1
|
Khan TA, Liangliang H, Attia KA, Bashir S, Ziyuan X, Alsubki RA, Rang J, Hu S, Xia L. Bacillus velezensis FiA2 as an Oxydifficidin-Producing Strain and its Effects on the Growth Performance, Immunity, Intestinal Microbiota, and Resistance to Aeromonas salmonicida Infection in Carassius carassius. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10485-7. [PMID: 40000551 DOI: 10.1007/s12602-025-10485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
In aquaculture, biological control of bacterial infections is a promising strategy that, aside from preventing infections, also benefits the host in several ways. In this study, a Bacillus strain FiA2 isolated from the gut of Carassius carassius (crucian carp) exhibited broad spectrums of activity against multiple aquatic bacterial pathogens. The compound with antibacterial activity was successfully separated and identified as oxydifficidin, with a m/z of 559.47. The oxydifficidin retained its activity even after being exposed to high temperatures, ultraviolet light, proteolytic enzymes, chemical reagents, and alkaline and acidic pH. Furthermore, crucian carp, when supplemented with FiA2 in diet, reduced the infection rate (post-challenged survival rate of 45%), increased the total weight gain by 15.87%, and upregulated the mRNA levels of IGF-1 and IGF-2 (P < 0.05) of muscular tissues. Similarly, the innate immune-related genes in the liver, the spleen, and the head kidney of the fish in the FiA2-supplemented group were significantly upregulated (P < 0.05). In addition, FiA2 modulated the intestinal microbiota, as observed in the FiA2 group of crucian carp; the predominant phyla were Actinobacteriota and Firmicutes, whereas in the control group, Plesiomonas dominated at the genus level. Overall, we conclude that B. velezensis FiA2, a broad-spectrum oxydifficidin-producing strain, resists infection and positively regulates the growth, immunity, and intestinal microbiota of crucian carp and thus can be implemented as a novel probiotic strain for aquaculture.
Collapse
Affiliation(s)
- Tahir Ali Khan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - He Liangliang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahida Bashir
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Xia Ziyuan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Roua A Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jie Rang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Shengbiao Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Adedokun G, Alipanah M, Fan ZH. Sample preparation and detection methods in point-of-care devices towards future at-home testing. LAB ON A CHIP 2024; 24:3626-3650. [PMID: 38952234 PMCID: PMC11270053 DOI: 10.1039/d3lc00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.
Collapse
Affiliation(s)
- George Adedokun
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Mollasalehi H, Esmaili F, Minai-Tehrani D. Development and evaluation of a colorimetric LAMP-based biosensor for rapid detection of a nosocomial infection agent, Citrobacter freundii. Sci Rep 2023; 13:21896. [PMID: 38081996 PMCID: PMC10713557 DOI: 10.1038/s41598-023-49329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
Simple and fast diagnosis of Citrobacter freundii which is an important cause of nosocomial infection in human is crucial to achieve early treatment. We have developed and evaluated an optical LAMP-based biosensor for the visual detection of C. freundii for the first time. The efficiency of the assay was investigated and compared to PCR method. The selectivity and specificity of the biosensor were analyzed using Morganella morganii, Enterobacter aerogenes, Pseudomonas aeruginosa, Yersinia enterocolitica, Shigella sonnei, Serratia marcescens, Burkholderia cepacia and Klebsiella pneumoniae and a mixed-culture medium. Endpoint analysis using hydroxy naphthol blue was applied, and the color change to sky blue and no color change from violet indicated positive and negative results, respectively. The absorption at 650 nm was measured 0.39 for the positive sample, while the mean absorption of the test samples, including water, was 0.23. The specificity of the method was equal to that of PCR. However, the sensitivity was determined as 12.24 fg/µL of the genomic content of C. freundii, higher than PCR assay. The developed LAMP-based method provided a rapid and accurate technique for molecular diagnostics of C. freundii, making it a suitable technique for point-of-care diagnostics in cases of urgent situations.
Collapse
Affiliation(s)
- Hamidreza Mollasalehi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Velenjak, Tehran, 1983969411, Iran.
| | - Faezeh Esmaili
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Velenjak, Tehran, 1983969411, Iran
| | - Dariush Minai-Tehrani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Velenjak, Tehran, 1983969411, Iran
| |
Collapse
|
4
|
Sirimanapong W, Phước NN, Crestani C, Chen S, Zadoks RN. Geographical, Temporal and Host-Species Distribution of Potentially Human-Pathogenic Group B Streptococcus in Aquaculture Species in Southeast Asia. Pathogens 2023; 12:pathogens12040525. [PMID: 37111411 PMCID: PMC10146238 DOI: 10.3390/pathogens12040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Group B Streptococcus (GBS) is a major pathogen of humans and aquatic species. Fish have recently been recognized as the source of severe invasive foodborne GBS disease, caused by sequence type (ST) 283, in otherwise healthy adults in Southeast Asia. Thailand and Vietnam are among the major aquaculture producers in Southeast Asia, with GBS disease reported in fish as well as frogs in both countries. Still, the distribution of potentially human-pathogenic GBS in aquaculture species is poorly known. Using 35 GBS isolates from aquatic species in Thailand collected from 2007 to 2019 and 43 isolates from tilapia collected in Vietnam in 2018 and 2019, we have demonstrated that the temporal, geographical, and host-species distribution of GBS ST283 is broader than previously known, whereas the distribution of ST7 and the poikilothermic lineage of GBS are geographically restricted. The gene encoding the human GBS virulence factor C5a peptidase, scpB, was detected in aquatic ST283 from Thailand but not in ST283 from Vietnam or in ST7 from either country, mirroring current reports of GBS strains associated with human sepsis. The observed distribution of strains and virulence genes is likely to reflect a combination of spill-over, host adaptation through the gain and loss of mobile genetic elements, and current biosecurity practices. The plastic nature of the GBS genome and its importance as a human, aquatic, and potentially foodborne pathogen suggests that active surveillance of GBS presence and its evolution in aquaculture systems may be justified.
Collapse
|
5
|
Shi H, Zhou M, Zhang Z, Hu Y, Song S, Hui R, Wang L, Li G, Yao L. Molecular epidemiology, drug resistance, and virulence gene analysis of Streptococcus agalactiae isolates from dairy goats in backyard farms in China. Front Cell Infect Microbiol 2023; 12:1049167. [PMID: 36699728 PMCID: PMC9868259 DOI: 10.3389/fcimb.2022.1049167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023] Open
Abstract
Streptococcus agalactiae infections may lead to clinical or subclinical mastitis in dairy animals when it invades the mammary gland. In this study, 51 S. agalactiae strains were isolated from 305 milk samples that were collected from goats with mastitis in 13 provinces of China. The antimicrobial resistance of S. agalactiae was determined by disk diffusion methods against 18 antibiotics from six classes. In addition, multilocus sequence typing (MLST), and the presence of resistance and virulence genes was determined by PCR analysis. Seven sequence types in five clonal complexes were identified according to MLST; CC103 and CC67 strains were predominant, with rates of 45.1% and 39.2%, respectively. All isolates (100%) were multiresistant to three or more antimicrobial agents. S. agalactiae isolates had a 100% resistance rate to penicillin, oxacillin, and amoxicillin, followed by doxycycline (82.4%), tetracycline (76.5%), and amikacin (74.5%). The lowest resistance was observed for ciprofloxacin (29.4%), which varied in five different regions. The detection rates of six classes of antimicrobial-related genes were calculated as follows: 33 (64.7%) for β-lactam-related resistance gene, 12 (23.5%) for tetracyclines, 11 (21.6%) for quinolone-related resistance genes, 10 (19.6%) for aminoglycosides, 7 (13.7%) for macrolides (ermA, ermB, and mefA), and 3 (5.9%) for lincosamide (lnu(B)). Regarding virulence genes, profile 1 (bca cfb-cspA-cylE-hylB-bibA-pavA-fbsA-fbsB) was the most prevalent, with a detection rate of 54.9%. This work provides a primary source related to the molecular epidemiology of S. agalactiae in dairy goat herds in China and will aid in the clinical treatment, prevention, and control of mastitis.
Collapse
Affiliation(s)
- Hongfei Shi
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| | - Mengxiao Zhou
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Zhengtian Zhang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Yun Hu
- College of Animal Husbandry and Medical Engineering, Nanyang Vocational College of Agriculture, Nanyang, China
| | - Shiyang Song
- Animal Husbandry and Fishery Department, Heilongjiang State 853 Farm Limited Company, Shuangyashan, China
| | - Ruiqing Hui
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Long Wang
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Guoguang Li
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated Control, Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, China,*Correspondence: Hongfei Shi, ; Lunguang Yao,
| |
Collapse
|
6
|
Development of a Real-Time Recombinase-Aided Amplification Method to Rapidly Detect Methicillin-Resistant Staphylococcus aureus. Microorganisms 2022; 10:microorganisms10122351. [PMID: 36557604 PMCID: PMC9784193 DOI: 10.3390/microorganisms10122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant staphylococcus aureus (MRSA) is a major pathogen responsible for human hospital and community-onset diseases and severe invasive livestock infections. Rapid detection of MRSA is essential to control the spread of MRSA. Conventional identification methods and antibacterial susceptibility tests of MRSA are time-consuming. The commonly used qPCR assay also has the disadvantages of being complicated and expensive, restricting its application in resource-limited clinical laboratories. Here, a real-time fluorescent recombinase-assisted amplification (RAA) assay targeting the most conserved regions within the mecA gene of MRSA was developed and evaluated to detect MRSA. The detection limit of this assay was determined to be 10 copies/reaction of positive plasmids. The established RAA assay showed high specificity for MRSA detection without cross-reactivities with other clinically relevant bacteria. The diagnostic performance of real-time RAA was evaluated using 67 clinical S. aureus isolates from dairy farms, which were detected in parallel using the TaqMan probe qPCR assay. The results showed that 56 and 54 samples tested positive for MRSA by RAA and qPCR, respectively. The overall agreement between both assays was 97.01% (65/67), with a kappa value of 0.9517 (p < 0.001). Further linear regression analysis demonstrated that the detection results between the two assays were significantly correlated (R2 = 0.9012, p < 0.0001), indicating that this RAA assay possesses similar detection performance to the qPCR assay. In conclusion, our newly established RAA assay is a time-saving and convenient diagnostic tool suitable for MRSA detection and screening.
Collapse
|
7
|
Das D, Lin CW, Chuang HS. LAMP-Based Point-of-Care Biosensors for Rapid Pathogen Detection. BIOSENSORS 2022; 12:bios12121068. [PMID: 36551035 PMCID: PMC9775414 DOI: 10.3390/bios12121068] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Seeking optimized infectious pathogen detection tools is of primary importance to lessen the spread of infections, allowing prompt medical attention for the infected. Among nucleic-acid-based sensing techniques, loop-mediated isothermal amplification is a promising method, as it provides rapid, sensitive, and specific detection of microbial and viral pathogens and has enormous potential to transform current point-of-care molecular diagnostics. In this review, the advances in LAMP-based point-of-care diagnostics assays developed during the past few years for rapid and sensitive detection of infectious pathogens are outlined. The numerous detection methods of LAMP-based biosensors are discussed in an end-point and real-time manner with ideal examples. We also summarize the trends in LAMP-on-a-chip modalities, such as classical microfluidic, paper-based, and digital LAMP, with their merits and limitations. Finally, we provide our opinion on the future improvement of on-chip LAMP methods. This review serves as an overview of recent breakthroughs in the LAMP approach and their potential for use in the diagnosis of existing and emerging diseases.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Huang AG, Su LJ, He WH, Zhang FL, Wei CS, Wang YH. Natural component plumbagin as a potential antibacterial agent against Streptococcus agalactiae infection. JOURNAL OF FISH DISEASES 2022; 45:815-823. [PMID: 35315084 DOI: 10.1111/jfd.13606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.
Collapse
Affiliation(s)
- Ai-Guo Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Lin-Jun Su
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | - Wei-Hao He
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Fa-Li Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Chao-Shuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Cheng X, Dou Z, Yang J, Liu D, Gu Y, Cai F, Li X, Wang M, Tang Y. Visual multiple cross displacement amplification for the rapid identification of S. agalactiae immediately from vaginal and rectal swabs. AMB Express 2021; 11:9. [PMID: 33409835 PMCID: PMC7788142 DOI: 10.1186/s13568-020-01168-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 12/13/2020] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (S. agalactiae) is an important pathogen that can lead to neonatus and mother infection. The current existing techniques for the identification of S. agalactiae are limited by accuracy, speed and high-cost. Therefore, a new multiple cross displacement amplification (MCDA) assay was developed for test of the target pathogen immediately from vaginal and rectal swabs. MCDA primers screening were conducted targeting S. agalactiae pcsB gene, and one set of MCDA primers with better rapidity and efficiency was selected for establishing the S. agalactiae-MCDA assay. As a result, the MCDA method could be completed at a constant temperature of 61 °C, without the requirement of special equipment. The detection limit is 250 fg (31.5 copies) per reaction, all S. agalactiae strains displayed positive results, but not for non-S. agalactiae strains. The visual MCDA assay detected 16 positive samples from 200 clinical specimen, which were also detected positive by enrichment/qPCR. While the CHROMagar culture detected 6 positive samples. Thus, the MCDA assay is prefer to enrichment/qPCR and culture for detecting S. agalactiae from clinical specimen. Particularly, the whole test of MCDA takes about 63.1 min, including sample collection (3 min), DNA preparation (15 min), MCDA reaction (45 min) and result reporting (6 s). In addition, the cost was very economic, with only US$ 4.9. These results indicated that our S. agalaciae-MCDA assay is a rapid, sensitive and cost-efficient technique for target pathogen detection, and is more suitable than conventional assays for an urgent detection, especially for 'on-site' laboratories and resource-constrained settings.
Collapse
|
10
|
Cheng X, Dou Z, Yang J, Gu Y, Liu D, Xie L, Ren T, Liu Y, Yu Z, Tang Y, Wang M. Highly Sensitive and Rapid Identification of Streptococcus agalactiae Based on Multiple Cross Displacement Amplification Coupled With Lateral Flow Biosensor Assay. Front Microbiol 2020; 11:1926. [PMID: 32983004 PMCID: PMC7485445 DOI: 10.3389/fmicb.2020.01926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococccus agalactiae (S. agalactiae) is an important neonatal pathogen that is associated with mortality and morbidity. Therefore, we developed a rapid, accurate, and sensitive method based on multiple cross displacement amplification (MCDA) for the detection of the target pathogen. Four sets of MCDA primers were designed for targeting the S. agalactiae-specific groEL gene, and one set of MCDA primers with the optimum amplification efficiency was screened for establishing the S. agalactiae-MCDA assay. As a result, the newly-developed assay could be conducted at a fixed temperature (61°C) for only 30 min, eliminating the use of complex instruments. A portable and user-friendly nanoparticle-based lateral flow biosensor (LFB) assay was employed for reporting MCDA results within 2 min. Our results suggested that the detection limit of the S. agalactiae-MCDA-LFB assay is 300 fg per reaction, and no cross-reaction occurred with non-S. agalactiae strains. For 260 vaginal and rectal swabs, the detection rate of the MCDA-LFB assay was 7.7%, which was in accordance with the reference method of enrichment/qPCR, and higher by 4.6% than the CHROMagar culture. Moreover, the total procedure time of the MCDA-LFB assay was around 50 min, including sample collection, template preparation, MCDA reaction, and result reporting. Therefore, the MCDA-LFB assay is superior to enrichment/qPCR and CHROMagar culture and has great promise for point-of-care testing of S. agalactiae from vaginal and rectal swabs of pregnant women in resource-limited settings.
Collapse
Affiliation(s)
- Xueqin Cheng
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhiqian Dou
- Department of Gynaecology and Obstetrics, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jing Yang
- Department of Pharmacy, Wuhan General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Yulong Gu
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dexi Liu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ling Xie
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Ren
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Liu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhifang Yu
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yijun Tang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Meifang Wang
- Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|