1
|
Thakur S, Baines SL, Sia CM, Valcanis M, Judd LM, Howden BP, Newton HJ, Ingle DJ. Genomic epidemiology and phenotypic characterisation of Salmonella enterica serovar Panama in Victoria, Australia. PLoS Negl Trop Dis 2024; 18:e0012666. [PMID: 39565816 PMCID: PMC11616866 DOI: 10.1371/journal.pntd.0012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/04/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Salmonella enterica serovar Panama, a causative agent of non-typhoidal salmonellosis (NTS), is one of several serovars that causes invasive NTS disease (iNTS) in humans. S. Panama is an understudied pathogen, with its pathobiology poorly understood. It is a predominant iNTS serovar in Australia, a high-income country with high rates of salmonellosis, where S. Panama has been documented to have a high odds ratio (13.9-15.26) for causing iNTS. This study investigates the genomic epidemiology and antimicrobial resistance profiles of all S. Panama isolates recovered in Victoria, Australia, between 2000 and 2021. We examined the infection dynamics of S. Panama in seven isolates, representing the genetic diversity of the study population. Two sub-lineages, encompassed within a previously described Asian lineage, were identified. Multi-drug resistance (resistance to ≥3 drug classes) was detected in 46 (51.7%) Australian isolates. The plasmid-mediated colistin resistance gene, mcr1.1, was detected in one Australian S. Panama isolate, carried by an IncI plasmid previously reported in Salmonella and Escherichia coli isolates collected from poultry in South-East Asia. Examination of the intracellular replication dynamics of S. Panama isolates demonstrated diverse phenotypes. In THP-1 derived macrophages, despite low host cell uptake, S. Panama showed higher replication rates over time compared to S. enterica serovar Typhimurium. However, a causative genotype could not be identified to explain this observed phenotype. This study provides insights into the S. Panama isolates circulating in Australia over two-decades, finding that 78% were linked to international travel suggesting importation in Australia. It shows MDR was common in this iNTS serovar, and colistin resistance reported for the first time. It provides the first data on the host-pathogen interactions of S. Panama in Australia, which will aid our collective understanding of the pathobiology of S. Panama and iNTS serovars more broadly.
Collapse
Affiliation(s)
- Samriddhi Thakur
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Cheryll M. Sia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Louise M. Judd
- Innovation Hub, Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
- Innovation Hub, Centre for Pathogen Genomics, University of Melbourne, Parkville, Victoria Australia
| | - Hayley J. Newton
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Vinueza-Burgos C, Medina-Santana J, Maldonado R, Vásquez Y, Lincango L, Villagomez E, Gómez C, Ron-Garrido L, Cevallos-Almeida MB. Evaluation of Virulence of Salmonella Infantis and Salmonella Enteritidis with In Vitro and In Vivo Models. Foodborne Pathog Dis 2023; 20:484-491. [PMID: 37668605 DOI: 10.1089/fpd.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Salmonella Infantis and Enteritidis serovars have been reported as important causes of salmonellosis in humans worldwide. However, the virulence of these two serovars has yet to be compared. To evaluate the virulence of Salmonella Infantis (n = 23) and Salmonella Enteritidis (n = 7), we used two models: the Caco2 cells model (in vitro) and the Galleria mellonella model (in vivo). Additionally, the virulence genes of all tested strains were contrasted with phenotypic outcomes. Results showed that adhesion means were 18.2% for Salmonella Enteritidis and 38.2% for Salmonella Infantis strains. Invasion means were 77.1% for Salmonella Enteritidis and 56.2% for Salmonella Infantis strains. Significant differences were found between serovars in adherence and invasion assays. Mortality rates (58% for Salmonella Enteritidis and 62.6% for Salmonella Infantis) were not significantly different between serotypes. The distribution of virulence genes showed that genes fae (fimbrial adherence determinants) and shdA (nonfimbrial adherence determinants) were only found in Salmonella Infantis strains. On the other hand, the rck gene (invasion) and Plasmid-encoded fimbriae genes (pef A, B, C, D) were present in Salmonella Enteritidis exclusively. In conclusion, this study shows that Salmonella Enteritidis has a higher virulence potential under experimental conditions than Salmonella Infantis. However, more studies are needed to determine the risk that Salmonella Infantis could represent compared with Salmonella Enteritidis. Moreover, other in vivo models should be considered to assess the virulence of these serovars.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Jose Medina-Santana
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Ruben Maldonado
- Laboratorio de Sanidad Animal Agencia de Regulación y Control Fito y Zoosanitario, Quito, Ecuador
| | - Yuly Vásquez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lisseth Lincango
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Emilia Villagomez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Carlos Gómez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lenin Ron-Garrido
- Centro Internacional de Zoonosis, Universidad Central del Ecuador, Quito, Ecuador
| | - María Belén Cevallos-Almeida
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
3
|
Burciaga S, Trachsel JM, Sockett D, Aulik N, Monson MS, Anderson CL, Bearson SMD. Genomic and phenotypic comparison of two variants of multidrug-resistant Salmonella enterica serovar Heidelberg isolated during the 2015-2017 multi-state outbreak in cattle. Front Microbiol 2023; 14:1282832. [PMID: 37928690 PMCID: PMC10623430 DOI: 10.3389/fmicb.2023.1282832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Heidelberg (Salmonella Heidelberg) has caused several multistate foodborne outbreaks in the United States, largely associated with the consumption of poultry. However, a 2015-2017 multidrug-resistant (MDR) Salmonella Heidelberg outbreak was linked to contact with dairy beef calves. Traceback investigations revealed calves infected with outbreak strains of Salmonella Heidelberg exhibited symptoms of disease frequently followed by death from septicemia. To investigate virulence characteristics of Salmonella Heidelberg as a pathogen in bovine, two variants with distinct pulse-field gel electrophoresis (PFGE) patterns that differed in morbidity and mortality during the multistate outbreak were genotypically and phenotypically characterized and compared. Strain SX 245 with PFGE pattern JF6X01.0523 was identified as a dominant and highly pathogenic variant causing high morbidity and mortality in affected calves, whereas strain SX 244 with PFGE pattern JF6X01.0590 was classified as a low pathogenic variant causing less morbidity and mortality. Comparison of whole-genome sequences determined that SX 245 lacked ~200 genes present in SX 244, including genes associated with the IncI1 plasmid and phages; SX 244 lacked eight genes present in SX 245 including a second YdiV Anti-FlhC(2)FlhD(4) factor, a lysin motif domain containing protein, and a pentapeptide repeat protein. RNA-sequencing revealed fimbriae-related, flagella-related, and chemotaxis genes had increased expression in SX 245 compared to SX 244. Furthermore, SX 245 displayed higher invasion of human and bovine epithelial cells than SX 244. These data suggest that the presence and up-regulation of genes involved in type 1 fimbriae production, flagellar regulation and biogenesis, and chemotaxis may play a role in the increased pathogenicity and host range expansion of the Salmonella Heidelberg isolates involved in the bovine-related outbreak.
Collapse
Affiliation(s)
- Selma Burciaga
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Julian M. Trachsel
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Donald Sockett
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Nicole Aulik
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Melissa S. Monson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Christopher L. Anderson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Shawn M. D. Bearson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
4
|
Zou H, Li Q, Su Y, Zhang L, Zhang X, Li C. Persistent ciprofloxacin exposure induced the transformation of Klebsiella pneumoniae small colony variant into mucous phenotype. Front Cell Infect Microbiol 2023; 13:1259296. [PMID: 37928182 PMCID: PMC10625421 DOI: 10.3389/fcimb.2023.1259296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Small colony variant (SCV) is a bacterial phenotype closely related to persistent and recurrent infections. SCVs are mutations that occur within bacterial populations, resulting in a change in bacterial morphology and the formation of small colonies. This morphological change may enhance bacterial resistance to antibiotics and contribute to persistent and recurrent infections. Methods We isolated Klebsiella pneumoniae (KPN) and its SCV from a child with recurrent respiratory tract infections. KPN and SCV were treated with subinhibitory concentrations of antibiotics. growth curves, serum resistance experiments, macrophage phagocytosis experiments and whole genome sequencing were used to characterize KPN and SCV. Results After treating KPN and SCV with subinhibitory concentrations of antibiotics, we found that ciprofloxacin induced the SCV transition to the mucoid phenotype. We found that the growth of mucoid Klebsiella pneumoniae was significantly slower than maternal strain and SCV though growth curves. Serum resistance experiments showed that mucoid strains had significantly higher serum resistance compared to maternal strain and SCV. Macrophage phagocytosis experiments revealed that SCV had significantly higher intracellular survival rates compared to maternal strain and mucoid strains. Differential gene analysis of three strains revealed that the mucoid strain contained DNA polymerase V subunit UmuC gene on the plasmid, while the SCV strain had an additional IcmK family IV secretion protein on its plasmid. Discussion Our study showed the SCV of KPN changed to a mucoid colony when exposed to subinhibitory concentrations of ciprofloxacin. The higher resistance of serum of mucoid colonies was possibly related to the UmuC gene, while the increased intracellular survival of SCV may be related to the IcmK family type IV secretion proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunli Li
- Department of Laboratory Medicine, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Mikolajczyk-Martinez A, Ugorski M. Unraveling the role of type 1 fimbriae in Salmonella pathogenesis: insights from a comparative analysis of Salmonella Enteritidis and Salmonella Gallinarum. Poult Sci 2023; 102:102833. [PMID: 37356296 PMCID: PMC10404763 DOI: 10.1016/j.psj.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/21/2023] [Accepted: 05/31/2023] [Indexed: 06/27/2023] Open
Abstract
Significant differences in pathogenicity between Salmonella Enteritidis and Salmonella Gallinarum exist despite the fact that S. Gallinarum is a direct descendant of S. Enteritidis. It was hypothesized that such various properties may be in part the result of differences in structure and functions of type 1 fimbriae (T1Fs). In S. Enteritidis, T1Fs bind to oligomannosidic structures carried by host cell glycoproteins and are called mannose-sensitive T1Fs (MST1F). In S. Gallinarum, T1Fs lost ability to bind such carbohydrate chains, and were named mannose-resistant MRT1Fs (MRT1F). Therefore, the present study was undertaken to evaluate the role of MST1Fs and MRT1Fs in the adhesion, invasion, intracellular survival and cytotoxicity of S. Enteritidis and S. Gallinarum toward chicken intestinal CHIC8-E11cells and macrophage-like HD11 cells. Using mutant strains: S. Enteritidis fimH::kan and S. Gallinarum fimH::kan devoid of T1Fs and in vitro assays the following observations were made. MST1Fs have a significant impact on the chicken cell invasion by S. Enteritidis as MST1F-mediated adhesion facilitates direct and stable contact of bacteria with host cells, in contrast to MRT1Fs expressed by S. Gallinarum. MST1Fs as well as MRT1Fs did not affected intracellular viability of S. Enteritidis and S. Gallinarum. However, absolute numbers of intracellular viable wild-type S. Enteritidis were significantly higher than S. Enteritidis fimH::kan mutant and wild-type S. Gallinarum and S. Gallinarum fimH::kan mutant. These differences, reflecting the numbers of adherent and invading bacteria, underline the importance of MST1Fs in the pathogenicity of S. Enteritidis infections. The cytotoxicity of wild-type S. Enteritidis and its mutant devoid of MST1Fs to HD11 cells was essentially the same, despite the fact that the number of viable intracellular bacteria was significantly lower in the mutated strain. Using HD11 cells with similar number of intracellular wild-type S. Enteritidis and S. Enteritidis fimH::kan mutant, it was found that the lack of MST1Fs did not affect directly the cytotoxicity, suggesting that the increase in cytotoxicity of S. Enteritidis devoid of MST1Fs may be associated with crosstalk between T1Fs and other virulence factors.
Collapse
Affiliation(s)
- Agata Mikolajczyk-Martinez
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| |
Collapse
|
6
|
Gomes CN, Campioni F, Vilela FP, Duque SS, Falcão JP. Campylobacter coli strains from Brazil can invade phagocytic and epithelial cells and induce IL-8 secretion. Braz J Microbiol 2021; 52:859-867. [PMID: 33590448 PMCID: PMC8105435 DOI: 10.1007/s42770-021-00450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 11/27/2022] Open
Abstract
Campylobacter spp. have been a predominant cause of bacterial foodborne gastroenteritis worldwide, causing substantial costs to public healthcare systems. This study aimed to assess the invasion and pro-inflammatory cytokine production capacity of Campylobacter coli strains isolated in Brazil. A total of 50 C. coli isolated from different sources in Brazil were analyzed for their capacity of invasion in Caco-2 and U-937 cell lines. The production of pro-inflammatory cytokines was quantitatively measured in response to C. coli. All the strains studied showed invasion percentage ≥ 40% in polarized Caco-2 cells. In U-937 cells assay, 35 of 50 C. coli strains studied showed invasion percentage ≥ 50%. A significant increase in IL-8 production by infected U-937 cells was observed for 17.5% of the C. coli isolates. The high percentages of invasion in Caco-2 and U-937 cells observed for all studied strains, plus the increased production of IL-8 by U-937 cells against some strains, highlighted the pathogenic potential of the C. coli studied and bring extremely relevant data since it has never been reported for strains isolated in Brazil and there are a few data for C. coli in the literature.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe P Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto Oswaldo Cruz-IOC, Pavilhão Rocha Lima, sala 516, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|