1
|
Yadav A, Paul KK, Soni M, Dubey NK, Prasad R, Tilak R, Dwivedy AK. Antifungal resistance in dermatophytes: Essential oil-based nanoformulations as new generation therapeutics against dermatophytes. Microb Pathog 2025; 205:107622. [PMID: 40274135 DOI: 10.1016/j.micpath.2025.107622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 04/04/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025]
Abstract
Dermatophytosis is the most prevalent infection globally, affecting the stratum corneum of the skin, nails, and hair with a high recurrence rate. It transmits between humans and from humans to animals. Despite progress in medicine, its prevalence continues to increase. Therefore, current treatments, such as terbinafine, fluconazole, and other antifungal drugs, face challenges related to the emergence of fungal resistance, side effects, and toxicity associated with prolonged use, thereby highlighting the need for new therapeutic options. Medicinal plants are a never-ending source of bioactive chemicals, and their volatile and non-volatile extracts are widely acknowledged for therapeutic healthcare. Natural plant-derived products, especially essential oils (EOs) exhibit multiple modes of action that reduce the chances of resistance development in fungi. EOs have been reported as highly efficacious plant-based antifungals against different dermatophytes. Nanoencapsulation of EOs has emerged as an innovative strategy for maintaining and managing the volatile and reactive properties of EOs. The review presents current information on the emergence of resistance development in dermatophytes and investigates the potential of EOs and their nanoformulations as next-generation nano-therapeutics against dermatophytic infections. It also highlights advancements in nanosystems, along with findings from animal and clinical studies to improve treatment efficacy and address the limits of traditional therapy by combining diverse antifungal medicines with novel delivery methods.
Collapse
Affiliation(s)
- Arati Yadav
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Kishor Kumar Paul
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Monisha Soni
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Rajendra Prasad
- Department of Kaya Chikitsa, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Ragini Tilak
- Department of Microbiology, Faculty of Medicine, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Tullio V, Panzone M, Cervetti O, Roana J, Mandras N. Case Report: From Misdiagnosis to Accurate Identification: Managing a Case Series of Trichophyton rubrum Infections. Microorganisms 2025; 13:895. [PMID: 40284731 PMCID: PMC12029773 DOI: 10.3390/microorganisms13040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
In recent decades, despite being well-known, dermatophytosis has seen a resurgence and an increase in the incidence of infections, with dermatophytes such as Trichophyton rubrum being the most common agents. Dermatophytosis pathogenesis involves complex interactions between the host, agent, and environment. In many cases, dermatophytosis can be mistaken for other pathologies, which leads to incorrect therapies and the consequent non-recovery of the patient. In this paper, we describe five previously undiagnosed cases of diffuse T. rubrum dermatophytosis because they represent the clinical manifestations that affect several sites at the same time and that, if not properly diagnosed and treated, can lead to severe, widespread, chronic, and difficult-to-treat dermatophytosis. This case series of five instances of misdiagnosed T. rubrum dermatophytosis was later accurately diagnosed and successfully treated with systemic terbinafine hydrochloride 250 mg/die for at least four weeks up to twelve or sixteen, and topical azoles (sertaconazole nitrate 2%) as well. This case series highlights the need to make an accurate diagnosis and avoid misidentifications while offering insightful information about the clinical presentation and treatment of these illnesses.
Collapse
Affiliation(s)
- Vivian Tullio
- Department Public Health and Pediatrics, Microbiology Division, University of Turin, 10126 Torino, Italy; (J.R.); (N.M.)
| | - Michele Panzone
- A.O.U Città della Salute e della Scienza, San Lazzaro Hospital, 10126 Turin, Italy;
| | - Ornella Cervetti
- Department Medical Sciences, University of Turin, 10126 Torino, Italy;
| | - Janira Roana
- Department Public Health and Pediatrics, Microbiology Division, University of Turin, 10126 Torino, Italy; (J.R.); (N.M.)
| | - Narcisa Mandras
- Department Public Health and Pediatrics, Microbiology Division, University of Turin, 10126 Torino, Italy; (J.R.); (N.M.)
| |
Collapse
|
3
|
Preman NK, Amin N, Sanjeeva SG, Surya S, Kumar B S, Shenoy MM, Shastry RP, Johnson RP. Essential Oil Components Incorporated Emulsion Hydrogels for Eradicating Dermatophytosis Caused by Pathogenic Fungi Trichophyton mentagrophytes and Microsporum canis. Adv Healthc Mater 2024; 13:e2400811. [PMID: 39138998 DOI: 10.1002/adhm.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Dermatophytosis is a prevalent fungal infection and public health burden, majorly caused by the attack of zoophilic fungi genera of Trichophyton and Microsporum. Among them, T. mentagrophytes and M. canis are the dominating pathogens that cause dermatophytosis in humans. Though anti-fungal treatments are available, the widespread drug resistance and minimal efficacy of conventional therapies cause recurring infections. In addition, prolonged anti-fungal medications induce several systemic side effects, including hepatotoxicity and leucopenia. The anti-dermatophytic formulation of biocompatible essential oil components (EOCs) is attractive due to their highly potent anti-dermatophytic action. Herein, two EOCs, Eugenol (EU) and Isoeugenol (IU), incorporated emulsion hydrogel (EOCs-EHG) synthesized from hydroxypropylmethyl cellulose and poly(ethylene glycol) methyl ether methacrylate. The cytocompatibility of the hydrogels is confirmed by treating them with fibroblast and keratinocyte cell lines. The EOCs-EHG demonstrated pH and temperature-responsive sustained release of entrapped EOCs and inhibited fungal spore germination. T. mentagrophytes and M. canis biofilms are eradicated at a minimal inhibitory concentration of 2 µg mL-1 each of EU and IU. The in vivo anti-dermatophytic activity of EOCs-EHG is confirmed in dermatophyte-infected Wistar albino rat models. The topical application of EOCs-EHG demonstrated complete infection eradication and facilitated skin regeneration, emphasizing the therapeutic potential of EOCs-EHG against dermatophytosis.
Collapse
Affiliation(s)
- Namitha K Preman
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Nikhitha Amin
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sandesh G Sanjeeva
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Suprith Surya
- Advanced Surgical Skill ENhancement Division (ASSEND), Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Sukesh Kumar B
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Manjunath M Shenoy
- Department of Dermatology, Venereology and Leprosy, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterials Research Laboratory, Smart Materials and Devices (SMAD) Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| |
Collapse
|
4
|
Ortiz B, Ballesteros-Monrreal MG, Rosales-Tamashiro J, Bush M, Salmanton-García J, Fontecha G. Global Insights and Trends in Research on Dermatophytes and Dermatophytosis: A Bibliometric Analysis. Mycoses 2024; 67:e13803. [PMID: 39343727 DOI: 10.1111/myc.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Dermatophytosis, caused by dermatophytes, affects up to 25% of people globally, with higher rates observed in Africa and Asia. While these infections are usually superficial, they can become severe in immunocompromised individuals. Despite their high prevalence, scientific research on dermatophytes is limited and the epidemiological data available are insufficient. In addition, diagnostic methods are not standardised and there are challenges with resistance to antifungals. OBJECTIVES This study aimed to conduct a bibliometric analysis of scientific publications related to dermatophytes and dermatophytosis to assess research output and trends. METHODS A bibliometric analysis of publications from 2000 to 2023 in Web of Science and Scopus examined trends, citation counts, publication types, key journals, top authors and institutions and funding sources. RESULTS The analysis revealed a significant increase in dermatophyte-related publications, with 15,868 articles retrieved from the Web of Science and 23,189 from Scopus. Research articles dominated the output, constituting 76.2% in Web of Science and 80% in Scopus. Peak publication years were 2019, 2021 and 2022 in Web of Science, and 2020, 2021 and 2023 in Scopus, with lower output between 2000 and 2002. The United States and India were the leading contributors, followed by Brazil and China, though citation metrics varied. Although there has been a rise in the number of publications, the amount of research conducted on dermatophytes is still very limited in comparison with other types of fungal diseases. CONCLUSIONS Dermatophyte-related research has increased over the past 2 decades. However, research gaps remain, particularly compared with other fungal diseases. Advances in diagnostics, antifungal testing and taxonomic classification are urgently needed. The study underscores the need for continued research and global collaboration to address these issues.
Collapse
Affiliation(s)
- Bryan Ortiz
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | | | - Juan Rosales-Tamashiro
- Maestría de Enfermedades Infecciosas y Zoonóticas, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Michelle Bush
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| |
Collapse
|
5
|
Dubljanin E, Zunic J, Vujcic I, Colovic Calovski I, Sipetic Grujicic S, Mijatovic S, Dzamic A. Host-Pathogen Interaction and Resistance Mechanisms in Dermatophytes. Pathogens 2024; 13:657. [PMID: 39204257 PMCID: PMC11357293 DOI: 10.3390/pathogens13080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/14/2024] Open
Abstract
Dermatophytes are widely distributed in the environment, with an estimated prevalence of 20-25% of the the global population yearly. These fungi are keratinophilic and keratinolytic and cause the infection of keratin-rich structures such as skin, hair, and nails. The pattern of this infectious disease covers a wide spectrum from exposed individuals without symptoms to those with acutely inflammatory or non-inflammatory, chronic to invasive, and even life-threatening symptoms. This review summarizes current information on the pathogenicity, virulence factors, and drug resistance mechanisms associated with dermatophytes. A greater number of virulence factors of these fungi are important for the occurrence of infection and the changes that occur, including those regarding adhesins, the sulfite efflux pump, and proteolytic enzymes. Other virulence factors include mechanisms of evading the host defense, while the development of resistance to antifungal drugs is increasing, resulting in treatment failure. The investigation of host-pathogen interactions is essential for developing a more complete understanding of the mechanisms underlying dermatophyte pathogenesis and host response to inform the use of diagnostics methods and antifungal therapeutics to minimize the high fungal burden caused by dermatophytes and to control the spread of resistance.
Collapse
Affiliation(s)
- Eleonora Dubljanin
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Zunic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Isidora Vujcic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Ivana Colovic Calovski
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Sipetic Grujicic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Mijatovic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Dzamic
- Faculty of Medicine, Institute of Microbiology and Immunology, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Saraswat A, Dogra S, Shenoy M, Verma S, K S, Ghate S, Ganjoo A, Aurangabadkar S, Tiwari A, Poojary S, Inamdar A, Majid I, Girdhar M, Shah B, Varma S, Ramamoorthy R, Dhoot D, Barkate H. Clinical Use of Super-Bioavailable Itraconazole for the Management of Dermatophytosis: Consensus Statement by Dermatologists from India via the Modified Delphi Technique. Dermatology 2024; 240:671-683. [PMID: 38697027 DOI: 10.1159/000538080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/26/2024] [Indexed: 05/04/2024] Open
Abstract
Super-bioavailable itraconazole (SB ITZ) overcomes the limitations of conventional itraconazole (CITZ) such as interindividual variability and reduced bioavailability. It has been approved for systemic mycoses in Australia and Europe as 50 mg and the USA as 65 mg and in India as 50 mg, 65 mg, 100 mg, and 130 mg. However, data on the ideal dose and duration of SB ITZ treatment in managing dermatophytosis are insufficient. This consensus discusses the suitability, dosage, duration of treatment, and relevance of using SB ITZ in managing dermatophytosis in different clinical scenarios. Sixteen dermatologists (>15 years of experience in the field and ≥2 years clinical experience with SB ITZ), formed the expert panel. A modified Delphi technique was employed, and a consensus was reached if the concordance in response was >75%. A total of 26 consensus statements were developed. The preferred dose of SB ITZ is 130 mg once daily and if not tolerated, 65 mg twice daily. The preferred duration for treating naïve dermatophytosis is 4-6 weeks and that for recalcitrant dermatophytosis is 6-8 weeks. Moreover, cure rates for dermatophytosis are a little better with SB ITZ than with CITZ with a similar safety profile as of CITZ. Better patient compliance and efficacy are associated with SB ITZ than with CITZ, even in patients with comorbidities and special needs such as patients with diabetes, extensive lesions, corticosteroid abuse, adolescents, and those on multiple drugs. Expert clinicians reported that the overall clinical experience with SB ITZ was better than that with CITZ.
Collapse
Affiliation(s)
- Abir Saraswat
- Department of Dermatology, Indushree Skin Clinic, Lucknow, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Manjunath Shenoy
- Department of Dermatology, Yenepoya Medical College, Mangalore, India
| | - Shyam Verma
- Department of Dermatology, Nirvan Skin Clinic, Vadodara, India
| | - Seetharam K
- Department of Dermatology, GSL Medical College, Rajamundry, India
| | - Sunil Ghate
- Department of Dermatology, Dr Ghate's Skin, Hair and LASER Centre, Mumbai, India
| | - Anil Ganjoo
- Department of Dermatology, Skinnovation Clinics, New Delhi, India
| | - Sanjeev Aurangabadkar
- Department of Dermatology, Dr. Aurangabadkar's Skin and Laser Clinics, Hyderabad, India
| | - Anurag Tiwari
- Department of Dermatology, Center for Skin Diseases and Laser Treatment, Bhopal, India
| | - Shital Poojary
- Department of Dermatology, K J Somaiya Medical College, Mumbai, India
| | - Arun Inamdar
- Department of Dermatology, Sri B M Patil Medical College, BLDE Deemed University, Vijayapur, India
| | - Imran Majid
- Department of Dermatology, Cutis Institute of Dermatology, Srinagar, India
| | - Mukesh Girdhar
- Department of Dermatology, Max Super Specialty Hospital, Ppg, Delhi, India
| | - Bela Shah
- Department of Dermatology, BJ Medical College and Civil Hospital, Ahmedabad, India
| | - Sachin Varma
- Department of Dermatology, Skinvita Clinic, Kolkata, India
| | | | - Dhiraj Dhoot
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd., Mumbai, India
| | - Hanmant Barkate
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd., Mumbai, India
| |
Collapse
|
7
|
Belmokhtar Z, Djaroud S, Matmour D, Merad Y. Atypical and Unpredictable Superficial Mycosis Presentations: A Narrative Review. J Fungi (Basel) 2024; 10:295. [PMID: 38667966 PMCID: PMC11051100 DOI: 10.3390/jof10040295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
While typically exhibiting characteristic features, fungal infections can sometimes present in an unusual context, having improbable localization (eyelid, face, or joint); mimicking other skin diseases such as eczema, psoriasis, or mycosis fungoides; and appearing with unexpected color, shape, or distribution. The emergence of such a challenging clinical picture is attributed to the complex interplay of host characteristics (hygiene and aging population), environment (climate change), advances in medical procedures, and agent factors (fungal resistance and species emergence). We aim to provide a better understanding of unusual epidemiological contexts and atypical manifestations of fungal superficial diseases, knowing that there is no pre-established clinical guide for these conditions. Thus, a literature examination was performed to provide a comprehensive analysis on rare and atypical superficial mycosis as well as an update on certain fungal clinical manifestations and their significance. The research and standard data extraction were performed using PubMed, Medline, Scopus, and EMBASE databases, and a total of 222 articles were identified. This review covers published research findings for the past six months.
Collapse
Affiliation(s)
- Zoubir Belmokhtar
- Department of Environmental Sciences, Faculty of Natural Sciences, Djilali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria;
- Laboratory of Plant and Microbial Valorization (LP2VM), University of Science and Technology of Oran, Mohamed Boudiaf (USTOMB), Oran 31000, Algeria
| | - Samira Djaroud
- Department of Chemistry, Djilali Liabes University of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| | - Derouicha Matmour
- Central Laboratory, Djilali Liabes University of Medicine of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| | - Yassine Merad
- Central Laboratory, Djilali Liabes University of Medicine of Sidi-Bel-Abbes, Sidi Bel Abbes 22000, Algeria
| |
Collapse
|
8
|
Gottardo B, Zoccal ARM, Maschio-Lima T, Lemes TH, Paziani MH, Von Zeska Kress MR, Perfecto TM, Almeida MTG, Volanti DP. Antifungal Activity of Nontoxic Nanocomposite Based on Silver and Reduced Graphene Oxide against Dermatophytes and Candida spp. ACS Biomater Sci Eng 2023; 9:6870-6879. [PMID: 37943794 DOI: 10.1021/acsbiomaterials.3c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Dermatomycoses are typical hair, skin, or nail infections caused mainly by dermatophytes and nondermatophytes: Trichophyton, Microsporum, Epidermophyton, and Candida. In addition to the esthetical impact, pain, and nail deformity, these mycoses can be a source of severe disease. The high cost of treatment, toxicity, and the emergence of resistant infectious agents justifies research into new drugs. This work evaluates the fungicidal activity of nanocomposites (NCs) based on reduced graphene oxide (rGO) loaded with silver (Ag) nanoparticles (rGO/Ag) against clinical isolates of dermatophytes and Candida species. This is an unprecedented study in which, for the first time, hybrid nanocompounds based on Ag/rGO were tested against Epidermophytom, Microsporum, and Trichophyton species (dermatophytes agents). In this paper, we synthesize rGO using different concentrations of Ag by hydrolysis of metal salt AgNO3 and follow the growth of nanocrystals on sheets of rGO provided by the NaBH4. The NCs were analyzed by X-ray diffraction analysis, and the NC morphology, silver distribution on the rGO surface, and crystalline information were investigated by transmission electron microscopy. Antifungal susceptibility assay was performed by the microdilution method based on modified Clinical and Laboratory Standards Institute (CLSI) protocol. Time-kill kinetics was conducted to monitor the effect of the composite to inhibit fungal cells or promote structural changes, avoiding germination. The toxicological evaluation of the NCs was born in an in vivo model based on Galleria mellonella (G. mellonella). Minimum inhibitory concentration (MIC) values of the rGO/Ag NCs ranged from 1.9 to 125 μg/mL. The best inhibitory activity was obtained for rGO/Ag12%, mainly against Candida spp. and Epidermophyton floccosum. In the presence of sorbitol, MIC values of rGO/Ag NCs were higher (ranging from 15.6 to 250 μg/mL), indicating the action mechanism on the cell wall. Both yeast and dermatophytes clinical isolates were inhibited at a minimum of 6 and 24 h, respectively, but after 2 and 12 h, they had initial antifungal interference. All hybrid formulations of rGO/Ag NCs were not toxic for G. mellonella. This study provides insights into an alternative therapeutic strategy for controlling dermatomycoses.
Collapse
Affiliation(s)
- Bianca Gottardo
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Andreza R M Zoccal
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Taiza Maschio-Lima
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Thiago H Lemes
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Mario H Paziani
- Barão de Mauá University Center (BMUC), Rua. Ramos de Azevedo 423, Ribeirão Preto, Sao Paulo 14090-062, Brazil
| | - Marcia R Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n, Ribeirão Preto, Sao Paulo 14040-903, Brazil
| | - Tarcísio M Perfecto
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Margarete T G Almeida
- São José do Rio Preto Medical School (FAMERP), Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, Sao Paulo 15090-000, Brazil
| | - Diogo P Volanti
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| |
Collapse
|
9
|
Peng Q, Li Y, Fang J, Yu X. Effects of Epigenetic Modification and High Hydrostatic Pressure on Polyketide Synthase Genes and Secondary Metabolites of Alternaria alternata Derived from the Mariana Trench Sediments. Mar Drugs 2023; 21:585. [PMID: 37999409 PMCID: PMC10672368 DOI: 10.3390/md21110585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The hadal biosphere is the most mysterious ecosystem on the planet, located in a unique and extreme environment on Earth. To adapt to extreme environmental conditions, hadal microorganisms evolve special strategies and metabolisms to survive and reproduce. However, the secondary metabolites of the hadal microorganisms are poorly understood. In this study, we focused on the isolation and characterization of hadal fungi, screening the potential strains with bioactive natural products. The isolates obtained were detected further for the polyketide synthase (PKS) genes. Two isolates of Alternaria alternata were picked up as the representatives, which had the potential to synthesize active natural products. The epigenetic modifiers were used for the two A. alternata isolates to stimulate functional gene expression in hadal fungi under laboratory conditions. The results showed that the chemical epigenetic modifier, 5-Azacytidine (5-Aza), affected the phenotype, PKS gene expression, production of secondary metabolites, and antimicrobial activity of the hadal fungus A. alternata. The influence of epigenetic modification on natural products was strongest when the concentration of 5-Aza was 50 μM. Furthermore, the modification of epigenetic agents on hadal fungi under high hydrostatic pressure (HHP) of 40 MPa displayed significant effects on PKS gene expression, and also activated the production of new compounds. Our study demonstrates the high biosynthetic potential of cultivable hadal fungi, but also provides evidence for the utility of chemical epigenetic modifiers on active natural products from hadal fungi, providing new ideas for the development and exploitation of microbial resources in extreme environments.
Collapse
Affiliation(s)
| | | | | | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; (Q.P.)
| |
Collapse
|
10
|
Ayatollahi Mousavi SA, Mokhtari A, Barani M, Izadi A, Amirbeigi A, Ajalli N, Amanizadeh A, Hadizadeh S. Advances of liposomal mediated nanocarriers for the treatment of dermatophyte infections. Heliyon 2023; 9:e18960. [PMID: 37583758 PMCID: PMC10424084 DOI: 10.1016/j.heliyon.2023.e18960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
Due to the adverse effects associated with long-term administration of antifungal drugs used for treating dermatophytic lesions like tinea unguium, there is a critical need for novel antifungal therapies that exhibit improved absorption and minimal adverse effects. Nanoformulations offer a promising solution in this regard. Topical formulations may penetrate the upper layers of the skin, such as the stratum corneum, and release an appropriate amount of drugs in therapeutic quantities. Liposomes, particularly nanosized ones, used as topical medication delivery systems for the skin, may have various roles depending on their size, lipid and cholesterol content, ingredient percentage, lamellarity, and surface charge. Liposomes can enhance permeability through the stratum corneum, minimize systemic effects due to their localizing properties, and overcome various challenges in cutaneous drug delivery. Antifungal medications encapsulated in liposomes, including fluconazole, ketoconazole, croconazole, econazole, terbinafine hydrochloride, tolnaftate, and miconazole, have demonstrated improved skin penetration and localization. This review discusses the traditional treatment of dermatophytes and liposomal formulations. Additionally, promising liposomal formulations that may soon be available in the market are introduced. The objective of this review is to provide a comprehensive understanding of dermatophyte infections and the role of liposomes in enhancing treatment.
Collapse
Affiliation(s)
- Seyed Amin Ayatollahi Mousavi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abnoos Mokhtari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Science, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Azam Amanizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Hadizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm J 2023; 31:1167-1180. [PMID: 37273269 PMCID: PMC10236373 DOI: 10.1016/j.jsps.2023.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Solid-lipid nanoparticles (SLNs) are an innovative group of nanosystems used to deliver medicine to their respective targets with better efficiency and bioavailability in contrast to classical formulations. SLNs are less noxious, have fewer adverse effects, have more biocompatibility, and have easy biodegradability. Lipophilic, hydrophilic and hydrophobic drugs can be loaded into SLNs, to enhance their physical and chemical stability in critical environments. Certain antifungal agents used in different treatments are poorly soluble medications, biologicals, proteins etc. incorporated in SLNs to enhance their therapeutic outcome, increase their bioavailability and target specificity. SLNs-based antifungal agents are currently helpful against vicious drug-resistant fungal infections. This review covers the importance of SLNs in drug delivery of classical antifungal drugs, historical background, preparation, physicochemical characteristic, structure and sizes of SLNs, composition, drug entrapment efficacy, clinical evaluations and uses, challenges, antifungal drug resistance, strategies to overcome limitations, novel antifungal agents currently in clinical trials with special emphasis on fungal infections.
Collapse
|
12
|
Brito SCP, Pinto MR, Alcântara LM, Reis NF, Durães TL, Bittar CTM, de Oliveira JC, da Rocha EMDS, Dantas Machado RL, Souza E Guimarães RJDP, Baptista ARDS. Spatio-temporal six-year retrospective study on dermatophytosis in Rio de Janeiro, Southeast Brazil: A tropical tourist locality tale. PLoS Negl Trop Dis 2023; 17:e0010865. [PMID: 37011092 PMCID: PMC10101643 DOI: 10.1371/journal.pntd.0010865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/13/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
Trichophyton, Microsporum, Nannizzia and Epidermophyton genera cause dermatophytosis, the most common and highly contagious infectious skin disease. Rio de Janeiro is one of the most visited cities in the Southern Hemisphere, located in the most visited state of Brazil. This retrospective study investigated epidemiological and laboratorial aspects of dermatophytosis in Rio de Janeiro state, Brazil, by using spatiotemporal analysis. More than half of all individuals were infected by one or more dermatophytes. A variation between 18 and 106 years-old of the studied population was verified, and women more frequently affected. Patients were more frequently infected by Trichophyton spp., most of them T. rubrum, followed by T. mentagrophytes. M. canis and N. gypsea were more frequently isolated in the age group between 40 and 60 years old, while T. rubrum predominates among younger patients. All species presented homogeneous distribution while T. tonsurans appears to be restricted to the Rio de Janeiro capital while E. floccosum to the municipality of Macaé (190 Km apart from RJ). Rio de Janeiro state presented spatial clusters of dermatophytosis with high density in Guanabara Bay (E. floccosum, M. canis, N. gypsea, T. tonsurans) and Niterói (T. rubrum, T. mentagrophytes) but low density in Macaé (E. floccosum). Significant spatiotemporal clusters on dermatophytosis cases were detected in distinct municipalities (p-value ≤ 0.05). The Vulnerability Index (r = 0.293) and Demographic Density (r = 0.652) distributed according to neighborhoods in Niterói were direct related with dermatophytosis cases whereas Income (r = -0.306) was inversely correlated (p-value ≤ 0.05). The dermatophytosis spatiotemporal distinct distribution after two major international events in Rio de Janeiro, Brazil, highlight the pressing need for specific measures of its prevention and controlling. This is particularly relevant in touristic tropical localities which must consider both socio-economical and traveler's medicine variables.
Collapse
Affiliation(s)
- Simone Cristina Pereira Brito
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Márcia Ribeiro Pinto
- Laboratory of Biochemistry and Immunology of Mycoses, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lucas Martins Alcântara
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nathália Faria Reis
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | | | | | - Elisabeth Martins da Silva da Rocha
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Luiz Dantas Machado
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | - Andréa Regina de Souza Baptista
- Center for Microorganisms' Investigation, Biomedical Institute, Department of Microbiology and Parasitology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Rede Micologia RJ -Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Powell J, Porter E, Rafferty S, Field S, O'Connell NH, Dunne CP. Dermatology mycology diagnostics in Ireland: National deficits identified in 2022 that are relevant internationally. Mycoses 2023; 66:249-257. [PMID: 36448403 PMCID: PMC10107536 DOI: 10.1111/myc.13549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Conventional testing methods for dermatophytes are time-consuming, and resource limitations in our institution have prompted curtailed access to these diagnostics. OBJECTIVES Evaluation of our hospital's dermatological mycology diagnostic services and similar services nationally. METHODS This was a retrospective observational study on skin, hair and nail mycology samples in our institution comparing twenty five-year periods (2011-2015 and 2016-2021), including analysis of dermatology clinic data and correspondence related to fungal infection. A survey of national public hospitals' laboratories was conducted to evaluate their mycology testing capabilities. RESULTS The total 5 year test count prior to curtailment was 4851 specimens comprising 90% (n = 4344) from general practice and 6% (n = 290) from dermatology clinics. For the 5 years post curtailment, 64.5% (582/903) of specimens were from dermatology clinics. Dermatology clinic data demonstrated doubling of attendances (for all conditions) and of correspondence related to fungal infection. During this time also, national dermatological antifungal purchasing increased 11%. Ten of 28 Irish public hospital laboratories reported the provision of in-house dermatological mycology testing, and none had routine availability of susceptibility or molecular testing of dermatophytes. CONCLUSION This study is the first to report an appraisal of dermatological fungal diagnostic services in Ireland. Insufficient testing capacity implies that patients are either being treated for fungal infection without appropriate diagnostic confirmation, or being left untreated because of the lack of access to diagnostics. The introduction of molecular detection methods and susceptibility systems would enhance testing capabilities and reduce the requirement for the external referral.
Collapse
Affiliation(s)
- James Powell
- Department of Microbiology, University Hospital Limerick, Limerick, Ireland.,School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - Emma Porter
- Department of Dermatology, University Hospital Limerick, Limerick, Ireland
| | - Siobhan Rafferty
- Department of Dermatology, University Hospital Limerick, Limerick, Ireland
| | - Sinead Field
- Department of Dermatology, University Hospital Limerick, Limerick, Ireland
| | - Nuala H O'Connell
- Department of Microbiology, University Hospital Limerick, Limerick, Ireland.,School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| | - Colum P Dunne
- School of Medicine and Centre for Interventions in Infection, Inflammation, and Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
14
|
Antifungal and Antibiofilm Activity of Riparin III against Dermatophytes. J Fungi (Basel) 2023; 9:jof9020231. [PMID: 36836345 PMCID: PMC9966229 DOI: 10.3390/jof9020231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The ability of dermatophytes to develop biofilms is possibly involved in therapeutic failure because biofilms impair drug effectiveness in the infected tissues. Research to find new drugs with antibiofilm activity against dermatophytes is crucial. In this way, riparins, a class of alkaloids that contain an amide group, are promising antifungal compounds. In this study, we evaluated the antifungal and antibiofilm activity of riparin III (RIP3) against Trichophyton rubrum, Microsporum canis, and Nannizzia gypsea strains. We used ciclopirox (CPX) as a positive control. The effects of RIP3 on fungal growth were evaluated by the microdilution technique. The quantification of the biofilm biomass in vitro was assessed by crystal violet, and the biofilm viability was assessed by quantifying the CFU number. The ex vivo model was performed on human nail fragments, which were evaluated by visualization under light microscopy and by quantifying the CFU number (viability). Finally, we evaluated whether RIP3 inhibits sulfite production in T. rubrum. RIP3 inhibited the growth of T. rubrum and M. canis from 128 mg/L and N. gypsea from 256 mg/L. The results showed that RIP3 is a fungicide. Regarding antibiofilm activity, RIP3 inhibited biofilm formation and viability in vitro and ex vivo. Moreover, RIP3 inhibited the secretion of sulfite significantly and was more potent than CPX. In conclusion, the results indicate that RIP3 is a promising antifungal agent against biofilms of dermatophytes and might inhibit sulfite secretion, one relevant virulence factor.
Collapse
|
15
|
Khalil FO, Taj MB, Ghonaim EM, Abed El-Sattar S, Elkhadry SW, El-Refai H, Ali OM, Elgawad ASA, Alshater H. Hydrothermal assisted biogenic synthesis of silver nanoparticles: A potential study on virulent candida isolates from COVID-19 patients. PLoS One 2022; 17:e0269864. [PMID: 36201485 PMCID: PMC9536612 DOI: 10.1371/journal.pone.0269864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/27/2022] [Indexed: 11/07/2022] Open
Abstract
Till now the exact mechanism and effect of biogenic silver nanoparticles on fungus is an indefinable question. To focus on this issue, the first time we prepared hydrothermal assisted thyme coated silver nanoparticles (T/AgNPs) and their toxic effect on Candida isolates were determined. The role of thyme (Thymus Vulgaris) in the reduction of silver ions and stabilization of T/AgNPs was estimated by Fourier transforms infrared spectroscopy, structure and size of present silver nanoparticles were detected via atomic force microscopy as well as high-resolution transmission electron microscopy. The biological activity of T/AgNPs was observed against Candida isolates from COVID-19 Patients. Testing of virulence of Candida species using Multiplex PCR. T/AgNPs proved highly effective against Candida albicans, Candida kruzei, Candida glabrata and MIC values ranging from 156.25 to 1,250 μg/mL and MFC values ranging from 312.5 to 5,000 μg/mL. The structural and morphological modifications due to T/AgNPs on Candida albicans were detected by TEM. It was highly observed that when Candida albicans cells were subjected to 50 and 100 μg/mL T/AgNPs, a remarkable change in the cell wall and cell membrane was observed.
Collapse
Affiliation(s)
- Fatma O. Khalil
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Muhammad B. Taj
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University Bahawalpur, Bahawalpur, Pakistan
- * E-mail: (MBT); (OMA)
| | - Enas M. Ghonaim
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Shimaa Abed El-Sattar
- Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sally W. Elkhadry
- Epidemiology and Preventive Medicine Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Hala El-Refai
- Clinical and Molecular Microbiology and Immunology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif Saudi Arabia
- * E-mail: (MBT); (OMA)
| | - Ahmed Salah A. Elgawad
- Department of Clinical Pathology, National Liver Institute, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| | - Heba Alshater
- Department of Forensic Medicine and Clinical Toxicology, Menoufia University Hospital, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
16
|
Skala T, Kahánková Z, Tauchen J, Janatová A, Klouˇcek P, Hubka V, Fraˇnková A. Medical cannabis dimethyl ether, ethanol and butane extracts inhibit the in vitro growth of bacteria and dermatophytes causing common skin diseases. Front Microbiol 2022; 13:953092. [PMID: 36204633 PMCID: PMC9530109 DOI: 10.3389/fmicb.2022.953092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabis preparations are gaining popularity among patients with various skin diseases. Due to the lack of scientific evidence, dermatologists remain cautious about their prescriptions. So far, only a few studies have been published about the effects of high-potency cannabis extracts on microorganisms (especially dermatophytes) causing skin problems that affect more than 25% of the worldwide population. Even though, the high-potency cannabis extracts prepared by cold extraction are mostly composed of non-psychoactive tetrahydrocannabinolic acid (THCA) and only low amount of THC, their use in topical treatment can be stigmatized. The in vitro antimicrobial and antifungal activity of two high potent cannabis strains extracted by three solvents traditionally or currently used by cannabis users (ethanol; EtOH, butane; BUT, dimethyl ether; DME) was investigated by broth dilution method. The chemical profile of cannabis was determined by high-performance liquid chromatography with ultraviolet detection and gas chromatography with mass spectrometer and flame ionization detector. The extraction methods significantly influenced chemical profile of extracts. The yield of EtOH extracts contained less cannabinoids and terpenes compared to BUT and DME ones. Most of the extracts was predominantly (>60%) composed of various cannabinoids, especially THCA. All of them demonstrated activity against 18 of the 19 microorganisms tested. The minimal inhibitory concentrations (MICs) of the extracts ranged from 4 to 256 μg/mL. In general, the bacteria were more susceptible to the extracts than dermatophytes. Due to the lower content of biologically active substances, the EtOH extracts were less effective against microorganisms. Cannabis extracts may be of value to treat dermatophytosis and other skin diseases caused by various microorganisms. Therefore, they could serve as an alternative or supportive treatment to commonly used antibiotics.
Collapse
Affiliation(s)
- Tomáš Skala
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| | - Zdeˇnka Kahánková
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jan Tauchen
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| | - Anežka Janatová
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Klouˇcek
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| | - Vít Hubka
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Adéla Fraˇnková
- Department of Food Science, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
17
|
Chebil W, Rhimi W, Haouas N, Romano V, Belgacem S, Ali HB, Babba H, Cafarchia C. Virulence factors of Malassezia strains isolated from pityriasis versicolor patients and healthy individuals. Med Mycol 2022; 60:6652903. [PMID: 35913746 DOI: 10.1093/mmy/myac060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Over the last decade, Malassezia species have emerged as increasingly important pathogens associated with a wide range of dermatological disorders and bloodstream infections. The pathogenesis of Malassezia yeasts is not completely clear but it seems to be strictly related to Malassezia strains and hosts and need to be better investigated. This study aimed to assess the enzymatic activities, biofilm formation and in vitro antifungal profiles of Malassezia spp. from Pityriasis versicolor and heathy patients. The potential relationship between virulence attributes, the antifungal profiles and the origin of strains were also assessed. A total of 44 Malassezia strains isolated from patients with (n = 31) and without (n = 13) Pityriasis versicolor (PV) were employed to evaluate phospholipase (Pz), lipase (Lz), hemolytic (Hz) activities and biofilm formation. In addition, in vitro antifungal susceptibility testing was conducted using the CLSI broth microdilution with some modifications. A high percentage of strains produced phospholipase, lipase, hemolysins and biofilm regardless of their clinical origin. The highest number of strains producing high enzymatic activities came from PV patients. A correlation between the intensity of hydrolytic activities (lipase and phospholipase activities) and the hemolytic activity was detected. Positive associations between Lz and the low fluconazole susceptibility and Hz and biofilm formation were observed. These results suggest that enzyme patterns and biofilm formation together with antifungal profiles play a role in the pathogenicity of Malassezia spp. and might explain the implication of some Malassezia spp. in invasive fungal infections and in the development of inflammation.
Collapse
Affiliation(s)
- Wissal Chebil
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Najoua Haouas
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Valentina Romano
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| | - Sameh Belgacem
- Laboratory of Parasitology-Mycology, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hichem Belhadj Ali
- Dermatology Department, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Hamouda Babba
- University of Monastir, Faculty of Pharmacy, Laboratory of Medical and Molecular Parasitology-Mycology LP3M (code LR12ES08), Department of Clinical Biology B, 5000, Monastir, Tunisia
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari "Aldo Moro", 70010, Valenzano, Bari, Italy
| |
Collapse
|
18
|
Jordá T, Martínez-Martín A, Martínez-Pastor MT, Puig S. Modulation of yeast Erg1 expression and terbinafine susceptibility by iron bioavailability. Microb Biotechnol 2022; 15:2705-2716. [PMID: 35837730 PMCID: PMC9618313 DOI: 10.1111/1751-7915.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Ergosterol is a specific sterol component of yeast and fungal membranes. Its biosynthesis is one of the most effective targets for antifungal treatments. However, the emergent resistance to multiple sterol‐based antifungal drugs emphasizes the need for new therapeutic approaches. The allylamine terbinafine, which selectively inhibits squalene epoxidase Erg1 within the ergosterol biosynthetic pathway, is mainly used to treat dermatomycoses, whereas its effectiveness in other fungal infections is limited. Given that ergosterol biosynthesis depends on iron as an essential cofactor, in this report, we used the yeast Saccharomyces cerevisiae to investigate how iron bioavailability influences Erg1 expression and terbinafine susceptibility. We observed that both chemical and genetic depletion of iron decrease ERG1 expression, leading to an increase in terbinafine susceptibility. Deletion of either ROX1 transcriptional repressor or CTH1 and CTH2 post‐transcriptional repressors of ERG1 expression led to an increase in Erg1 protein levels and terbinafine resistance. On the contrary, overexpression of CTH2 led to the opposite effect, lowering Erg1 levels and increasing terbinafine susceptibility. Although strain‐specific particularities exist, opportunistic pathogenic strains of S. cerevisiae displayed a response similar to the laboratory strain. These data indicate that iron bioavailability and particular regulatory factors could be used to modulate susceptibility to terbinafine.
Collapse
Affiliation(s)
- Tania Jordá
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | - Ana Martínez-Martín
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain
| |
Collapse
|
19
|
Marena GD, Ramos MADS, Carvalho GC, Junior JAP, Resende FA, Corrêa I, Ono GYB, Sousa Araujo VH, Camargo BAF, Bauab TM, Chorilli M. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytother Res 2022; 36:2710-2745. [DOI: 10.1002/ptr.7460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/26/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Gabriel Davi Marena
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Matheus Aparecido dos Santos Ramos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Corrêa Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | | | | | - Ione Corrêa
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Gabriela Yuki Bressanim Ono
- Department of Biological Sciences, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Victor Hugo Sousa Araujo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Bruna Almeida Furquim Camargo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences and Health University of Araraquara (UNIARA) Araraquara Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences São Paulo State University (UNESP) Araraquara Brazil
| |
Collapse
|
20
|
Karakaya G, Türe A, Özdemir A, Özçelik B, Aytemir M. Synthesis and Molecular Modeling of Some Novel Hydroxypyrone Derivatives as Antidermatophytic Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gülşah Karakaya
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry İzmir Katip Çelebi University İzmir Turkey
| | - Aslı Türe
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Marmara University İstanbul Turkey
| | - Aysun Özdemir
- Faculty of Pharmacy, Department of Pharmacology Gazi University Ankara Turkey
| | - Berrin Özçelik
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology Gazi University Ankara Turkey
| | - Mutlu Aytemir
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry İzmir Katip Çelebi University İzmir Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Hacettepe University Ankara Turkey
| |
Collapse
|
21
|
In Vitro Antidermatophytic and Biochemical Studies on Aqueous Extracts of Avicennia marina and Suaeda monoica Plants from the Yanbu Region. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many infectious diseases can be treated using herbal medicines. Therefore, plant materials play a major role in therapeutic medicine and are widely used in many developing countries. In this study, we analyzed the potential of Avicennia marina and Suaeda monoica leaf extracts as antidermatophytic agents. Molecular identification of the plant samples was performed via DNA sequencing of the internal transcribed spacer region using the primers ITS-u1 and ITS-u4. Leaf extracts of A. marina and S. monoica were prepared in cold and hot distilled water. Their antidermatophytic activities were evaluated against Trichophyton mentagrophytes, T. verrucosum, Microsporum gallinae, M. gypseum, M. canis, Epidermophyton floccosum, Candida albicans, and C. tropicalis using the dry weight method. E. floccosum was the most sensitive to both cold extracts of A. marina and S. monoica, whereas T. verrucosum was the most sensitive to the hot extract of A. marina. The minimum inhibitory concentrations of the hot extracts were determined. They ranged from 10 to 30 mg/ml, defining the anti-scavenging activity and total phenolic content of both plants. The hot extract of A. marina possessed the highest anti-scavenging activity (76%), whereas the cold extract of A. marina contained the highest phenolic content (40.06 mg/g dry weight). In addition, high-performance liquid chromatography was used to separate and estimate some of the bioactive compounds present in the plant extracts.
Collapse
|
22
|
Hassan SU, Khalid I, Hussain L, Barkat K, Khan IU. Development and Evaluation of pH-Responsive Pluronic F 127 Co-Poly- (Acrylic Acid) Biodegradable Nanogels for Topical Delivery of Terbinafine HCL. Dose Response 2022; 20:15593258221095977. [PMID: 35558872 PMCID: PMC9087256 DOI: 10.1177/15593258221095977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022] Open
Abstract
Research aimed to develop and evaluate biodegradable, pH-responsive chemically
cross-linked Pluronic F127 co-poly- (acrylic acid) nanogels for dermal delivery
of Terbinafine HCL (TBH) to increase its permeability and as a new approach to
treat skin fungal infections. TBH-loaded nanogels were successfully synthesized
from acrylic acid (AA) and Pluronic F127 by free-radical copolymerization
technique using N,N′-methylene bisacrylamide (MBA) as crosslinker and ammonium
persulphate (APS) as initiator. Prepared nanogels exhibited 93.51% drug
entrapment efficiency (DEE), 45 nm particle size, pH-dependent swelling and
release behavior. Nanogels were characterized using different physicochemical
techniques. The ex-vivo skin retention studies through rat skin
showed about 42.34% drug retention from nanogels while 1% Lamisil cream
(marketed product) showed about 26.56% drug retention. Moreover, skin irritation
studies showed that nanogels were not irritating. Nanogels showed improved
in-vitro antifungal activity against Candida
albicans compared to commercial product. In-vivo
studies on rats infected with Candida albicans confirmed
superiority of nanogels over 1% Lamisil for eradication of fungal infection.
This confirms that TBH loaded in Pluronic F127 co-poly-(acrylic acid) nanogels
provided greater targetibility and cure rates of poorly soluble TBH in animal
model and hence nanogels could be a potential carrier for effective topical
delivery of TBH for skin fungal infection treatment.
Collapse
Affiliation(s)
- Shams ul Hassan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Ikrima Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
23
|
New Insights in Dermatophytes: Microsporum spp. and Nannizzia spp. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Brilhante RSN, Lopes RGP, de Aguiar L, de Oliveira JS, Araújo GDS, Paixão GC, Pereira-Neto WDA, Freire RS, Nunes JVS, de Lima RP, Santos FA, Sidrim JJC, Rocha MFG. Inhibitory effect of proteinase K against dermatophyte biofilms: an alternative for increasing the antifungal effects of terbinafine and griseofulvin. BIOFOULING 2022; 38:286-297. [PMID: 35450473 DOI: 10.1080/08927014.2022.2063720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.
Collapse
Affiliation(s)
- Raimunda Sâmia Nogueira Brilhante
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raissa Geovanna Pereira Lopes
- Postgraduate Program in Medical Sciences, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lara de Aguiar
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Jonathas Sales de Oliveira
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Germana Costa Paixão
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Waldemiro de Aquino Pereira-Neto
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosemayre Souza Freire
- Analytical Centre, Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - João Victor Serra Nunes
- Analytical Centre, Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renan Pereira de Lima
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Flávia Almeida Santos
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - José Júlio Costa Sidrim
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marcos Fábio Gadelha Rocha
- Specialised Medical Mycology Center, Postgraduate Program in Medical Microbiology, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
25
|
Assessment of the properties of terbinafine hydrochloride and the search route for antifungal agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Gupta AK, Friedlander SF, Simkovich AJ. Tinea capitis: An update. Pediatr Dermatol 2022; 39:167-172. [PMID: 35075666 DOI: 10.1111/pde.14925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
Abstract
Tinea capitis is an important superficial infection and affects children globally. A literature review was conducted to identify recent findings and the current understanding of this fungal infection. Here, we highlight updates on important aspects of tinea capitis including advances in dermatophyte detection and diagnosis and comparing these new methods to more traditional techniques. Additionally, aspects of treating tinea capitis are discussed, including the importance of mycological confirmation and current means of treatment, and the treatment of asymptomatic carriers are reviewed. This review also examines the subject of laboratory monitoring of patients undergoing treatment with systemic antifungals; we discuss the opinions of prominent researchers and currently accepted guidelines. Lastly, we provide answers to several common questions that practitioners may encounter when treating a child with tinea capitis.
Collapse
Affiliation(s)
- Aditya K Gupta
- Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, Ontario, Canada.,Mediprobe Research Inc., London, Ontario, Canada
| | - Sheila Fallon Friedlander
- Department of Dermatology, University of California School of Medicine, San Diego, California, USA.,Department of Dermatology, Scripps Clinic, San Diego, California, USA
| | | |
Collapse
|
27
|
Myers AN, Lawhon SD, Diesel AB, Bradley CW, Rodrigues Hoffmann A, Murphy WJ, 99 Lives Cat Genome Consortium. An ancient haplotype containing antimicrobial peptide gene variants is associated with severe fungal skin disease in Persian cats. PLoS Genet 2022; 18:e1010062. [PMID: 35157719 PMCID: PMC8880935 DOI: 10.1371/journal.pgen.1010062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/25/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
Dermatophytosis, also known as ringworm, is a contagious fungal skin disease affecting humans and animals worldwide. Persian cats exhibit severe forms of the disease more commonly than other breeds of cat, including other long-haired breeds. Certain types of severe dermatophytosis in humans are reportedly caused by monogenic inborn errors of immunity. The goal of this study was to identify genetic variants in Persian cats contributing to the phenotype of severe dermatophytosis. Whole-genome sequencing of case and control Persian cats followed by a genome-wide association study identified a highly divergent, disease-associated haplotype on chromosome F1 containing the S100 family of genes. S100 calcium binding protein A9 (S100A9), which encodes a subunit of the antimicrobial heterodimer known as calprotectin, contained 13 nonsynonymous variants between cases and controls. Evolutionary analysis of S100A9 haplotypes comparing cases, controls, and wild felids suggested the divergent disease-associated haplotype was likely introgressed into the domestic cat lineage and maintained via balancing selection. We demonstrated marked upregulation of calprotectin expression in the feline epidermis during dermatophytosis, suggesting involvement in disease pathogenesis. Given this divergent allele has been maintained in domestic cat and wildcat populations, this haplotype may have beneficial effects against other pathogens. The pathogen specificity of this altered protein should be investigated before attempting to reduce the allele frequency in the Persian cat breed. Further work is needed to clarify if severe Persian dermatophytosis is a monogenic disease or if hidden disease-susceptibility loci remain to be discovered. Consideration should be given to engineering antimicrobial peptides such as calprotectin for topical treatment of dermatophytosis in humans and animals. Fungal skin infections known as ringworm or dermatophytosis affect billions of humans and animals worldwide. Normally the disease is self-limiting in affected individuals. The Persian cat breed is a popular breed known for its long hair coat and short nose as well as its propensity to develop severe, chronic dermatophytosis. By examining the genomes of Persian cats, we discovered that a specific region of DNA is highly altered between cats with and without severe dermatophytosis. The DNA sequence in this region is particularly divergent within a cluster of genes involved in immune defense against pathogens. Notably, alterations to the DNA sequence cause several changes in the antimicrobial protein known as calprotectin, which defends against pathogens in the skin of cats. Persian cats with severe dermatophytosis have a version of calprotectin similar to a version maintained by certain desert-dwelling wild felids such as sand cats and Asiatic wildcats. Therefore, we think this version of the protein is beneficial in some environments or against certain pathogens but not against the fungus that causes ringworm in cats. Our findings suggest changes to calprotectin may affect pathogen specificity and engineered calprotectin could be considered as a novel therapy for dermatophytosis in humans and animals.
Collapse
Affiliation(s)
- Alexandra N. Myers
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Alison B. Diesel
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - Charles W. Bradley
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, Unites States of America
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, Unites States of America
- * E-mail: (ANM); (WJM)
| | | |
Collapse
|
28
|
Parinyarux P, Thavornwattanayong W, Soontornpas C, Rawangnam P. Towards Better CARE for Superficial Fungal Infections: A Consultation Guide for the Community Pharmacy. PHARMACY 2022; 10:29. [PMID: 35202078 PMCID: PMC8878117 DOI: 10.3390/pharmacy10010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Superficial fungal infections (SFIs) are among the most common skin diseases worldwide and are common in many parts of Asia. Community pharmacists are well-placed to help identify and manage SFIs. However, effective management may be hindered by a suboptimal consultation process, attributed to the misalignment between consumers' and pharmacists' viewpoints. The Fungal CARE (Care, Assess, Recommend, Empower) guide, a patient-centered collaborative framework, was developed to improve pharmacist-led SFI consultations in community pharmacy. A survey on real-world consumer experiences with SFIs provided insights for aligning the Fungal CARE guide with consumer perspectives. To further optimize the guide, community pharmacists were surveyed on their current practice and challenges of managing SFIs, as well as views on the usefulness of the Fungal CARE guide. The pharmacists' survey indicated that respondents engaged with some but not all of consumers' top concerns with SFIs, such as emotional and social aspects. Pharmacists identified their greatest challenges as poor compliance with SFI treatment and limited confidence in identifying and/or managing SFIs. Encouragingly, when presented with the Fungal CARE guide, nearly all pharmacists agreed it would be helpful and would use it in practice. Implementing the Fungal CARE guide may help improve pharmacist-led consultations for SFIs and encourage better treatment outcomes.
Collapse
|
29
|
Trifan A, Bostănaru AC, Luca SV, Temml V, Akram M, Herdlinger S, Kulinowski Ł, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Mareș M, Schuster D. Honokiol and Magnolol: Insights into Their Antidermatophytic Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:2522. [PMID: 34834886 PMCID: PMC8620735 DOI: 10.3390/plants10112522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/15/2023]
Abstract
Dermatophyte infections represent a significant public health concern, with an alarming negative impact caused by unsuccessful therapeutic regimens. Natural products have been highlighted as a promising alternative, due to their long-standing traditional use and increasing scientific recognition. In this study, honokiol and magnolol, the main bioactives from Magnolia spp. bark, were investigated for their antidermatophytic activity. The antifungal screening was performed using dermatophyte standard strains and clinical isolates. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) were determined in accordance with EUCAST-AFST guidelines, with minor modifications. The effects on ergosterol biosynthesis were assessed in Trichophyton rubrum cells by HPLC-DAD. Putative interactions with terbinafine against T. rubrum were evaluated by the checkerboard method. Their impact on cells' viability and pro-inflammatory cytokines (IL-1β, IL-8 and TNF-α) was shown using an ex vivo human neutrophils model. Honokiol and magnolol were highly active against tested dermatophytes, with MIC and MFC values of 8 and 16 mg/L, respectively. The mechanism of action involved the inhibition of ergosterol biosynthesis, with accumulation of squalene in T. rubrum cells. Synergy was assessed for binary mixtures of magnolol with terbinafine (FICI = 0.50), while honokiol-terbinafine combinations displayed only additive effects (FICI = 0.56). In addition, magnolol displayed inhibitory effects towards IL-1β, IL-8 and TNF-α released from lipopolysaccharide (LPS)-stimulated human neutrophils, while honokiol only decreased IL-1β secretion, compared to the untreated control. Overall, honokiol and magnolol acted as fungicidal agents against dermatophytes, with impairment of ergosterol biosynthesis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Veronika Temml
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Muhammad Akram
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Sonja Herdlinger
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| | - Łukasz Kulinowski
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (Ł.K.); (K.S.-W.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdeidet el-Matn B.P. 90656, Lebanon;
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| | - Daniela Schuster
- Department of Pharmaceutical Chemistry, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (V.T.); (M.A.); (S.H.); (D.S.)
| |
Collapse
|
30
|
Osman M, Kasir D, Rafei R, Kassem II, Ismail MB, El Omari K, Dabboussi F, Cazer C, Papon N, Bouchara JP, Hamze M. Trends in the epidemiology of dermatophytosis in the Middle East and North Africa region. Int J Dermatol 2021; 61:935-968. [PMID: 34766622 DOI: 10.1111/ijd.15967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
Dermatophytosis corresponds to a broad series of infections, mostly superficial, caused by a group of keratinophilic and keratinolytic filamentous fungi called dermatophytes. These mycoses are currently considered to be a major public health concern worldwide, particularly in developing countries such as those in the Middle East and North Africa (MENA) region. Here we compiled and discussed existing epidemiologic data on these infections in the MENA region. Most of the available studies were based on conventional diagnostic strategies and were published before the last taxonomic revision of dermatophytes. This has led to misidentifications, which might have resulted in the underestimation of the real burden of these infections in the MENA countries. Our analysis of the available literature highlights an urgent need for further studies based on reliable diagnostic tools and standard susceptibility testing methods for dermatophytosis, which represents a major challenge for these countries. This is crucial for guiding appropriate interventions and activating antifungal stewardship programs in the future.
Collapse
Affiliation(s)
- Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Dalal Kasir
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Issmat I Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, USA
| | - Mohamad Bachar Ismail
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Faculty of Science, Lebanese University, Tripoli, Lebanon
| | - Khaled El Omari
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.,Quality Control Center Laboratories, Chamber of Commerce, Industry, and Agriculture of Tripoli and North Lebanon, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Casey Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | | | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
31
|
Trifan A, Luca SV, Bostănaru AC, Brebu M, Jităreanu A, Cristina RT, Skalicka-Woźniak K, Granica S, Czerwińska ME, Kruk A, Greige-Gerges H, Sieniawska E, Mareș M. Apiaceae Essential Oils: Boosters of Terbinafine Activity against Dermatophytes and Potent Anti-Inflammatory Effectors. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112378. [PMID: 34834740 PMCID: PMC8623916 DOI: 10.3390/plants10112378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/03/2023]
Abstract
Dermatophyte infections represent an important public health concern, affecting up to 25% of the world's population. Trichophyton rubrum and T. mentagrophytes are the predominant dermatophytes in cutaneous infections, with a prevalence accounting for 70% of dermatophytoses. Although terbinafine represents the preferred treatment, its clinical use is hampered by side effects, drug-drug interactions, and the emergence of resistant clinical isolates. Combination therapy, associating terbinafine and essential oils (EOs), represents a promising strategy in the treatment of dermatophytosis. In this study, we screened the potential of selected Apiaceae EOs (ajowan, coriander, caraway, and anise) to improve the antifungal activity of terbinafine against T. rubrum ATCC 28188 and T. mentagrophytes ATCC 9533. The chemical profile of EOs was analyzed by gas chromatography. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of EOs/main compounds were determined according to EUCAST-AFST guidelines, with minor modifications. The checkerboard microtiter method was used to identify putative synergistic combinations of EOs/main constituents with terbinafine. The influence of EOs on the viability and pro-inflammatory cytokine production (IL-1β, IL-8 and TNF-α) was determined using an ex vivo human neutrophils model. The binary associations of tested EOs with terbinafine were found to be synergistic against T. rubrum, with FICI values of 0.26-0.31. At the tested concentrations (6.25-25 mg/L), EOs did not exert cytotoxic effects towards human neutrophils. Anise EO was the most potent inhibitor of IL-1β release (46.49% inhibition at 25 mg/L), while coriander EO displayed the highest inhibition towards IL-8 and TNF-α production (54.15% and 54.91%, respectively). In conclusion, the synergistic combinations of terbinafine and investigated Apiaceae EOs could be a starting point in the development of novel topical therapies against T. rubrum-related dermatophytosis.
Collapse
Affiliation(s)
- Adriana Trifan
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Correspondence: (A.T.); (A.-C.B.)
| | - Simon Vlad Luca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
- Biothermodynamics, TUM School of Life and Food Sciences, Technical University of Munich, 85354 Freising, Germany;
| | - Andra-Cristina Bostănaru
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
- Correspondence: (A.T.); (A.-C.B.)
| | - Mihai Brebu
- Physical Chemistry of Polymers Laboratory, Petru Poni Institute of Macromolecular Chemistry, 700481 Iasi, Romania;
| | - Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Romeo-Teodor Cristina
- Department of Pharmacology, The Banat University of Agricultural Sciences and Veterinary Medicine, 300645 Timisoara, Romania;
| | - Krystyna Skalicka-Woźniak
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Sebastian Granica
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Aleksandra Kruk
- Microbiota Lab, Centre for Preclinical Studies, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland; (S.G.); (A.K.)
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Jdaidet el-Matn B.P. 90656, Lebanon;
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (K.S.-W.); (E.S.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700489 Iasi, Romania;
| |
Collapse
|
32
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: opportunistic infections and microsporidioses. J Appl Microbiol 2021; 131:2095-2113. [PMID: 33556223 DOI: 10.1111/jam.15032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
After cardiovascular diseases, infectious diseases are the second most common cause of death worldwide. Although these infections are caused mainly by viruses or bacteria, a systematically growing prevalence of human and animal opportunistic fungal infections is noticeable worldwide. More attention is being paid to this problem, especially due to the growing frequency of recalcitrant and recurrent mycoses. The latter are classically divided into superficial, which are the most common type, subcutaneous, and systemic. This work discusses opportunistic fungal pathogens without proven horizontal transmission between different animal species including humans and microsporidia as spore-forming unicellular parasites related to fungi; however, with a yet undetermined taxonomic position. The review also mentions aetiological agents, risk factors, epidemiology, geographical distribution, and finally symptoms characteristic for individual disease entities. This paper provides insight into fungal infections from a global perspective and simultaneously draws attention to emerging pathogens, whose prevalence is continuously increasing. Finally, this work also takes into consideration the correct nomenclature of fungal disease entities and the importance of secondary metabolites in the pathogenesis of fungal infections.
Collapse
Affiliation(s)
- S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
33
|
Gnat S, Łagowski D, Nowakiewicz A, Trościańczyk A, Dyląg M. New Reference Genes for qRT-PCR Analysis as a Potential Target for Identification of Trichophyton verrucosum in Different Culture Conditions. Pathogens 2021; 10:pathogens10111361. [PMID: 34832515 PMCID: PMC8618703 DOI: 10.3390/pathogens10111361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
Dermatophytes are a group of filamentous fungi infecting skin, hair, and nails that raise great diagnostic difficulties. qRT-PCR is a reliable technique for quantifying gene expression with increasingly frequent use in mycological diagnostics. Knowledge of genes and molecular markers with potential to be used in the identification of dermatophytes is of great importance for the development of this branch of diagnostics. In this article, the suitability of six candidate reference genes (TUBB, ACTB, ADPRF, RPL2, SDHA, and EEF1A1) was investigated for gene expression analysis in the dermatophyte Trichophyton verrucosum, which was cultured in various mycological media that are commonly used in a diagnostic laboratory, i.e., Sabouraud, potato dextrose, and keratin-supplemented MM-Cove. The different culture conditions are extremely important factors for the growth and physiology of dermatophytes. Gene expression stability was evaluated using geNorm, NormFinder, BestKeeper, and RefFinder algorithms. Regarding the stability of expression, SDHA was the most stable housekeeping gene; hence, this gene is recommended for future qRT-PCR studies on T. verrucosum strains. These results allow us to conclude that the SDHA gene can be an additional good candidate as an identification target in the qRT-PCR technique.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (A.N.); (A.T.)
- Correspondence: (S.G.); (D.Ł.); Tel.: +48-81-445-60-93 (S.G.); +48-81-445-66-96 (D.Ł.)
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (A.N.); (A.T.)
- Correspondence: (S.G.); (D.Ł.); Tel.: +48-81-445-60-93 (S.G.); +48-81-445-66-96 (D.Ł.)
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (A.N.); (A.T.)
| | - Aleksandra Trościańczyk
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033 Lublin, Poland; (A.N.); (A.T.)
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| |
Collapse
|
34
|
Gnat S, Łagowski D, Dyląg M, Zielinski J, Nowakiewicz A. In vitro evaluation of photodynamic activity of methylene blue against Trichophyton verrucosum azole-susceptible and -resistant strains. JOURNAL OF BIOPHOTONICS 2021; 14:e202100150. [PMID: 34185387 DOI: 10.1002/jbio.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The intense search for the "Holy Grail" of antifungal therapy can be observed today. The searches are not limited only to discovery of potential antifungal drugs, but also new therapeutic strategies involving the use of chemosensitizers to achieve synergistic effect or physicochemical factors inducing stress conditions in fungal cells. In this study was examined in vitro effectiveness of photodynamic antifungal strategy with methylene blue using a light beam with a wavelength equal to 635 nm toward the Trichophyton verrucosum susceptible and itraconazole- and/or fluconazole-resistant strains. Methylene blue used at concentration equal to 5 μg/mL and in the presence of 40 J/cm2 of light energy showed fungicidal effect toward the susceptible strains. However, for azole-resistant isolates, only the energy dose equal to 60 J/cm2 at 5 μg/mL of methylene blue allowed to kill the pathogen. This study confirms that methylene blue induced by red light has a definite inhibitory effect on zoophilic dermatophytes.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| | - Mariusz Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, University of Wroclaw, Wroclaw, Poland
| | - Jessica Zielinski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, University of Life Sciences, Lublin, Poland
| |
Collapse
|
35
|
Cold atmospheric pressure plasma (CAPP) as a new alternative treatment method for onychomycosis caused by Trichophyton verrucosum: in vitro studies. Infection 2021; 49:1233-1240. [PMID: 34499324 PMCID: PMC8613108 DOI: 10.1007/s15010-021-01691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Anthropophilic dermatophytes as etiological factors of onychomycoses are more common than zoophilic fungi. In the case of the latter, reverse zoonoses are possible, which poses a threat to the persistence of dermatophytes in the environment. Nevertheless, without treatment, both types of tinea unguium may lead to complete nail plate destruction and secondary mixed infections with fungi and bacteria. One of the zoophilic dermatophytes that cause onychomycosis is Trichophyton verrucosum, whose prevalence has been increasing in recent years. Such infections are usually treated with allylamines and/or azoles, but such a conventional treatment of infections caused by T. verrucosum often fails or is discontinued by patients. METHODS Herein, we reveal the results of our in vitro studies related to direct application of cold atmospheric pressure plasma (CAPP) on Trichophyton verrucosum growth, germination and adherence to nail as a new alternative treatment method of such types of dermatomycoses. RESULTS Our in vitro studies showed that, while exposure to CAPP for 10 min delays germination of conidia and clearly impairs the fitness of the fungal structures, 15 min is enough to kill all fungal elements exposed to plasma. Moreover, the SEM images revealed that T. verrucosum cultures exposed to CAPP for 10 and 15 min were not able to invade the nail fragments. CONCLUSION The results revealed that single exposure to CAPP was able to inhibit T. verrucosum growth and infection capacity. Hence, cold atmospheric pressure plasma should be considered as a promising alternative treatment of onychomycoses.
Collapse
|
36
|
Usman B, Rehman A, Naz I, Anees M. Prevalence and antifungal drug resistance of dermatophytes in the clinical samples from Pakistan. Acta Microbiol Immunol Hung 2021. [PMID: 34383707 DOI: 10.1556/030.2021.01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
Dermatophytosis is a major health problem all over the world including Pakistan. This is the first report of detection of dermatophytes and their antifungal drug resistance in the Northern and Western parts of Pakistan. A total of 154 samples were collected from different hospitals of Khyber Pakhtunkhwa, and out of them 136 samples were found positive. Tinea corporis (35%) was the most predominant type of infection followed by Tinea capitis (22%). The fungi identified in Tinea corporis infection types were identified as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum. The fungi identified in Tinea capitis included Trichophyton violaceum, T. mentagrophytes, Microsporum ferrugineum. The gender wise distribution showed both males (52%) and females (48%) were infected with the fungi. More cases belonged to the rural parts of the country. Age wise distribution showed that the infection was more prevalent in the children and the prevalence decreased with the increase in age. The positive samples were checked against two antifungal agents: fluconazole and nystatin. Among 136 positive samples, none of the isolates showed resistance to nystatin while 7% of the samples showed resistance to fluconazole. The resistant isolates were then identified by amplifying the 18S rRNA gene, using universal primers (ITS1, ITS4). Among the 9 resistant isolates, 5 isolates were identified as Trichophyton spp., 3 as Microsporum spp. and 1 as Epidermophyton spp.
Collapse
Affiliation(s)
- Bakhtawar Usman
- 1Department of Microbiology, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Rehman
- 1Department of Microbiology, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Iffat Naz
- 2Department of Biology, Scientific Unit, Deanship of Educational Services, Qassim University, Buraidah, 51452, Qassim, Kingdom of Saudi Arabia (KSA)
| | - Muhammad Anees
- 1Department of Microbiology, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
37
|
Gnat S, Łagowski D, Dyląg M, Ptaszyńska A, Nowakiewicz A. Modulation of ERG gene expression in fluconazole-resistant human and animal isolates of Trichophyton verrucosum. Braz J Microbiol 2021; 52:2439-2446. [PMID: 34351602 PMCID: PMC8578519 DOI: 10.1007/s42770-021-00585-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/11/2021] [Indexed: 12/03/2022] Open
Abstract
Dermatophytes are a group of eukaryotic microorganisms characterized by high capacity to colonize keratinized structures such as the skin, hair, and nails. Over the past years, the incidence of infections caused by zoophilic species, e.g., Trichophyton verrucosum, has been increasing in some parts of the world, especially in Europe. Moreover, the emergence of recalcitrant dermatophytoses and in vitro resistant dermatophytes has become a cause of concern worldwide. Here, we analyzed the mechanisms underlying resistance to fluconazole among clinical isolates of T. verrucosum. Quantitative RT-PCR was carried out to determine the relative expression levels of mRNA transcripts of ERG3, ERG6, and ERG11 genes in the fungal samples using the housekeeping gene GAPDH as a reference. Our results showed that the upregulation of the ERG gene expression is a possible mechanism of resistance to fluconazole in this species. Furthermore, ERG11 is the most statistically significantly overexpressed gene in the pool of fluconazole-resistant T. verrucosum isolates. Additionally, we have demonstrated that exposure to fluconazole increases the levels of expression of ERG genes in fluconazole-resistant isolates of T. verrucosum. In conclusion, this study has shown one of the possible mechanisms of resistance to fluconazole among zoophilic dermatophytes, which involves the maintenance of high levels of expression of ERG genes after drug exposure.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Aneta Ptaszyńska
- Department of Imm, unobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|
38
|
B S C, D S P. Evaluation of efficacy and safety of oral voriconazole in the management of recalcitrant and recurrent dermatophytosis. Clin Exp Dermatol 2021; 47:30-36. [PMID: 34115896 DOI: 10.1111/ced.14799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/13/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Dermatophytosis is a worldwide public health problem, affecting > 25% of the world's population. There has been a rampant increase in the resistant, recurrent dermatophytosis in the past few years, especially in India. Azole resistance in dermatophytes has been reported to be as high as 19% worldwide, hence evaluating the efficacy and safety of a newer oral antifungal is important. AIM To evaluate the efficacy and safety of oral voriconazole in the management of recalcitrant and recurrent dermatophytosis. METHODS Patients with extensive, recurring and resistant dermatophytosis. The clinical diagnosis was confirmed by potassium hydroxide staining. Patients were given a 2-week course of oral voriconazole, administered as 800 mg on Day 1, followed by two daily doses of 200 mg (total 400 mg/day) for the remaining 13 days. The patients were followed up in Week 2 to assess response and in Week 6 to assess recurrence. Patients were monitored for any adverse effects (AEs). RESULTS In total, 40 patients completed the study. Complete clearance was seen in 90% and 75% at Weeks 2 and 6, respectively. By the end of Week 6, eight patients (20%) had partial improvement of disease without complete clearance and only 5% had recurrence. No AEs were recorded during the treatment course. CONCLUSION Voriconazole, a novel oral antifungal that can be used for treatment of recurrent and resistant dermatophytosis, has a good efficacy and safety profile with a very low rate of recurrence.
Collapse
Affiliation(s)
- Chandrashekar B S
- Department of Dermatology, Cutis Academy of Cutaneous Science, Bangalore, Karnataka, India
| | - Poojitha D S
- Department of Dermatology, Cutis Academy of Cutaneous Science, Bangalore, Karnataka, India
| |
Collapse
|
39
|
Dos Santos Porto D, Bajerski L, Donadel Malesuik M, Soldateli Paim C. A Review of Characteristics, Properties, Application of Nanocarriers and Analytical Methods of Luliconazole. Crit Rev Anal Chem 2021; 52:1930-1937. [PMID: 34011234 DOI: 10.1080/10408347.2021.1926219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Luliconazole is an imidazole agent, used for the treatment of fungi infection, especially dermatophytes. The mechanism of action of the drug consisting in inhibits sterol 14α-demethylase which interferes with ergosterol biosynthesis. Due to low aqueous solubility and highly lipophilic, there is a need to develop drug delivery systems (nanocarriers) capable to increase the solubility, permeability, and skin retention of luliconazole, and promote a better therapeutic effect. In this context, this review presents characteristics, properties, nanocarriers, and analytical methods used for luliconazole. From the analyzed studies, the majority reports the use of RP-HPLC techniques for luliconazole determination, but also are cited spectrophotometric UV methods. The luliconazole has been qualitatively and quantitatively analyzed in different matrices, such as raw material and pharmaceutical formulations, however, in this review, only one study was found with the luliconazole quantification biological matrix, demonstrating the lack of studies related to the quantification of the drug in biological matrices. The drug quantification in different matrices by analytical methods is of great importance since they assist in the control of the quality, efficacy, and safety of the medicine.
Collapse
Affiliation(s)
- Douglas Dos Santos Porto
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Lisiane Bajerski
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Marcelo Donadel Malesuik
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| | - Clésio Soldateli Paim
- Laboratório de Pesquisa em Desenvolvimento e Controle de Qualidade; Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Curso de Farmácia, Universidade Federal do Pampa (UNIPAMPA - Campus Uruguaiana-RS), Uruguaiana (RS), Brasil
| |
Collapse
|
40
|
Bila NM, Costa-Orlandi CB, Vaso CO, Bonatti JLC, de Assis LR, Regasini LO, Fontana CR, Fusco-Almeida AM, Mendes-Giannini MJS. 2-Hydroxychalcone as a Potent Compound and Photosensitizer Against Dermatophyte Biofilms. Front Cell Infect Microbiol 2021; 11:679470. [PMID: 34055673 PMCID: PMC8155603 DOI: 10.3389/fcimb.2021.679470] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Dermatophytes, fungi that cause dermatophytosis, can invade keratinized tissues in humans and animals. The biofilm-forming ability of these fungi was described recently, and it may be correlated with the long treatment period and common recurrences of this mycosis. In this study, we evaluated the anti-dermatophytic and anti-biofilm activity of 2-hydroxychalcone (2-chalcone) in the dark and photodynamic therapy (PDT)-mediated and to determine its mechanism of action. Trichophyton rubrum and Trichophyton mentagrophytes strains were used in the study. The antifungal susceptibility test of planktonic cells, early-stage biofilms, and mature biofilms were performed using colorimetric methods. Topographies were visualized by scanning electron microscopy (SEM). Human skin keratinocyte (HaCat) monolayers were also used in the cytotoxicity assays. The mechanisms of action of 2-chalcone in the dark and under photoexcitation were investigated using confocal microscopy and the quantification of ergosterol, reactive oxygen species (ROS), and death induction by apoptosis/necrosis. All strains, in the planktonic form, were inhibited after treatment with 2-chalcone (minimum inhibitory concentration (MIC) = 7.8-15.6 mg/L), terbinafine (TRB) (MIC = 0.008–0.03 mg/L), and fluconazole (FLZ) (1–512 mg/L). Early-stage biofilm and mature biofilms were inhibited by 2-chalcone at concentrations of 15.6 mg/L and 31.2 mg/L in all tested strains. However, mature biofilms were resistant to all the antifungal drugs tested. When planktonic cells and biofilms (early-stage and mature) were treated with 2-chalcone-mediated PDT, the inhibitory concentrations were reduced by four times (2–7.8 mg/L). SEM images of biofilms treated with 2-chalcone showed cell wall collapse, resulting from a probable extravasation of cytoplasmic content. The toxicity of 2-chalcone in HaCat cells showed higher IC50 values in the dark than under photoexcitation. Further, 2-chalcone targets ergosterol in the cell and promotes the generation of ROS, resulting in cell death by apoptosis and necrosis. Overall, 2-chalcone-mediated PDT is a promising and safe drug candidate against dermatophytes, particularly in anti-biofilm treatment.
Collapse
Affiliation(s)
- Níura Madalena Bila
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,Department of Para-Clinic, School of Veterinary, Universidade Eduardo Mondlane (UEM), Maputo, Mozambique
| | - Caroline Barcelos Costa-Orlandi
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Carolina Orlando Vaso
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Jean Lucas Carvalho Bonatti
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Letícia Ribeiro de Assis
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista (UNESP), Sao Jose do Rio Preto, Brazil
| | - Luís Octavio Regasini
- Department of Chemistry and Environmental Sciences, Institute of Biosciences, Humanities and Exact Sciences, Universidade Estadual Paulista (UNESP), Sao Jose do Rio Preto, Brazil
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | |
Collapse
|
41
|
Gnat S, Łagowski D, Nowakiewicz A. Genetic Predisposition and its Heredity in the Context of Increased Prevalence of Dermatophytoses. Mycopathologia 2021; 186:163-176. [PMID: 33523393 PMCID: PMC8106586 DOI: 10.1007/s11046-021-00529-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Dermatophytosis is a widespread disease with high prevalence and a substantial economic burden associated with costs of treatment. The pattern of this infectious disease covers a wide spectrum from exposed individuals without symptoms to those with acutely inflammatory or non-inflammatory, chronic to invasive, and life-threatening symptoms. Moreover, the prevalence of cutaneous fungal infections is not as high as might be expected. This curious disparity in the dermatophyte infection patterns may suggest that there are individual factors that predispose to infection, with genetics as an increasingly well-known determinant. In this review, we describe recent findings about the genetic predisposition to dermatophyte infections, with focus on inheritance in families with a high frequency of dermatophyte infections and specific host-pathogen interactions. The results of studies indicating a hereditary predisposition to dermatophytoses have been challenged by many skeptics suggesting that the varied degree of pathogenicity and the ecological diversity of this group of fungi are more important in increasing sensitivity. Nonetheless, a retrospective analysis of the hereditary propensity to dermatophytoses revealed at least several proven genetic relationships such as races, CARD9 deficiency, HLA-DR4 and HLA-DR8 type and responsible genes encoding interleukin-22, β-defensin 2 and 4 as well as genetic defects in dectin-1, which increased the prevalence of the disease in families and were involved in the inheritance of the proneness in their members. In future, the Human Genome Diversity Project can contribute to elucidation of the genetic predisposition to dermatophytoses and provide more information.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, Department of Veterinary Microbiology, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| |
Collapse
|
42
|
Gnat S, Dyląg M, Łagowski D, Zielinski J. Therapeutic efficacy of topically used luliconazole vs. terbinafine 1% creams. Mycoses 2021; 64:967-975. [PMID: 33884673 DOI: 10.1111/myc.13289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Dermatomycoses of zoophilic origin, especially those caused by Trichophyton mentagrophytes, often pose considerable therapeutic problems. This is reflected in the growing number of strains of this species with resistance to terbinafine caused by a mutation in the squalene epoxidase (SQLE) gene. Therefore, it is reasonable to look for alternative therapies to the commonly used terbinafine. The aim of the present study was to assess the in vivo effectiveness of topical therapy with luliconazole or terbinafine 1% cream. METHODS Therapeutic efficacy was assessed using direct examination in KOH with DMSO, qPCR analysis with pan-dermatophyte primers and culturing. Moreover, in vitro susceptibility tests for luliconazole and terbinafine were performed. RESULTS The results demonstrated significantly higher antifungal activity of luliconazole than terbinafine against dermatomycoses caused by T. mentagrophytes. The geometric mean of the MIC value for luliconazole against all T. mentagrophytes strains was 0.002 μg/ml, while this value for terbinafine was 0.004 μg/ml. In all studied cases, 28-day local therapy with luliconazole contributed to complete eradication of the aetiological agent of infection. CONCLUSIONS Given the increasingly frequent reports of difficult-to-treat dermatophytoses caused by zoophilic terbinafine-resistant strains, the 1% luliconazole cream can be alternative solution in topical therapy.
Collapse
Affiliation(s)
- Sebastian Gnat
- Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Dominik Łagowski
- Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, Lublin, 20-033, Poland
| | - Jessica Zielinski
- Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC, USA
| |
Collapse
|
43
|
Shaw D, Ghosh AK, Paul S, Singh S, Chakrabarti A, Kaur H, Narang T, Dogra S, Rudramurthy SM. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: Protocol standardisation, comparison and database expansion for faster and reliable identification of dermatophytes. Mycoses 2021; 64:926-935. [PMID: 33851439 DOI: 10.1111/myc.13285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Accurate and early identification of dermatophytes enables prompt antifungal therapy. However, phenotypic and molecular identification methods are time-consuming. MALDI-TOF MS-based identification is rapid, but an optimum protocol is not available. OBJECTIVES To develop and validate an optimum protein extraction protocol for the efficient and accurate identification of dermatophytes by MALDI-TOF MS. MATERIALS/METHODS Trichophyton mentagrophytes complex (n = 4), T. rubrum (n = 4) and Microsporum gypseum (n = 4) were used for the optimisation of protein extraction protocols. Thirteen different methods were evaluated. A total of 125 DNA sequence confirmed clinical isolates of dermatophytes were used to create and expand the existing database. The accuracy of the created database was checked by visual inspection of MALDI spectra, MSP dendrogram and composite correlation index matrix analysis. The protocol was validated further using 234 isolates. RESULT Among 13 protein extraction methods, six correctly identified dermatophytes but with a low log score (≤1.0). The modified extraction protocol developed provided an elevated log score of 1.6. Significant log score difference was observed between the modified protocol and other existing protocols (T. mentagrophytes complex: 1.6 vs. 0.2-1.0, p < .001; T. rubrum: 1.6 vs. 0.4-1.0, p < .001; M. gypseum:1.6 vs. 0.2-1.0, p < .001). Expansion of the database enabled the identification of all 234 isolates (73.5% with log score ≥2.0 and 26.4% with log scores range: 1.75-1.99). The results were comparable to DNA sequence-based identification. CONCLUSION MALDI-TOF MS with an updated database and efficient protein extraction protocol developed in this study can identify dermatophytes accurately and also reduce the time for identifying them.
Collapse
Affiliation(s)
- Dipika Shaw
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shreya Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harsimran Kaur
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
44
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M. A global view on fungal infections in humans and animals: infections caused by dimorphic fungi and dermatophytoses. J Appl Microbiol 2021; 131:2688-2704. [PMID: 33754409 DOI: 10.1111/jam.15084] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/18/2021] [Indexed: 12/28/2022]
Abstract
Fungal infections are still underappreciated and their prevalence is underestimated, which renders them a serious public health problem. Realistic discussions about their distribution, symptoms, and control can improve management and diagnosis and contribute to refinement of preventive actions using currently available tools. This article represents an overview of dermatophytes and endemic fungi that cause infections in humans and animals. In addition, the impact of climate change on the fungal spread is discussed. The endemic fungal infections characterized in this article include coccidioidomycosis, histoplasmosis, blastomycosis, lobomycosis, emergomycosis and sporotrichosis. Moreover the geographic distribution of these fungi, which are known to be climate sensitive and/or limited to endemic tropical and subtropical areas, is highlighted. In turn, dermatophytes cause superficial fungal infections of skin, hairs and nails, which are the most prevalent mycoses worldwide with a high economic burden. Therefore, the possibility of causing zoonoses and reverse zoonoses by dermatophytes is highly important. In conclusion, the article illustrates the current issues of the epidemiology and distribution of fungal diseases, emphasizing the lack of public programmes for prevention and control of these types of infection.
Collapse
Affiliation(s)
- S Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - D Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
45
|
Aneke CI, Rhimi W, Hubka V, Otranto D, Cafarchia C. Virulence and Antifungal Susceptibility of Microsporum canis Strains from Animals and Humans. Antibiotics (Basel) 2021; 10:296. [PMID: 33809233 PMCID: PMC8000290 DOI: 10.3390/antibiotics10030296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/14/2021] [Accepted: 03/10/2021] [Indexed: 01/12/2023] Open
Abstract
The enzymatic and antifungal profiles of dermatophytes play an important role in causing infections in humans and animals. This study aimed to assess the virulence factors produced by Microsporum canis strains, in vitro antifungal profile and the relationship between virulence, antifungal profile and occurrence of lesions in animals and humans. A total of 100 M. canis strains from humans with tinea corporis (n = 10) and from animals presenting (n = 64) or not (n = 26) skin lesions was employed to evaluate phospholipase (Pz), hemolytic (Hz), lipase (Lz), catalase (Ca), and thermotolerance (GI) activities. In addition, in vitro antifungal profile was conducted using the CLSI broth microdilution method. A statistically significant difference (p < 0.05) in Lz and Ca values was revealed among strains from hosts with and without lesions. Voriconazole, terbinafine, and posaconazole were the most active drugs followed by ketoconazole, griseofulvin, itraconazole, and fluconazole in decreasing activity order. The significant positive correlation between azole susceptibility profile of M. canis and virulence factors (i.e., hemolysin and catalase) suggest that both enzyme patterns and antifungal susceptibility play a role in the appearance of skin lesions in animals and humans.
Collapse
Affiliation(s)
- Chioma Inyang Aneke
- Dipartimento di Medicina Veterinaria, Università degli Studi “Aldo Moro”, 70010 Bari, Italy; (C.I.A.); (W.R.); (D.O.)
- Department of Veterinary Pathology and Microbiology, University of Nigeria, 410001 Nsukka, Nigeria
| | - Wafa Rhimi
- Dipartimento di Medicina Veterinaria, Università degli Studi “Aldo Moro”, 70010 Bari, Italy; (C.I.A.); (W.R.); (D.O.)
| | - Vit Hubka
- Department of Botany, Faculty of Science, Charles University, 12801 Prague, Czech Republic;
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences, 14220 Prague, Czech Republic
| | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi “Aldo Moro”, 70010 Bari, Italy; (C.I.A.); (W.R.); (D.O.)
- Faculty of Veterinary Sciences, Bu-Ali Sina University, 6517658978 Hamedan, Iran
| | - Claudia Cafarchia
- Dipartimento di Medicina Veterinaria, Università degli Studi “Aldo Moro”, 70010 Bari, Italy; (C.I.A.); (W.R.); (D.O.)
| |
Collapse
|
46
|
Gnat S, Łagowski D, Nowakiewicz A, Dyląg M, Osińska M. Complementary effect of mechanism of multidrug resistance in Trichophyton mentagrophytes isolated from human dermatophytoses of animal origin. Mycoses 2021; 64:537-549. [PMID: 33448025 DOI: 10.1111/myc.13242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dermatophytoses have gained interest worldwide due to the increased resistance to terbinafine and azoles and difficulty in management of these refractory diseases. OBJECTIVES In this study, we identified and analysed Trichophyton mentagrophytes clinical isolates obtained from humans with infections of animal origin. METHODS We used quantitative real-time PCR (qRT-PCR) to examine the transcriptional modulation of three MDR genes (PDR1, MDR2 and MDR4) and analysed squalene epoxidase (SQLE) gene sequences from multidrug-resistant Trichophyton mentagrophytes isolates. RESULTS The expression profile revealed a 2- to 12-fold increase in mRNA accumulation in the presence of any of the antifungals, compared to cells incubated without drugs. A statistically significant relationship between the isolates exposed to itraconazole and increased expression of the tested genes was revealed. Substantially lower transcription levels were noted for cells exposed to luliconazole, that is, a third-generation azole. Additionally, in the case of 50% of terbinafine-resistant strains, Leu397Phe substitution in the SQLE gene was detected. Furthermore, the reduced susceptibility to itraconazole and voriconazole was overcome by milbemycin oxime. CONCLUSIONS In conclusion, our study shed more light on the role of the ABC transporter family in T. mentagrophytes, which, if overexpressed, can confer resistance to single azole drugs and even cross-resistance. Finally, milbemycin oxime could be an interesting compound supporting treatment with azole drugs in the case of refractory dermatomycoses.
Collapse
Affiliation(s)
- Sebastian Gnat
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Dominik Łagowski
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Aneta Nowakiewicz
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - Mariusz Dyląg
- Faculty of Biological Sciences, Department of Mycology and Genetics, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | - Marcelina Osińska
- Faculty of Veterinary Medicine, Department of Veterinary Microbiology, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| |
Collapse
|
47
|
Pereira FDO. A review of recent research on antifungal agents against dermatophyte biofilms. Med Mycol 2021; 59:313-326. [PMID: 33418566 DOI: 10.1093/mmy/myaa114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
Dermatophytoses are inflammatory cutaneous mycoses caused by dermatophyte fungi of the genera Trichophyton, Microsporum, and Epidermophyton that affect both immunocompetent and immunocompromised individuals. With therapeutic failure, dermatophytoses can become chronic and recurrent. This is partly due to their ability to develop biofilms, microbial communities involved in a polymeric matrix attached to biotic or abiotic surfaces, contributing to fungal resistance. This review presents evidence accumulated in recent years on antidermatophyte biofilm activity. The following databases were used: Web of Science, Medline/PubMed (via the National Library of Medicine), Embase, and Scopus. Original articles published between 2011 and 2020, emphasizing the antifungal activity of conventional and new drugs against dermatophyte biofilms were eligible. A total of 11 articles met the inclusion criteria and were reviewed - the studies used in vitro and ex vivo (fragments of nails and hair) experimental models. The articles focused on reports of antibiofilm activity for conventional antifungals, natural drugs, and new therapeutic tools. The strains reported on were T. mentagrophytes, T. rubrum, T. tonsurans, M. canis, and M. gypseum. Between the studies, the wide variability of experimental conditions in vitro and ex vivo was observed. The data suggest the need for methodological standardization (at some minimum). This review systematically presents current studies involving agents that present antibiofilm activity against dermatophytes; and an overview of the ideal in vitro and ex vivo experimental conditions to guarantee biofilm formation that may assist future research. LAY ABSTRACT This review presents the current studies on the antibiofilm activities of drugs against dermatophytes and ideal experimental conditions, which might guarantee in vitro and ex vivo biofilm formation. It can be useful to examine the efficacy of new antimicrobial drugs against dermatophytes.
Collapse
|
48
|
Brandão P, Marques C, Pinto E, Pineiro M, Burke AJ. Petasis adducts of tryptanthrin – synthesis, biological activity evaluation and druglikeness assessment. NEW J CHEM 2021. [DOI: 10.1039/d1nj02079j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The first example of a tryptanthrin-based Petasis multicomponent reaction is reported, with one of the new derivatives showing moderate fungicidal activity.
Collapse
Affiliation(s)
- Pedro Brandão
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | | | - Eugénia Pinto
- Laboratório de Microbiologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
- 4050-313 Porto
| | - Marta Pineiro
- Department of Chemistry
- University of Coimbra
- CQC
- Coimbra
- Portugal
| | - Anthony J. Burke
- LAQV-REQUIMTE
- University of Évora
- Évora
- Portugal
- Department of Chemistry
| |
Collapse
|
49
|
Łagowski D, Gnat S, Nowakiewicz A, Osińska M. Assessment of the subtilisin gene profile in Trichophyton verrucosum isolated from human and animal dermatophytoses in two-stage multiplex PCR. J Appl Microbiol 2020; 131:300-306. [PMID: 33245823 DOI: 10.1111/jam.14942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022]
Abstract
AIMS Keratin is a fibrous and recalcitrant structural protein and the third most abundant polymer in nature after cellulose and chitin. Subtilisin-like proteases (SUB) are a group of serine endoproteases, coded by seven genes (SUB1-7), which decompose keratin structures and have been isolated from dermatophytes. Herein, we identified the SUB genes in 30 clinical isolates of Trichophyton verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers. METHODS AND RESULTS We designed and proposed a two-stage multiplex PCR technique to detect all seven genes encoding serine proteases in dermatophytes. The analysis revealed the presence SUB1 and SUB2 amplicons in all strains regardless of the host. In the group of isolates obtained from humans, all seven subtilisin genes were shown in 40% of the strains. In T. verrucosum from asymptomatic animals, none of the isolates showed the presence of all seven subtilisin genes, and only 30% had six genes. In turn, 10% of the isolates from symptomatic animals demonstrated all seven subtilisins amplicons. CONCLUSIONS In conclusion, the severity of infection and ability of T. verrucosum to cause dermatophytosis in humans may not be related to specific genes but their accumulation and synergistic effects of their products. SIGNIFICANCE AND IMPACT OF THE STUDY Dermatophytes are pathogenic filamentous fungi with capacity to attack keratinized structures such as skin, hair and nails, causing cutaneous superficial infections. Indeed, a biological characteristic of dermatophytes is their ability to invade keratin-rich tissues by producing enzymes. Various degrees of inflammatory responses can be induced exactly by the enzymes. Subtilisin-like proteases are endoproteases, which decompose keratin structures. Our study identifies SUB genes in clinical isolates of T. verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers.
Collapse
Affiliation(s)
- D Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - S Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - A Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| | - M Osińska
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Lublin, Poland
| |
Collapse
|
50
|
Łagowski D, Gnat S, Nowakiewicz A, Osińska M, Dyląg M. Intrinsic resistance to terbinafine among human and animal isolates of Trichophyton mentagrophytes related to amino acid substitution in the squalene epoxidase. Infection 2020; 48:889-897. [PMID: 32770418 PMCID: PMC7674369 DOI: 10.1007/s15010-020-01498-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Dermatomycoses are the most common fungal infections in the world affecting a significant part of the human and animal population. The majority of zoophilic infections in humans are caused by Trichophyton mentagrophytes. Currently, the first-line drug for both oral and topical therapy is terbinafine. However, an increasing number of cases that are difficult to be cured with this drug have been noted in Europe and Asia. Resistance to terbinafine and other allylamines is very rare and usually correlated with point mutations in the squalene epoxidase gene resulting in single amino acid substitutions in the enzyme, which is crucial in the ergosterol synthesis pathway. PURPOSE Here, we report terbinafine-resistant T. mentagrophytes isolates among which one was an etiological factor of tinea capitis in a man and three were obtained from asymptomatic foxes in Poland. METHODS We used the CLSI protocol to determine antifungal susceptibility profiles of naftifine, amphotericin B, griseofulvin, ketoconazole, miconazole, itraconazole, voriconazole, and ciclopirox. Moreover, the squalene epoxidase gene of the terbinafine-resistant strains was sequenced and analysed. RESULTS In the genomes of all four resistant strains exhibiting elevated MICs to terbinafine (16 to 32 µg/ml), single-point mutations leading to Leu393Phe substitution in the squalene epoxidase enzyme were revealed. Among the other tested substances, a MIC50 value of 1 µg/ml was shown only for griseofulvin. CONCLUSION Finally, our study revealed that the terbinafine resistance phenomenon might not be acquired by exposure to the drug but can be intrinsic. This is evidenced by the description of the terbinafine-resistant strains isolated from the asymptomatic animals.
Collapse
Affiliation(s)
- Dominik Łagowski
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Sebastian Gnat
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland.
| | - Aneta Nowakiewicz
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Marcelina Osińska
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Institute of Preclinical Veterinary Sciences, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | - Mariusz Dyląg
- Department of Mycology and Genetics, Faculty of Biological Sciences, Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|