1
|
Sokolov S, Brovko F, Solonin A, Nikanova D, Fursova K, Artyemieva O, Kolodina E, Sorokin A, Shchannikova M, Dzhelyadin T, Ermakov A, Boziev K, Zinovieva N. Genomic analysis and assessment of pathogenic (toxicogenic) potential of Staphylococcus haemolyticus and Bacillus paranthracis consortia isolated from bovine mastitis in Russia. Sci Rep 2023; 13:18646. [PMID: 37903798 PMCID: PMC10616132 DOI: 10.1038/s41598-023-45643-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/22/2023] [Indexed: 11/01/2023] Open
Abstract
Three stable microbial consortia, each composed of Bacillus paranthracis and Staphylococcus haemolyticus strains, were isolated from milk of cows diagnosed with mastitis in three geographically remote regions of Russia. The composition of these consortia remained stable following multiple passages on culture media. Apparently, this stability is due to the structure of the microbial biofilms formed by the communities. The virulence of the consortia depended on the B. paranthracis strains. It seems plausible that the ability of the consortia to cause mastitis in cattle was affected by mutations of the cytK gene of B. paranthracis.
Collapse
Affiliation(s)
- Sergei Sokolov
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia.
- Laboratory of Plasmid Biology, Federal Research Center "Pushchino Scientific Center for Biological Researches", G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Fedor Brovko
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Alexander Solonin
- Laboratory of Plasmid Biology, Federal Research Center "Pushchino Scientific Center for Biological Researches", G.K. Skryabin Institute of Biochemistry & Physiology of Microorganisms of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Daria Nikanova
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Ksenia Fursova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Olga Artyemieva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Evgenia Kolodina
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| | - Anatoly Sorokin
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Margarita Shchannikova
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Timur Dzhelyadin
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Artem Ermakov
- Laboratory of Cell Genome Functioning Mechanisms, Federal Research Center "Pushchino Scientific Center for Biological Researches", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Khanafy Boziev
- Laboratory of Immunochemistry, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Natalia Zinovieva
- Laboratory of Microbiology, L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy, 142132, Russia
| |
Collapse
|
2
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Vlak J, Barizzone F, Hempen M, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 13: suitability of taxonomic units notified to EFSA until September 2020. EFSA J 2021; 19:e06377. [PMID: 33537066 PMCID: PMC7842631 DOI: 10.2903/j.efsa.2021.6377] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of biological agents, intended for addition to food or feed, to support the work of EFSA's Scientific Panels. It is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of knowledge, safety concerns and antimicrobial resistance. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at strain or product level, and reflected by 'qualifications'. In the period covered by this statement, no new information was found that would change the status of previously recommended QPS TUs. Of the 36 microorganisms notified to EFSA between April and September 2020, 33 were excluded; seven filamentous fungi (including Aureobasidium pullulans based on recent taxonomic insights), one Clostridium butyricum, one Enterococcus faecium, three Escherichia coli, one Streptomyces spp. and 20 TUs that had been previously evaluated. Three TUs were evaluated; Methylorubrum extorquens and Mycobacterium aurum for the first time and Bacillus circulans was re-assessed because an update was requested in relation to a new mandate. M. extorquens and M. aurum are not recommended for QPS status due to the lack of a body of knowledge in relation to use in the food or feed chain and M. aurum, due to uncertainty concerning its pathogenicity potential. B. circulans was recommended for QPS status with the qualifications for 'production purposes only' and 'absence of cytotoxic activity'.
Collapse
|