tolerance mechanisms at a systems level and developing efficacious anti-stress strategies to enhance the application of probiotics while maximizing their biological functionalities.
Collapse
Affiliation(s)
- Dingkang Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruijie Xu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Sha Liu
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaomin Sun
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianxiao Zhang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Youfa Wang
- Global Health Institute, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
2
|
Nair PP, Annapure US. Fermentation dynamics of bile salt hydrolase production in Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012: Addressing ninhydrin assay limitations with a novel HPTLC-MS method. J Microbiol Methods 2024; 226:107050. [PMID: 39353547 DOI: 10.1016/j.mimet.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Bile salt hydrolase (BSH), a pivotal enzyme in cholesterol management, holds significant promise in both human and animal subjects. This study investigated the effect of fermentation dynamics in Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012 to enhance BSH production. Cultivation of cultures in MRS and M17 media revealed that MRS medium enhanced BSH production by 235.98 % in H. coagulans ATCC 7050 and 147.37 % in L. plantarum ATCC 10012, compared to M 17 medium. Additionally, varying oxygen concentration levels indicated that H. coagulans ATCC 7050 exhibited its minimum doubling time of 79.8 ± 0.64 min in anaerobic conditions, whereas L.plantarum ATCC 10012 demonstrated its minimum doubling time of 85.5 ± 1.2 min under microaerophilic conditions. However, their highest BSH activity was observed during the stationary phase under anaerobic conditions, yielding 17.14 ± 0.78 U/mL by H. coagulans ATCC 7050 and 19.04 ± 0.81 U/mL by L.plantarum ATCC 10012. Furthermore, it was observed that both organisms did not retain BSH within their cells. BSH activity was assessed using ninhydrin assay that detected free taurine liberated from sodium taurocholate. However, ninhydrin can yield false-positive results owing to its interaction with other free amino acids. To subjugate this limitation, the study introduced a novel and sensitive HPTLC-MS method capable of accurately detecting taurine. By comprehending fermentation dynamics and selecting appropriate conditions, BSH production increased 2.1-fold in both organisms. These findings illuminate critical insights, offering a pathway for novel strategies to enhance the BSH-producing capabilities of these LAB strains.
Collapse
Affiliation(s)
- Pratisha P Nair
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India
| | - Uday S Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, India.
| |
Collapse
|
3
|
Zheng Y, Zhang Y, Zhao Y, Wu X, Wang H, Zhao H, Liu J, Liu B, Liu L, Song W. Heterologous expression of the Oenococcus oeni two-component signal transduction response regulator in the Lactiplantibacillus plantarum WCFS1 strain enhances acid stress tolerance. BMC Microbiol 2024; 24:370. [PMID: 39342090 PMCID: PMC11438414 DOI: 10.1186/s12866-024-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species. RESULTS The orf00404 gene that encodes a two-component signal transduction response regulator in O. oeni was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The expression of orf00404 significantly enhanced the growth rate of the recombinant strain under acid stress. At 60 h, 72 h, and 108 h of culture at pH 4.0, the recombinant strain had 1562, 641, and 748 differentially expressed genes compared to the control strain, respectively. At all three time points, 20 genes were upregulated in the recombinant strain, including the lamA-D operon-coding genes of the quorum-sensing two component signal transduction system and the spx5 RNA polymerase-binding protein coding gene, which may help adaptation to acid stress. In addition, 47 genes were downregulated in the recombinant strain at all three time points, including the hsp1 heat shock protein-coding gene, the trxA1 thioredoxin-coding gene, and the dinP, mutY, umuC, and uvrB DNA damage repair-related protein-coding genes, potentially indicating that the recombinant strain was less susceptible to stress and had less DNA damage than the control strain in acid stress conditions. The recombinant strain had higher membrane fluidity, permeability, and integrity at an early stage of logarithmic growth (72 h), suggesting that it had a more complete and active cell membrane state at this stage. The intracellular ATP content was significantly reduced in the recombinant strain at the beginning of logarithmic growth (60 h), implying that the recombinant strain consumed more energy at this stage to resist acid stress and growth. CONCLUSIONS These results indicated that the recombinant strain enhances acid stress tolerance by regulating a gene expression pattern, increasing ATP consumption, and enhancing cell membrane fluidity, membrane permeability, and membrane integrity at specific growth stages. Thus, the recombinant strain may have potential application in the microbial biotechnology industry.
Collapse
Affiliation(s)
- Yujuan Zheng
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Yumiao Zhang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
- Shandong Qianfa Agricultural Technology Co., Ltd, Binzhou, 256600, China
| | - Yifan Zhao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Xiaoqiu Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Huan Wang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Hongyu Zhao
- College of Enology, Northwest A&F University, Xinong Road 22, Yangling, Shaanxi, 712100, China
| | - Junhua Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Bin Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China
| | - Longxiang Liu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China.
- Shandong Qianfa Agricultural Technology Co., Ltd, Binzhou, 256600, China.
| | - Weiyu Song
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Shandong University of Aeronautics, Binzhou, 256600, China.
| |
Collapse
|
4
|
Ohja A, B G S, Pushpadass HA, Franklin MEE, Grover CR, Kumar S, Dhali A. Encapsulation of Lactiplantibacillus plantarum CRD7 in sub-micron pullulan fibres by spray drying: Maximizing viability with prebiotic and thermal protectants. Int J Biol Macromol 2024; 269:132068. [PMID: 38719001 DOI: 10.1016/j.ijbiomac.2024.132068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Pullulan was used as the wall material for microencapsulation of L. plantarum CRD7 by spray drying, while isomalto-oligosaccharides (IMO) was used as prebiotic. Also, the effect of different thermal protectants on survival rate during microencapsulation was evaluated. Taguchi orthogonal array design showed that pullulan at 14 % concentration, IMO at 30 % concentration and whey protein isolate at 20 % rate were the optimized wall material, prebiotic and thermal protectant, respectively for microencapsulation of L. plantarum. FESEM images revealed that the spray-dried encapsulates were fibrous similar to those produce by electrospinning, while fluorescence microscopy ascertained that most of the probiotic cells were alive and intact after microencapsulation. The adsorption-desorption isotherm was of Type II and the encapsulate had specific surface area of 1.92 m2/g and mean pore diameter of 15.12 nm. The typical amide II and III bands of the bacterial proteins were absent in the FTIR spectra, suggestive of adequate encapsulation. DSC thermogram showed shifting of melting peaks to wider temperature range due to interactions between the probiotic and wall materials. IMO at 30 % (w/w) along with WPI at 20 % concentration provided the highest storage stability and the lowest rate of cell death of L. plantarum after microencapsulation. Acid and bile salt tolerance results confirmed that microencapsulated L. plantarum could sustain the harsh GI conditions with >7.5 log CFU/g viability. After microencapsulation, L. plantarum also possessed the ability to ferment milk into curd with pH of 4.62.
Collapse
Affiliation(s)
- Abhisek Ohja
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru 560030, India.
| | - Seethu B G
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru 560030, India.
| | - Heartwin A Pushpadass
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru 560030, India.
| | | | - Chand Ram Grover
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, India.
| | - Sachin Kumar
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal 132001, India.
| | - Arindam Dhali
- Dairy Engineering Section, ICAR-National Dairy Research Institute, Southern Regional Station, Bengaluru 560030, India.
| |
Collapse
|
5
|
Das TK, Kar P, Panchali T, Khatun A, Dutta A, Ghosh S, Chakrabarti S, Pradhan S, Mondal KC, Ghosh K. Anti-obesity potentiality of Lactiplantibacillus plantarum E2_MCCKT isolated from a fermented beverage, haria: a high fat diet-induced obese mice model study. World J Microbiol Biotechnol 2024; 40:168. [PMID: 38630156 DOI: 10.1007/s11274-024-03983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.
Collapse
Affiliation(s)
- Tridip Kumar Das
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Priyanka Kar
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Titli Panchali
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Amina Khatun
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Ananya Dutta
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Smita Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
6
|
Yang X, Yin J, Guo Y, Yu H, Yuan S, Qian H, Yao W, Song J. Ultrasound-Assisted Fermentation to Remove Cadmium from Rice and Its Application. Molecules 2023; 28:molecules28104127. [PMID: 37241867 DOI: 10.3390/molecules28104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Rice, which is a major part of the daily diet, is becoming more and more contaminated by cadmium (Cd). This study combined low-intensity ultrasonic waves with the Lactobacillus plantarum fermentation method and optimized this technique by a single-factor and response surface experiment, aiming to solve the practical problems that the current Cd removal methods for rice cannot address, due to the fact that they require a long time (nearly 24 h), which prevents meeting the rice production demands. The described technique required a short time (10 h), and the highest Cd removal reached 67.05 ± 1.38%. Further analysis revealed that the maximum adsorption capacity of Lactobacillus plantarum for Cd increased by nearly 75%, and the equilibrium adsorption capacity increased by almost 30% after the ultrasonic intervention. Additionally, a sensory evaluation and other experiments proved that the properties of the rice noodles prepared from Cd-reduced rice obtained by ultrasound-assisted fermentation were comparable to those of traditional rice noodles, indicating that this method can be used in actual rice production.
Collapse
Affiliation(s)
- Xiaotong Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jie Yin
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jiangfeng Song
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
7
|
Kalpa RE, Sreejit V, Preetha R, Nagamaniammai G. Synbiotic microencapsulation of Lactobacillus brevis and Lactobacillus delbrueckii subsp. lactis using oats/oats brans as prebiotic for enhanced storage stability. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:896-905. [PMID: 36908354 PMCID: PMC9998750 DOI: 10.1007/s13197-021-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
Potential probiotic strains, Lactobacillus delbrueckii subsp. lactis and Lactobacillus brevis were microencapsulated with their appropriate prebiotics, oat bran, and oats, respectively, selected by in vitro fermentation. The microencapsulation of these probiotics were done in an alginate matrix, with and without their appropriate prebiotics. Results showed that cells microencapsulated with the prebiotics had significantly more storage stability (p < 0.05) than free cells and cells microencapsulated without the prebiotics. The probiotic cells encapsulated with their appropriate prebiotic had improved survival rates when exposed to bile as compared to free cells. The survival of microencapsulated and free cells in the simulated gastric fluid and simulated intestinal fluid was also evaluated in this study. Microencapsulated probiotics, along with an appropriate prebiotic, were found to be more stable in bile, simulated gastric fluid and simulated intestinal fluid. Interestingly, this is the first work to use prebiotic such as oats and the oat bran to prepare the synbiotic microsphere.
Collapse
Affiliation(s)
- R. E. Kalpa
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - V. Sreejit
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - R. Preetha
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| | - G. Nagamaniammai
- Department of Food Process Engineering, School of Bioengineering, The College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chengalpattu District, 603203 Chennai, Tamil Nadu India
| |
Collapse
|
8
|
Zhang L, Meng Y, Li J, Yu J, Mu G, Tuo Y. Lactiplantibacillus plantarum Y42 in Biofilm and Planktonic States Improves Intestinal Barrier Integrity and Modulates Gut Microbiota of Balb/c Mice. Foods 2022; 11:1451. [PMID: 35627021 PMCID: PMC9141668 DOI: 10.3390/foods11101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/15/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
In our previous study, Lactiplantibacillus plantarum Y42 showed some potential probiotic functions and the ability to form biofilm. The aim of this study was to compare the similarities and differences in the probiotic and physiological traits of L. plantarum Y42 in the biofilm and planktonic states. L. plantarum Y42 in the biofilm state was proven to have higher survival after passing through mimic gastrointestinal fluid, as well as excellent adhesion properties on the HT-29 cell monolayers, than those in the planktonic state. The expression of tight junction proteins (TJ proteins) of HT-29 cell monolayers treated by L. plantarum Y42 in the planktonic state increased, while similar changes were not observed in the HT-29 cells treated by the strain in the biofilm state. Furthermore, Balb/c mice were orally administered L. plantarum Y42 in the biofilm and planktonic states, respectively. Compared to the planktonic state, the oral administration of L. plantarum Y42 in the biofilm state significantly boosted IgA levels and improved the immunity of the mice. High-throughput sequencing showed that the diversity and structure of the intestinal flora of the mice were changed after the oral administration of L. plantarum Y42, including the up-regulated relative abundance of Lactobacillus in the intestinal tract of the mice, with no difference between the biofilm and planktonic states. Moreover, oral administration of L. plantarum Y42 in biofilm and planktonic states reduced the release of proinflammatory factors, to a certain extent, in the serum of the mice. The similarities and differences in the probiotic and physiological properties of L. plantarum Y42 in the biofilm and planktonic states can be contributed to the reasonable application of the strain.
Collapse
Affiliation(s)
- Lijuan Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yuan Meng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Jiayi Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang Yu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Guangqing Mu
- Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, China
| | - Yanfeng Tuo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (Y.M.); (J.L.); (J.Y.); (Y.T.)
| |
Collapse
|
9
|
Zhang S, Wang T, Zhang D, Wang X, Zhang Z, Lim C, Lee S. Probiotic characterization of Lactiplantibacillus plantarum HOM3204 and its restoration effect on antibiotic-induced dysbiosis in mice. Lett Appl Microbiol 2022; 74:949-958. [PMID: 35231139 PMCID: PMC9315005 DOI: 10.1111/lam.13683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to evaluate the probiotic characteristics of Lactiplantibacillus plantarum HOM3204 isolated from homemade pickled cabbage and to examine its restoration effect on antibiotic-induced dysbiosis in mice. Lact. plantarum HOM3204 tolerated simulated gastric and intestinal juices with a 99.38% survival rate. It also showed strong adhesion ability (3.45%) to Caco-2 cells and excellent antimicrobial activity against foodborne pathogens in vitro. For safety (antibiotic susceptibility) of this strain, it was susceptible to all the tested seven antibiotics. Lact. plantarum HOM3204 had good stability during storage, especially in cold and frozen conditions. Furthermore, Lact. plantarum HOM3204 significantly restored the gut microbiota composition by increasing the abundance of Lactobacilli and Bifidobacteria and decreasing Enterococci, and improved antioxidative function by raising the concentrations of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in serum of antibiotic-induced dysbiosis in mice. These results suggest that Lact. plantarum HOM3204 could be a potential probiotic as a functional food ingredient.
Collapse
Affiliation(s)
- S Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - T Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - D Zhang
- Coree Beijing Co., Ltd, Beijing, China
| | - X Wang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - Z Zhang
- Beijing Hanmi pharmaceutical Co., Ltd, Beijing, China
| | - C Lim
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| | - S Lee
- Coree Beijing Co., Ltd, Beijing, China.,Coree Pohang Co., Ltd, Pohang, Korea
| |
Collapse
|
10
|
Raheem A, Wang M, Zhang J, Liang L, Liang R, Yin Y, Zhu Y, Yang W, Wang L, Lv X, Jia Y, Qin T, Zhang G. The probiotic potential of Lactobacillus plantarum strain RW1 isolated from canine faeces. J Appl Microbiol 2021; 132:2306-2322. [PMID: 34709709 DOI: 10.1111/jam.15341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/05/2021] [Accepted: 09/04/2021] [Indexed: 12/11/2022]
Abstract
AIM To evaluation the probiotic potential of Lactobacillus plantarum strain RW1 isolated from healthy dogs for its further utilization as a dietary supplement for dogs. METHODS AND RESULTS This study aimed to evaluate the probiotic potential of L. plantarum strain RW1 isolated from canine faeces. After confirming by conventional and then by 16S rRNA sequencing, the identified strain RW1 was in vitro screened for its survivability in simulated gastrointestinal conditions, low pH, bile salts and adhesion to gut epithelial tissues, growth inhibitory effects on common pathogens and anti-inflammatory potential by measuring the mRNA expression level of IL-6, IL-8, IL-1ꞵ in Salmonella-infected MODE-K cells. Furthermore, the effects on epithelial barrier function and host defensin peptide (beta-defensin 3) was studied by measuring the mRNA expression level of tight junction protein (occludin) and beta-defensin 3 in MODE-K cells. The strain RW1 showed a considerable potential to survive in simulated gastrointestinal environmental conditions, low pH and high bile salt concentrations along with good adhesion to MODE-K cell line. Pathogenic bacterial growth and their adhesion to MODE-K cell line were significantly inhibited by the strain RW1. Real-time PCR analyses demonstrated that the strain RW1 inhibited Salmonella-induced pro-inflammatory cytokines (IL-6, IL-8 and IL-1ꞵ) production and reinforced the expression of tight junction protein (occludin). The strain RW1 did not induce mRNA expression of beta-defensin 3. CONCLUSION Based on in vitro results, the strain RW1 has the potential to be used as a probiotic supplement in dogs. However, further study involving in vivo health effects is needed. SIGNIFICANCE AND IMPACT OF THE STUDY Antibiotics have many side effects and nowadays the probiotics are considered as a potential alternative to antibiotics. This study evaluates the probiotic potential of dog isolated L. plantarum strain RW1 to use it as a dietary supplement in dogs feeding to control infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Mingyan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Jianwei Zhang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Ruiying Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Yajie Yin
- College of Veterinary Medicine, Hebei Agricultural University, Hebei, China
| | - Yali Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Weifang Yang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing, China
| | - Yaxiong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Tong Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
11
|
Gou X, Zhang L, Zhao S, Ma W, Yang Z. Application of the Combination of Soybean Lecithin and Whey Protein Concentrate 80 to Improve the Bile Salt and Acid Tolerance of Probiotics. J Microbiol Biotechnol 2021; 31:840-846. [PMID: 33958508 PMCID: PMC9706008 DOI: 10.4014/jmb.2103.03017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/26/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
To improve the bile salt and acid tolerance of probiotics against gastrointestinal stresses, we investigated the effects of soybean lecithin and whey protein concentrate (WPC) 80 on the bile salt tolerance of Lacticaseibacillus paracasei L9 using a single-factor methodology, which was optimized using response surface methodology (RSM). The survival rate of L. paracasei L9 treated with 0.3% (w/v) bile salt for 2.5 h, and combined with soybean lecithin or WPC 80, was lower than 1%. After optimization, the survival rate of L. paracasei L9 incubated in 0.3% bile salt for 2.5 h reached 52.5% at a ratio of 0.74% soybean lecithin and 2.54% WPC 80. Moreover, this optimized method improved the survival rate of L. paracasei L9 in low pH condition and can be applied to other lactic acid bacteria (LAB) strains. Conclusively, the combination of soybean lecithin and WPC 80 significantly improved the bile salt and acid tolerance of LAB. Our study provides a novel approach for enhancing the gastrointestinal tolerance of LAB by combining food-derived components that have different properties.
Collapse
Affiliation(s)
- Xuelei Gou
- Yunnan Huangshi Lesson Dairy Industry Co., Ltd., Dali 671000, P.R. China
| | - Libo Zhang
- Yunnan Huangshi Lesson Dairy Industry Co., Ltd., Dali 671000, P.R. China
| | - Shiwei Zhao
- Yunnan Huangshi Lesson Dairy Industry Co., Ltd., Dali 671000, P.R. China
| | - Wanping Ma
- Yunnan Huangshi Lesson Dairy Industry Co., Ltd., Dali 671000, P.R. China
| | - Zibiao Yang
- Yunnan Huangshi Lesson Dairy Industry Co., Ltd., Dali 671000, P.R. China
| |
Collapse
|
12
|
Antioxidant and Anti-Inflammatory Properties of Probiotic Candidate Strains Isolated during Fermentation of Agave ( Agave angustifolia Haw). Microorganisms 2021; 9:microorganisms9051063. [PMID: 34069080 PMCID: PMC8156479 DOI: 10.3390/microorganisms9051063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Agave species are a source of diverse products for human use, such as food, fiber, and beverages, which include mezcal, a distilled beverage produced by spontaneous fermentation. Agave is an excellent source of high amounts of sugars, minerals, and phenolic compounds, which favor the growth of lactic acid bacteria (LAB) and yeast communities. In this work, 20 promising LAB strains with probiotic characteristics were isolated from the agave fermentation stage in mezcal production. The strains belonged to Lactobacillus plantarum (15), Lactobacillus rhamnosus (2), Enterococcus faecium (2), and Lactococcus lactis (1). These isolates were characterized for their resistance under gastrointestinal conditions, such as lysozyme, acid pH, and bile salts. In addition, the adherence of these LABs to human intestinal epithelial cells (Caco-2 and HT-29 cells) was tested in vitro and their antioxidant and immunomodulatory profile was determined using cellular models. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains were selected for their antioxidant properties, and their capacities in an oxidative stress model in intestinal epithelial cells IECs (Caco-2 and HT-29 cells) in the presence of hydrogen peroxide were evaluated. Interestingly, Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 and LM19 strains showed anti-inflammatory properties in TNF-α-stimulated HT-29 cells. Subsequently, bacterial strains exhibiting antioxidant and anti-inflammatory properties were tested in vivo in a mouse model with dinitrobenzene sulfonic acid (DNBS)-induced chronic colitis. Weight loss, intestinal permeability, and cytokine profiles were measured in mice as indicators of inflammation. One of the selected strains, Lactobacillus plantarum LM17, improved the health of the mice, as observed by reduced weight loss, and significantly decreased intestinal permeability. Altogether, our results demonstrate the potential of LAB (and lactobacilli in particular) isolated from the agave fermentation stage in mezcal production. Lactobacillus rhamnosus LM07 and Lactobacillus plantarum LM17 strains represent potential candidates for developing new probiotic supplements to treat inflammatory bowel disease (IBD).
Collapse
|
13
|
Ahire JJ, Jakkamsetty C, Kashikar MS, Lakshmi SG, Madempudi RS. In Vitro Evaluation of Probiotic Properties of Lactobacillus plantarum UBLP40 Isolated from Traditional Indigenous Fermented Food. Probiotics Antimicrob Proteins 2021; 13:1413-1424. [PMID: 33761096 DOI: 10.1007/s12602-021-09775-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/13/2022]
Abstract
In this study, traditional indigenous fermented food isolate Lactobacillus plantarum UBLP40 was screened for in vitro probiotic properties, antibiotic susceptibility, hemolytic activity, production of lactic acid, hydrogen peroxide, bile salt hydrolase and phytase, and antioxidative activity. Results showed that Lact. plantarum UBLP40 can survive simulated gastrointestinal conditions, adhere to mucin, possess a hydrophobic cell surface, ability to auto-aggregation, and possessed antimicrobial activity against Micrococcus luteus MTCC 106, methicillin-resistant Staphylococcus aureus subsp. aureus ATCC® BAA-1720, Pseudomonas aeruginosa MTCC 1688, and Escherichia coli MTCC 1687. Lact. plantarum UBLP40 produced 48.59 U/mg phytase and 1.78 ± 0.01 gm % lactic acid and showed the ability to produce hydrogen peroxide and bile salt hydrolase. Moreover, the usual antibiotic susceptible profile and non-hemolytic activity indicated the safety of the strain. The intracellular extract of UBLP40 showed 13.8 ± 1.4% (equivalent to ~8 µM butylated hydroxytoluene) α,α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging activity, reducing activity equivalent to 1 µg L-cysteine, Fe2+ chelation equivalent to 5 µM ethylenediaminetetraacetic acid, and exhibited 17.73 ± 4.40 µM glutathione per gram of protein. In conclusion, this study demonstrates that Lact. plantarum UBLP40 is a potential probiotic candidate.
Collapse
Affiliation(s)
- J J Ahire
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India.
| | - C Jakkamsetty
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - M S Kashikar
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - S G Lakshmi
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| | - R S Madempudi
- Centre for Research and Development, Unique Biotech Limited, Plot No. 2, Phase II, Alexandria Knowledge Park, Hyderabad, Telangana, 500078, India
| |
Collapse
|
14
|
Cai G, Wu D, Li X, Lu J. Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101. Int J Biol Macromol 2019; 146:482-487. [PMID: 31883885 DOI: 10.1016/j.ijbiomac.2019.12.212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/30/2022]
Abstract
Improving intrinsic adhesion performance of the known probiotics facilitates their residence and colonization, and therefore exerts more beneficial effects on the human or animal host. In this study, through adaptive culture with levan, Lactobacillus reuteri JN101 achieved the same biomass and exhibited 2.6 times higher adhesion capacity to HT-29 cells than those grown with glucose. The mechanism study related to this adhesion enhancement showed that the elevated proportion of unsaturated fatty acids facilitated the bacterial cells to overcome repulsive forces to approach the intestinal epithelial cell. At the same time, and the greater amounts of cell membrane proteins, such as S-layer protein (3.2 folds), elongation factor Tu (2.6 folds) and phosphoglycerate kinase (2.4 folds) probably enhanced the complementary interactions to the receptor on the epithelial cell. These results presented here indicated levan could be used as a potential prebiotic to regulate the adhesion capacity of probiotics, and provide ground for developing the specific-probiotics oriented functional food.
Collapse
Affiliation(s)
- Guolin Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dianhui Wu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Xiaomin Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|