1
|
Moure C, Albuquerque DR, Peláez AL, Pinto VF, Alconada T. Impact of kefir yeasts on Fusarium graminearum growth and production of deoxynivalenol. Int Microbiol 2025:10.1007/s10123-025-00661-8. [PMID: 40263243 DOI: 10.1007/s10123-025-00661-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
The kefir granules are a microbial consortium with numerous properties, among which their antifungal action has been reported. The aim of this research was to evaluate the antifungal capacity of yeasts isolated from kefir against Fusarium graminearum for its possible application as biocontrol agents. The inhibition of fungal growth was analyzed, according to dual tests, and the production of volatile organic compounds. The inhibition of the production of the mycotoxin deoxynivalenol was also analyzed. The six isolates studied belonged to the species Geotrichum candidum (2), Saccharomyces cerevisiae (1), Pichia kudriavzevii (2), and Pichia membranifaciens (1). They were isolated from kefir and identified in a previous work. The yeasts tested produced a reduction in the growth of F. graminearum in all assays. In particular, three of the isolates, 1 belonging to the species S. cerevisiae and 2 to the species P. kudriavzevii, generated volatile organic compounds that significantly inhibited the growth of the fungus in a 49.61, 51.46, and 49.61%, respectively. The yeasts produced an inhibition of the mycotoxin deoxynivalenol correlated with a reduction in the growth of the fungus. The isolates of Geotrichum candidum (Gc30) and Pichia kudriavzevii (Pk27, PK20) significantly reduced the deoxynivalenol content of F. graminearum by 86, 89, and 88%, and the growth inhibition in the assay was 34, 61, and 48%, respectively. The data obtained about yeasts of novel origin are promising for their possible use as fungal biocontrol agents in foods as an alternative to agrochemicals.
Collapse
Affiliation(s)
- Candela Moure
- Centro de Investigacisón y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, UNLP, CCT‒La Plata,CONICETUniversidad Nacional de La Plata, Calle 47 y 115, B1900 ASH La Plata, Buenos Aires, Argentina
| | - Diana Ramírez Albuquerque
- Laboratorio de Microbiología de Alimentos, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Área Química y Microbiología de Alimentos, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 3 Piso, 1428, Buenos Aires, Argentina
| | - Angela León Peláez
- Cátedra de Microbiología-Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, B1900 ASH La Plata, Buenos Aires, Argentina
| | - Virginia Fernández Pinto
- Laboratorio de Microbiología de Alimentos, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Área Química y Microbiología de Alimentos, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 3 Piso, 1428, Buenos Aires, Argentina
| | - Teresa Alconada
- Centro de Investigacisón y Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, UNLP, CCT‒La Plata,CONICETUniversidad Nacional de La Plata, Calle 47 y 115, B1900 ASH La Plata, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gottardi D, Siroli L, Braschi G, D'Alessandro M, Vannini L, Patrignani F, Lanciotti R. Surface application and impact of Yarrowia lipolytica grown in cheese whey as adjunct culture for innovative and fast-ripening Caciotta-like cheeses. Int J Food Microbiol 2025; 432:111112. [PMID: 39965444 DOI: 10.1016/j.ijfoodmicro.2025.111112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Cheese whey represents a significant challenge for the dairy industry due to its high chemical and biochemical oxygen demand. However, when utilized as a substrate for microbial growth, it can yield microbial biomass suitable for various food sector applications. In this study, two strains of Yarrowia lipolytica (RO3. and Y3) were cultivated to approximately 7.9 log CFU/mL on cheese whey and subsequently applied as culture adjuncts on the surface of Caciotta-type cheese. The cheeses were produced on an industrial scale and stored at 6 °C for 35 days, during which microbiological (plate counting for total mesophiles, yeasts, lactic acid bacteria, Pseudomonas spp., and Enterobacteriaceae), chemical (water activity, pH, color), proteolytic (SDS-PAGE), lipolytic (Folch method with gas chromatography analyses), and volatile molecule profiles (solid-phase microextraction combined with gas chromatography-mass spectrometry) were analyzed, along with sensory evaluations. Although Y. lipolytica levels declined during storage, its application accelerated the ripening process, enhancing proteolysis and increasing the content of unsaturated fatty acids (25 % for RO3. vs. 19 % in the control) in the cheese paste. Additionally, it promoted the development of ripened cheese aroma compounds (e.g., butanoic, hexanoic, and decanoic acids) on the cheese rind, particularly in cheeses treated with strain Y3. Overall, the findings demonstrate that Y. lipolytica represents a promising approach for valorizing food industry by-products, transforming them into innovative ingredients for sustainable and circular production systems. However, strain selection is crucial, as only Y. lipolytica RO3. produced cheeses with the desired ripening characteristics.
Collapse
Affiliation(s)
- Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
| | - Margherita D'Alessandro
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| | - Lucia Vannini
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy; Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Via Quinto Bucci 336, 47521 Cesena, FC, Italy.
| |
Collapse
|
3
|
Achimón F, Pizzolitto RP. Volatilome of the maize phytopathogenic fungus Fusarium verticillioides: potential applications in diagnosis and biocontrol. PEST MANAGEMENT SCIENCE 2025; 81:357-371. [PMID: 39354900 DOI: 10.1002/ps.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Fusarium verticillioides is a maize fungal phytopathogen and a producer of volatile organic compounds (VOCs) and fumonisin B1 (FB1). Our aim was to study the volatilome, conidial production, ergosterol and FB1 biosynthesis in maize cultures over a 30-day incubation period (5, 10, 15, 20, 25, 30 days post inoculation [DPI]). The effect of pure VOCs on the same parameters was then evaluated to study their potential role as biocontrol agents. RESULTS In total, 91 VOCs were detected, with volatile profiles being more similar between 5 and 10 DPI compared with 15, 20, 25 and 30 DPI. Ergosterol content increased steadily with incubation time, and three growth stages were identified: a lag phase (0 to 15 DPI), an exponential phase (15 to 20 DPI) and a stationary phase (20 to 30 DPI). The maximum concentration of FB1 was detected at 25 (0.030 μg FB1/μg ergosterol) and 30 DPI (0.037 μg FB1/μg ergosterol), whereas conidial production showed a maximum value at 15 DPI (4.3 ± 0.2 × 105 conidia/μg ergosterol). Regarding pure VOCs, minimal inhibitory concentration values ranged from 0.3 mm for 4-hexen-3-one to 7.4 mm for 2-undecanone. Pure VOCs reduced radial growth, conidial production and ergosterol and FB1 biosynthesis. CONCLUSIONS The marked resemblance between VOC profiles at 5 and 10 DPI suggests that they could act as early indicators of fungal contamination, particularly 4-ethylguaiacol, 4-ethyl-2-methoxyanisole, heptanol and heptyl acetate. On the other hand, their role as inhibitors of fungal growth and FB1 biosynthesis prove their great potential as safer alternatives to control phytopathogenic fungi. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Achimón
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina P Pizzolitto
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Córdoba, Argentina
- Instituto de Ciencia y Tecnología de Los Alimentos (ICTA), FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Suzuki JY, Herkenhoff ME, Brödel O, Cucick ACC, Frohme M, Saad SMI. Exploring the potential of red pitaya pulp (Hylocererus sp.) as a plant-based matrix for probiotic delivery and effects on betacyanin content and flavoromics. Food Res Int 2024; 192:114820. [PMID: 39147472 DOI: 10.1016/j.foodres.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/11/2024] [Accepted: 07/21/2024] [Indexed: 08/17/2024]
Abstract
This study evaluated the potential of red pitaya pulp fermented with Lacticaseibacillus paracasei subsp. paracasei F-19 (F-19) as a base for probiotic products. Physicochemical parameters, sugar, betacyanin, and phenolic contents, and antioxidant activity were analyzed over 28 days at 4 °C and compared to a non-fermented pulp, and to a pulp fermented with Bifidobacterium animalis subsp. lactis BB-12 (BB-12). Volatile compounds were identified using HS-SPME/GC-MS. Probiotic viability during storage and survival through in vitro-simulated gastrointestinal tract (GIT) stress were assessed. Red pitaya pulp, rich in moisture (85.83 g/100 g), carbohydrates (11.65 g/100 g), and fibers (2.49 g/100 g), supported fermentation by both strains. F-19 and BB-12 lowered pH, with F-19 showing stronger acidification, and maintained high viability (8.85-8.90 log CFU/mL). Fermentation altered sugar profiles and produced unique volatile compounds, enhancing aroma and sensory attributes. F-19 generated 2-phenylethanol, a unique flavor compound, absent in BB-12. Phenolic content initially increased but antioxidant activity decreased during storage. Betacyanin remained stable for up to 14 days. Red pitaya improved F-19 viability through the simulated GIT, while BB-12 populations significantly decreased (p < 0.05). These results suggest red pitaya pulp is a promising plant-based matrix for F-19, offering protection during digestion and highlighting its potential as a functional food with enhanced bioactive compound bioavailability and sensory attributes.
Collapse
Affiliation(s)
- Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Ana Clara Candelaria Cucick
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| | | | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Brazil; Food Research Center, University of São Paulo (USP), Brazil.
| |
Collapse
|
5
|
Sun S, Tang N, Han K, Wang Q, Xu Q. Effects of 2-Phenylethanol on Controlling the Development of Fusarium graminearum in Wheat. Microorganisms 2023; 11:2954. [PMID: 38138097 PMCID: PMC10745961 DOI: 10.3390/microorganisms11122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Applying plant-derived fungicides is a safe and sustainable way to control wheat scab. In this study, volatile organic compounds (VOCs) of wheat cultivars with and without the resistance gene Fhb1 were analyzed by GC-MS, and 2-phenylethanol was screened out. The biocontrol function of 2-phenylethanol on Fusarium graminearum was evaluated in vitro and in vivo. Metabolomics analysis indicated that 2-phenylethanol altered the amino acid pathways of F. graminearum, affecting its normal life activities. Under SEM and TEM observation, the mycelial morphology changed, and the integrity of the cell membrane was destroyed. Furthermore, 2-phenylethanol could inhibit the production of mycotoxins (DON, 3-ADON, 15-ADON) by F. graminearum and reduce grain contamination. This research provides new ideas for green prevention and control of wheat FHB in the field.
Collapse
Affiliation(s)
- Shufang Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Nawen Tang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| | - Kun Han
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qunqing Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
- Departmen of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Taian 271018, China; (S.S.); (N.T.)
| |
Collapse
|
6
|
Hof C, Khan MF, Murphy CD. Endogenous production of 2-phenylethanol by Cunninghamella echinulata inhibits biofilm growth of the fungus. Fungal Biol 2023; 127:1384-1388. [PMID: 37993249 DOI: 10.1016/j.funbio.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/24/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023]
Abstract
The filamentous fungus Cunninghamella echinulata is a model of mammalian xenobiotic metabolism. Under certain conditions it grows as a biofilm, which is a natural form of immobilisation and enables the fungus to catalyse repeated biotransformations. Putative signalling molecules produced by other Cunninghamella spp., such as 3-hydroxytyrosol and tyrosol, do not affect the biofilm growth of C. echinulata, suggesting that it employs a different molecule to regulate biofilm growth. In this paper we report that 2-phenylethanol is produced in higher concentrations in planktonic cultures of C. echinulata than when the fungus is grown as a biofilm. We demonstrate that exogenously added 2-phenylethanol inhibits biofilm growth of C. echinulata but has no effect on planktonic growth. Furthermore, we show that addition of 2-phenylethanol to established C. echinulata biofilm causes detachment. Therefore, we conclude that this molecule is produced by the fungus to regulate biofilm growth.
Collapse
Affiliation(s)
- Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
7
|
Zhou R, Song Q, Xia H, Song N, Yang Q, Zhang X, Yao L, Yang S, Dai J, Chen X. Isolation and Identification of Non- Saccharomyces Yeast Producing 2-Phenylethanol and Study of the Ehrlich Pathway and Shikimate Pathway. J Fungi (Basel) 2023; 9:878. [PMID: 37754986 PMCID: PMC10532961 DOI: 10.3390/jof9090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
2-phenylethanol (2-PE) has been widely utilized as an aromatic additive in various industries, including cosmetics, beer, olive oil, tea, and coffee, due to its rose-honey-like aroma. However, no reports have investigated the production of 2-PE by Starmerella bacillaris. Here, S. bacillaris (syn., Candida zemplinina, and named strain R5) was identified by analysis of morphology, physiology and biochemistry, and 26S rRNA and ITS gene sequence. Then, based on the analysis of whole-genome sequencing and comparison with the KEGG database, it was inferred that strain R5 could synthesize 2-PE from L-phe or glucose through the Ehrlich pathway or shikimate pathway. For further verification of the 2-PE synthesis pathway, strain R5 was cultured in M3 (NH4+), M3 (NH4+ + Phe), and M3 (Phe) medium. In M3 (Phe) medium, the maximum concentration of 2-PE reached 1.28 g/L, which was 16-fold and 2.29-fold higher than that in M3 (NH4+) and M3 (Phe + NH4+) media, respectively. These results indicated that 2-PE could be synthesized by strain R5 through the shikimate pathway or Ehrlich pathway, and the biotransformation from L-phe to 2-PE was more efficient than that from glucose. The qRT-PCR results suggested that compared to M3 (Phe + NH4+) medium, the mRNA expression levels of YAT were 124-fold and 86-fold higher in M3 (Phe) and M3 (NH4+) media, respectively, indicating that the transport of L-phe was inhibited when both NH4+ and Phe were present in the medium. In the M3 (Phe) and M3 (Phe + NH4+) media, the mRNA expression level of ADH5 was higher than PDC, hisC, GOT1, and YAT, and it was 2.6 times higher and 2.48 times higher, respectively, compared to the M3 (NH4+) medium, revealing that the key gene catalyzing the dehydrogenation of benzaldehyde to 2-PE is ADH5. Furthermore, strain R5 exhibits tolerance to high concentrations of 2-PE, reaching 3 g/L, which conferred an ideal tolerance to 2-PE. In summary, the synthesis pathway of 2-PE, mainly for the Ehrlich pathway, was proved for the first time in S. bacillaris, which had not been previously explored and provided a basis for non-Saccharomyces yeast-producing 2-PE and its applications.
Collapse
Affiliation(s)
- Rong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qingyi Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Huili Xia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| |
Collapse
|
8
|
Karine Marcomini E, Negri M. Fungal quorum-sensing molecules and antiseptics: a promising strategy for biofilm modulation? Drug Discov Today 2023:103624. [PMID: 37224996 DOI: 10.1016/j.drudis.2023.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
New strategies to control fungal biofilms are essential, especially those that interfere in the biofilm organization process and cellular communication, known as quorum sensing. The effect of antiseptics and quorum-sensing molecules (QSMs) have been considered with regard to this; however, little has been elucidated, particularly because studies are often restricted to the action of antiseptics and QSMs against a few fungal genera. In this review, we discuss progress reported in the literature thus far and analyze, through in silico methods, 13 fungal QSMs with regard to their physicochemical, pharmacological, and toxicity properties, including their mutagenicity, tumorigenicity, hepatotoxicity, and nephrotoxicity. From these in silico analyses, we highlight 4-hydroxyphenylacetic acid and tryptophol as having satisfactory properties and, thus, propose that these should be investigated further as antifungal agents. We also recommend future in vitro approaches to determine the association of QSMs with commonly used antiseptics as potential antibiofilm agents.
Collapse
|
9
|
Yammine J, Chihib NE, Gharsallaoui A, Dumas E, Ismail A, Karam L. Essential oils and their active components applied as: free, encapsulated and in hurdle technology to fight microbial contaminations. A review. Heliyon 2022; 8:e12472. [PMID: 36590515 PMCID: PMC9798198 DOI: 10.1016/j.heliyon.2022.e12472] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Microbial contaminations are responsible for many chronic, healthcare, persistent microbial infections and illnesses in the food sector, therefore their control is an important public health challenge. Over the past few years, essential oils (EOs) have emerged as interesting alternatives to synthetic antimicrobials as they are biodegradable, extracted from natural sources and potent antimicrobials. Through their multiple mechanisms of actions and target sites, no microbial resistance has been developed against them till present. Although extensive documentation has been reported on the antimicrobial activity of EOs, comparisons between the use of whole EOs or their active components alone for an antimicrobial treatment are less abundant. It is also essential to have a good knowledge about EOs to be used as alternatives to the conventional antimicrobial products such as chemical disinfectants. Moreover, it is important to focus not only on planktonic vegetative microorganisms, but to study also the effect on more resistant forms like spores and biofilms. The present article reviews the current knowledge on the mechanisms of antimicrobial activities of EOs and their active components on microorganisms in different forms. Additionally, in this review, the ultimate advantages of encapsulating EOs or combining them with other hurdles for enhanced antimicrobial treatments are discussed.
Collapse
Affiliation(s)
- Jina Yammine
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France,Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Nour-Eddine Chihib
- Univ Lille, CNRS, INRAE, Centrale Lille, UMR 8207 – UMET – Unité Matériaux et Transformations, Lille, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Ali Ismail
- Plateforme de Recherches et d’Analyses en Sciences de l’Environnement (PRASE), Ecole Doctorale des Sciences et Technologies, Université Libanaise, Hadath, Lebanon
| | - Layal Karam
- Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar,Corresponding author.
| |
Collapse
|
10
|
Zou X, Wei Y, Jiang S, Xu F, Wang H, Zhan P, Shao X. ROS Stress and Cell Membrane Disruption are the Main Antifungal Mechanisms of 2-Phenylethanol against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14468-14479. [PMID: 36322824 DOI: 10.1021/acs.jafc.2c06187] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
2-Phenylethanol (2-PE), a common compound found in plants and microorganisms, exhibits broad-spectrum antifungal activity. Using Botrytis cinerea, we demonstrated that 2-PE suppressed mycelium growth in vitro and in strawberry fruit and reduced natural disease without adverse effects to fruit quality. 2-PE caused structural damage to mycelia, as shown by scanning and transmission electron microscopy. From RNA sequencing analysis we found significantly upregulated genes for enzymatic and nonenzymatic reactive oxygen species (ROS) scavenging systems including sulfur metabolism and glutathione metabolism, indicating that ROS stress was induced by 2-PE. This was consistent with results from assays demonstrating an increase ROS and hydrogen peroxide levels, antioxidant enzyme activities, and malondialdehyde content in treated cells. The upregulation of ATP-binding cassette transporter genes, the downregulation of major facilitator superfamily transporters genes, and the downregulation of ergosterol biosynthesis genes indicated a severe disruption of cell membrane structure and function. This was consistent with results from assays demonstrating compromised membrane integrity and lipid peroxidation. To summarize, 2-PE exposure suppressed B. cinerea growth through ROS stress and cell membrane disruption.
Collapse
Affiliation(s)
- Xiurong Zou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Yingying Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Hongfei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Pingping Zhan
- the Bio-ultrastructure Analysis Laboratory of the Key Laboratory of Applied Marine Biotechnology of the Ministry of Education, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
11
|
Veltman B, Harpaz D, Melamed S, Tietel Z, Tsror L, Eltzov E. Whole-cell bacterial biosensor for volatile detection from Pectobacterium-infected potatoes enables early identification of potato tuber soft rot disease. Talanta 2022; 247:123545. [PMID: 35597022 DOI: 10.1016/j.talanta.2022.123545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Half of the harvested food is lost due to rots caused by microorganisms. Plants emit various volatile organic compounds (VOCs) into their surrounding environment, and the VOC profiles of healthy crops are altered upon infection. In this study, a whole-cell bacterial biosensor was used for the early identification of potato tuber soft rot disease caused by the pectinolytic bacteria Pectobacterium in potato tubers. The detection is based on monitoring the luminescent responses of the bacteria panel to changes in the VOC profile following inoculation. First, gas chromatography-mass spectrometry (GC-MS) was used to specify the differences between the VOC patterns of the inoculated and non-inoculated potato tubers during early infection. Five VOCs were identified, 1-octanol, phenylethyl alcohol, 2-ethyl hexanol, nonanal, and 1-octen-3-ol. Then, the infection was detected by the bioreporter bacterial panel, firstly measured in a 96-well plate in solution, and then also tested in potato plugs and validated in whole tubers. Examination of the bacterial panel responses showed an extensive cytotoxic effect over the testing period, as seen by the elevated induction factor (IF) values in the bacterial strain TV1061 after exposure to both potato plugs and whole tubers. Moreover, quorum sensing influences were also observed by the elevated IF values in the bacterial strain K802NR. The developed whole-cell biosensor system based on bacterial detection will allow more efficient crop management during postharvest, storage, and transport of crops, to reduce food losses.
Collapse
Affiliation(s)
- Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sarit Melamed
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Leah Tsror
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
12
|
Huang C, Zhang L, Johansen PG, Petersen MA, Arneborg N, Jespersen L. Debaryomyces hansenii Strains Isolated From Danish Cheese Brines Act as Biocontrol Agents to Inhibit Germination and Growth of Contaminating Molds. Front Microbiol 2021; 12:662785. [PMID: 34211441 PMCID: PMC8239395 DOI: 10.3389/fmicb.2021.662785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
The antagonistic activities of native Debaryomyces hansenii strains isolated from Danish cheese brines were evaluated against contaminating molds in the dairy industry. Determination of chromosome polymorphism by use of pulsed-field gel electrophoresis (PFGE) revealed a huge genetic heterogeneity among the D. hansenii strains, which was reflected in intra-species variation at the phenotypic level. 11 D. hansenii strains were tested for their ability to inhibit germination and growth of contaminating molds, frequently occurring at Danish dairies, i.e., Cladosporium inversicolor, Cladosporium sinuosum, Fusarium avenaceum, Mucor racemosus, and Penicillium roqueforti. Especially the germination of C. inversicolor and P. roqueforti was significantly inhibited by cell-free supernatants of all D. hansenii strains. The underlying factors behind the inhibitory effects of the D. hansenii cell-free supernatants were investigated. Based on dynamic headspace sampling followed by gas chromatography-mass spectrometry (DHS-GC-MS), 71 volatile compounds (VOCs) produced by the D. hansenii strains were identified, including 6 acids, 22 alcohols, 15 aldehydes, 3 benzene derivatives, 8 esters, 3 heterocyclic compounds, 12 ketones, and 2 phenols. Among the 71 identified VOCs, inhibition of germination of C. inversicolor correlated strongly with three VOCs, i.e., 3-methylbutanoic acid, 2-pentanone as well as acetic acid. For P. roqueforti, two VOCs correlated with inhibition of germination, i.e., acetone and 2-phenylethanol, of which the latter also correlated strongly with inhibition of mycelium growth. Low half-maximal inhibitory concentrations (IC50) were especially observed for 3-methylbutanoic acid, i.e., 6.32-9.53 × 10-5 and 2.00-2.67 × 10-4 mol/L for C. inversicolor and P. roqueforti, respectively. For 2-phenylethanol, a well-known quorum sensing molecule, the IC50 was 1.99-7.49 × 10-3 and 1.73-3.45 × 10-3 mol/L for C. inversicolor and P. roqueforti, respectively. For acetic acid, the IC50 was 1.35-2.47 × 10-3 and 1.19-2.80 × 10-3 mol/L for C. inversicolor and P. roqueforti, respectively. Finally, relative weak inhibition was observed for 2-pentanone and acetone. The current study shows that native strains of D. hansenii isolated from Danish brines have antagonistic effects against specific contaminating molds and points to the development of D. hansenii strains as bioprotective cultures, targeting cheese brines and cheese surfaces.
Collapse
Affiliation(s)
| | | | | | | | | | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Balbino TR, da Silveira FA, Ventorim RZ, do Nascimento AG, de Oliveira LL, da Silveira WB. Adaptive responses of Kluyveromyces marxianus CCT 7735 to 2-phenylethanol stress: Alterations in membrane fatty-acid composition, ergosterol content, exopolysaccharide production and reduction in reactive oxygen species. Fungal Genet Biol 2021; 151:103561. [PMID: 33819626 DOI: 10.1016/j.fgb.2021.103561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/06/2021] [Accepted: 03/08/2021] [Indexed: 11/27/2022]
Abstract
2-phenylethanol (2-PE) is a higher aromatic alcohol with a rose-like aroma used in the cosmetic and food industries as a flavoring and displays potential for application as an antifungal. Biotechnological production of 2-PE from yeast is an interesting alternative due to the non-use of toxic compounds and the generation of few by-products. Kluyveromyces marxianus CCT 7735 is a thermotolerant strain capable of producing high 2-PE titers from L-Phenylalanine; however, like other yeast species, its growth has been strongly inhibited by this alcohol. Herein, we aimed to evaluate the effect of 2-PE on cell growth, cell viability, membrane permeability, glucose uptake, metabolism, and morphology in K. marxianus CCT 7735, as well as its adaptive responses. The stress condition was imposed after 4 h of cultivation by adding 3.0 g.L-1 of 2-PE in exponential growing cells. 2-PE stress impaired yeast growth, glucose uptake, fermentative metabolism, membrane permeability, and cell viability. Moreover, the stress condition provoked changes in both morphology and surface roughness. The reactive oxygen species (ROS) increased immediately on exposure to 2-PE. Changes in membrane fatty-acid composition, ergosterol content, exopolysaccharides production, and reduction of the ROS levels appear to be the result of adaptive responses in K. marxianus. Our results provided insights into a better understanding of the effects of 2-PE on K. marxianus and its adaptive responses.
Collapse
Affiliation(s)
- Thércia Rocha Balbino
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Fernando Augusto da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Rafaela Zandonade Ventorim
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Antônio Galvão do Nascimento
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leandro Licursi de Oliveira
- Laboratory of Immunochemistry and Glycobiology, Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
14
|
Li Z, Yang Y, Liu M, Zhang C, Shao J, Hou X, Tian J, Cui Q. A comprehensive review on phytochemistry, bioactivities, toxicity studies, and clinical studies on Ficus carica Linn. leaves. Biomed Pharmacother 2021; 137:111393. [PMID: 33761610 DOI: 10.1016/j.biopha.2021.111393] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
The leaves of Ficus carica Linn. (FC) have been widely used for medicine purposes since ancient times, and its decoction is consumed as tea. Many scientific papers have been published in the literature and the researchers across the world are still exploring the health benefits of FC leaves. In this review, we have collected the literature published since 2010 in the databases: Pubmed, Scopus, Web of Science, SciFinder, Google Scholar, Baidu Scholar and local classic herbal literature. The summary of the chemical constituents in FC leaves, biological activities, toxicity studies, and clinical studies carried out on FC leaves is provided in this review. In addition, the molecular mechanisms of the active constituents in FC leaves are also comprehended. FC leaves are reported to 126 constituents out of which the polyphenolic compounds are predominant. Many scientific studies have proven the antidiabetic, antioxidant, anti-inflammatory, anticancer, anticholinesterase, antimicrobial, hepatoprotective, and renoprotective activities. Many studies have carried out to provide the insights on molecular pathways involved in the biological activities of FC leaves. The toxicity studies have suggested that FC leaves exhibit toxicity only at very high doses. We believe this review serve as a comprehensive resource for those who are interested to understand the scientific evidence that support the medicinal values of FC leaves and also the research gaps to further improve the commercial value and health benefits of FC leaves.
Collapse
Affiliation(s)
- Zhongyuan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ying Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Miaomiao Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chenghua Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Junjing Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xuewen Hou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jingzhen Tian
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Qingdao Academy of Chinese Medicinal Sciences Shandong University of Traditional Chinese Medicine, Qingdao 266041, China.
| |
Collapse
|
15
|
Britton SJ, Neven H, Maskell DL. Microbial Small-Talk: Does Quorum Sensing Play a Role in Beer Fermentation? JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott J. Britton
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Hedwig Neven
- Research & Development, Duvel Moortgat, Puurs-Sint-Amands, Belgium
- Centre for Food and Microbial Technology (CLMT), Department M2S, KU Leuven, Leuven, Belgium
| | - Dawn L. Maskell
- International Centre for Brewing and Distilling, Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|