1
|
Tomasino MP, Aparício M, Ribeiro I, Santos F, Caetano M, Almeida CMR, de Fátima Carvalho M, Mucha AP. Diversity and Hydrocarbon-Degrading Potential of Deep-Sea Microbial Community from the Mid-Atlantic Ridge, South of the Azores (North Atlantic Ocean). Microorganisms 2021; 9:microorganisms9112389. [PMID: 34835516 PMCID: PMC8620031 DOI: 10.3390/microorganisms9112389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Deep-sea sediments (DSS) are one of the largest biotopes on Earth and host a surprisingly diverse microbial community. The harsh conditions of this cold environment lower the rate of natural attenuation, allowing the petroleum pollutants to persist for a long time in deep marine sediments raising problematic environmental concerns. The present work aims to contribute to the study of DSS microbial resources as biotechnological tools for bioremediation of petroleum hydrocarbon polluted environments. Four deep-sea sediment samples were collected in the Mid-Atlantic Ridge, south of the Azores (North Atlantic Ocean). Their autochthonous microbial diversity was investigated by 16S rRNA metabarcoding analysis. In addition, a total of 26 deep-sea bacteria strains with the ability to utilize crude oil as their sole carbon and energy source were isolated from the DSS samples. Eight of them were selected for a novel hydrocarbonoclastic-bacterial consortium and their potential to degrade petroleum hydrocarbons was tested in a bioremediation experiment. Bioaugmentation treatments (with inoculum pre-grown either in sodium acetate or petroleum) showed an increase in degradation of the hydrocarbons comparatively to natural attenuation. Our results provide new insights into deep-ocean oil spill bioremediation by applying DSS hydrocarbon-degrading consortium in lab-scale microcosm to simulate an oil spill in natural seawater.
Collapse
Affiliation(s)
- Maria Paola Tomasino
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Correspondence:
| | - Mariana Aparício
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Inês Ribeiro
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Filipa Santos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Miguel Caetano
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Instituto Português do Mar e da Atmosfera, I.P. Avenida de Brasília, 1449-006 Lisboa, Portugal
| | - C. Marisa R. Almeida
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
| | - Maria de Fátima Carvalho
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana P. Mucha
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; (M.A.); (I.R.); (F.S.); (M.C.); (C.M.R.A.); (M.d.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto, Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| |
Collapse
|
2
|
Perdigão R, Almeida CMR, Magalhães C, Ramos S, Carolas AL, Ferreira BS, Carvalho MF, Mucha AP. Bioremediation of Petroleum Hydrocarbons in Seawater: Prospects of Using Lyophilized Native Hydrocarbon-Degrading Bacteria. Microorganisms 2021; 9:2285. [PMID: 34835411 PMCID: PMC8617842 DOI: 10.3390/microorganisms9112285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation.
Collapse
Affiliation(s)
- Rafaela Perdigão
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - C. Marisa R. Almeida
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
| | - Catarina Magalhães
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| | - Sandra Ramos
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
| | - Ana L. Carolas
- Biotrend S.A., Biocant Park, Núcleo 04 Lote 2, 3060-197 Cantanhede, Portugal; (A.L.C.); (B.S.F.)
| | - Bruno S. Ferreira
- Biotrend S.A., Biocant Park, Núcleo 04 Lote 2, 3060-197 Cantanhede, Portugal; (A.L.C.); (B.S.F.)
| | - Maria F. Carvalho
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana P. Mucha
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (C.M.R.A.); (C.M.); (S.R.); (M.F.C.); (A.P.M.)
- Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre 790, 4150-171 Porto, Portugal
| |
Collapse
|
3
|
Muriel-Millán LF, Millán-López S, Pardo-López L. Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Appl Microbiol Biotechnol 2021; 105:7171-7185. [PMID: 34515846 DOI: 10.1007/s00253-021-11569-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022]
Abstract
Marine ecosystems are some of the most adverse environments on Earth and contain a considerable portion of the global bacterial population, and some of these bacterial species play pivotal roles in several biogeochemical cycles. Marine bacteria have developed different molecular mechanisms to address fluctuating environmental conditions, such as changes in nutrient availability, salinity, temperature, pH, and pressure, making them attractive for use in diverse biotechnology applications. Although more than 99% of marine bacteria cannot be cultivated with traditional microbiological techniques, several species have been successfully isolated and grown in the laboratory, facilitating investigations of their biotechnological potential. Some of these applications may contribute to addressing some current global problems, such as environmental contamination by hydrocarbons and synthetic plastics. In this review, we first summarize and analyze recently published information about marine bacterial diversity. Then, we discuss new literature regarding the isolation and characterization of marine bacterial strains able to degrade hydrocarbons and petroleum-based plastics, and species able to produce biosurfactants. We also describe some current limitations for the implementation of these biotechnological tools, but also we suggest some strategies that may contribute to overcoming them. KEY POINTS: • Marine bacteria have a great metabolic capacity to degrade hydrocarbons in harsh conditions. • Marine environments are an important source of new bacterial plastic-degrading enzymes. • Secondary metabolites from marine bacteria have diverse potential applications in biotechnology.
Collapse
Affiliation(s)
- Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad Universitaria, CDMX, Mexico.
| | - Sofía Millán-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Effect of pyrene and phenanthrene in shaping bacterial communities in seagrass meadows sediments. Arch Microbiol 2021; 203:4259-4272. [PMID: 34100100 DOI: 10.1007/s00203-021-02410-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originating from anthropogenic and natural sources, are highly concerned environmental pollutants. This study investigated the impact of two model PAHs (pyrene and phenanthrene) on bacterial community succession in the seagrass meadows sediment in a lab-scale microcosm. Halophila ovalis sediment slurry microcosms were established, one group was placed as a control, and the other two were treated with pyrene and phenanthrene. Bacterial community succession in response to respective PAHs was investigated by 16S rRNA amplicon sequencing. The results demonstrated that bacterial diversity decrease in each microcosm during the incubation process; however, the composition of bacterial communities in each microcosm was significantly different. Proteobacteria (37-89%), Firmicutes (9-41%), and Bacteroides (7-21%) were the predominant group at the phylum levels. Their abundance varies during the incubation process. Several previously reported hydrocarbon-degrading genera, such as Pseudomonas, Spinghobium, Sphingobacterium, Mycobacterium, Pseudoxanthomonas, Idiomarina, Stenotrophomonas, were detected in higher abundance in pyrene- and phenanthrene-treated microcosms. However, these genera were distinctly distributed in the pyrene and phenanthrene treatments, suggesting that certain bacterial groups favorably degrade different PAHs. Statistical analyses, such as ANOSIM and PERMANOVA, also revealed that significant differences existed among the treatments' bacterial consortia (P < 0.05). This work showed that polycyclic aromatic hydrocarbon significantly affects bacterial community succession, and different PAHs might influence the bacterial community succession differently.
Collapse
|
5
|
Sun Y, Chen W, Wang Y, Guo J, Zhang H, Hu X. Nutrient depletion is the main limiting factor in the crude oil bioaugmentation process. J Environ Sci (China) 2021; 100:317-327. [PMID: 33279045 DOI: 10.1016/j.jes.2020.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/12/2023]
Abstract
The biodegradation was considered as the prime mechanism of crude oil degradation. To validate the efficacy and survival of the crude oil-degrading strain in a bioremediation process, the enhanced green fluorescent protein gene (egfp) was introduced into Acinetobacter sp. HC8-3S. In this study, an oil-contaminated sediment microcosm was conducted to investigate the temporal dynamics of the physicochemical characterization and microbial community in response to bacterium amendment. The introduced strains were able to survive, flourish and degrade crude oil quickly in the early stage of the bioremediation. However, the high abundance cannot be maintained due to the ammonium (NH4+-N) and phosphorus (PO43--P) contents decreased rapidly after 15 days of remediation. The sediment microbial community changed considerably and reached relatively stable after nutrient depletion. Therefore, the addition of crude oil and degrading cells did not show a long-time impact on the original microbial communities, and sufficient nitrogen and phosphorus nutrients ensures the survive and activity of degrader. Our studies expand the understanding of the crude oil degradative processes, which will help to develop more rational bioremediation strategies.
Collapse
Affiliation(s)
- Yanyu Sun
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Chen
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yibo Wang
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Guo
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Haikun Zhang
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaoke Hu
- Key laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Sangkharak K, Paichid N, Yunu T, Prasertsan P. Enhancing the degradation of mixed polycyclic aromatic hydrocarbon and medium-chain-length polyhydroxyalkanoate production by mixed bacterial cultures using modified repeated batch fermentation. J Appl Microbiol 2020; 129:554-564. [PMID: 32162457 DOI: 10.1111/jam.14638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
AIMS To increase the biodegradation of phenanthrene (PHE), pyrene (PYR) and fluoranthene (FLU) through mixed cultures of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria, using modified repeated batch fermentation. METHODS AND RESULTS Novel bacterial strains of Pseudomonas putida, Pseudomonas sp. and Ralstonia eutropha were cultivated and the biodegradation and conversion of mixed PAH to medium-chain-length polyhydroxyalkanoates (MCL-PHA) was determined. The highest degradation of PAH (100%) and PHA production (50·0%) was obtained in medium containing 30 mmol l-1 of mixed PAH after three cycles of repeated batch fermentation. The concentration of PAH in the reactor was increased from 30 to 90 mmol l-1 with repeated additions of PAH, and bacteria were able to produce PHA at 40% of cell dry mass. The MCL-PHA were identified by gas chromatography/mass spectroscopy, with the 3-hydroxydecanoate (3-HD) monomer higher than 75 mol.%. CONCLUSIONS This study demonstrated that the biodegradation of PHE, PYR and FLU was enhanced by modified repeated batch fermentation using a mixed culture of bacteria. In addition, this fermentation strategy also increased the production of PHA, with an increase in monomer composition. SIGNIFICANCE AND IMPACT OF THE STUDY This was the first study to describe the enhancement of the degradation of mixed solutions of PHE, PYR and FLU, and PHA production, using novel mixed bacterial cultures and modified repeated batch fermentation. The MCL-PHA formed had uniquely high 3-HD content.
Collapse
Affiliation(s)
- K Sangkharak
- Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - N Paichid
- Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - T Yunu
- Department of Chemistry, Faculty of Science, Thaksin University, Phatthalung, Thailand
| | - P Prasertsan
- Research and Development Office, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|