1
|
Shankar S, Sahu V, Kumar A, Vyas S, Nayak S. Endogenous endophthalmitis caused by Aeromonas hydrophila following intravenous blood transfusion. BMJ Case Rep 2025; 18:e264991. [PMID: 40280579 DOI: 10.1136/bcr-2025-264991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025] Open
Abstract
The genus Aeromonas is a natural inhabitant of aquatic environments. These microorganisms are commonly regarded as pathogens of fish. Aeromonas' involvement in the eye is rare, with only a few reported cases of endogenous endophthalmitis. Here, we report a case of a woman in her early 20s presenting with sudden onset diminution of vision in her right eye, along with pain, redness and whitish opacity following a blood transfusion. Clinical examination suggested endogenous endophthalmitis. Despite negative blood, urine and stool cultures, evisceration and culture of intraocular contents revealed Aeromonas hydrophila Based on antibiotic sensitivity reports, she was started on broad-spectrum parenteral antibiotics. This case emphasises the importance of recognising the potential for nosocomial infections, including rare complications such as endogenous endophthalmitis, following blood transfusion.
Collapse
Affiliation(s)
- Sharmila Shankar
- Ophthalmology, All India Institute of Medical Sciences Raipur, Raipur, India
| | - Vijaya Sahu
- Ophthalmology, All India Institute of Medical Sciences Raipur, Raipur, India
| | - Aseem Kumar
- Ophthalmology, All India Institute of Medical Sciences Raipur, Raipur, India
| | - Sonal Vyas
- MMI Narayana Superspeciality Hospital, Raipur, India
| | - Swatishree Nayak
- All India Institute of Medical Sciences Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Popoola BM, Ogwerel JP, Oladipo OG. Bacterial isolates from drinking water river sources exhibit multi-drug resistant trait. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1054. [PMID: 39404931 PMCID: PMC11480157 DOI: 10.1007/s10661-024-13117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
Freshwater habitat is a natural reservoir for antimicrobial resistance (AMR). AMR poses serious human, animal, and environmental public health threats. This study aimed to evaluate the physicochemical and microbiological quality of five selected rivers (Apitipiti 1, Apitipiti 2, Apitipiti 3, Sogidi, and Aba Apa Akinmorin) in Oyo town, Nigeria, as well as the antibiotic resistance pattern of isolated bacterial species, using conventional methods. Most physicochemical parameters were within WHO and NIS permissible limits. Pearson's correlation matrix indicated that there were significant (p < 0.05) interactions among pH, electrical conductivity, temperature, sulphate and chloride salts, and BOD and COD. A total of thirty-two (32) bacterial species were isolated and identified as: Aeromonas (9), Bacillus (2), Corynebacterium (13), Lactobacillus (1), Pseudomonas (2), Staphylococcus (4), and Streptococcus (1). Of the rivers, Sogidi had the highest microbial load (6.36 log CFU/mL) while Apititipiti 1 had the lowest (5.76 log CFU/mL). With regard to antibiotic sensitivity, 81.8% were multidrug-resistant, with Corynebacterium kutscheri and Aeromonas spp. isolated from Apitipiti 2 and Aba Apa Akinmorin rivers, respectively, exhibiting a relatively high antibiotic resistance of 90.9%. This study reveals that these rivers may be unfit for consumption as multidrug-resistant bacteria of public health risk were associated with them.
Collapse
Affiliation(s)
- Bukola Margaret Popoola
- Department of Microbiology and Biotechnology, Ajayi Crowther University, Oyo, Oyo State, Nigeria.
| | - Jemimah Pearl Ogwerel
- Department of Microbiology and Biotechnology, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Oluwatosin Gbemisola Oladipo
- Department of Microbiology and Biotechnology, Faculty of Natural and Applied Sciences, First Technical University, Ibadan, Nigeria.
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
3
|
Conte D, Mesa D, Krul D, Bail L, Ito CAS, Palmeiro JK, Dalla-Costa LM. Comparative genomics of IncQ1 plasmids carrying bla GES variants from clinical and environmental sources in Brazil. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105644. [PMID: 39038632 DOI: 10.1016/j.meegid.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
IncQ-type plasmids have become important vectors in the dissemination of blaGES among different bacterial genera and species from different environments around the world, and studies estimating the occurrence of Guiana extended-spectrum (GES)-type β-lactamases are gaining prominence. We analyzed the genetic aspects of two IncQ1 plasmids harboring different blaGES variants from human and environmental sources. The blaGES variants were identified using polymerase chain reaction (PCR) in Aeromonas veronii isolated from hospital effluent and Klebsiella variicola isolated from a rectal swab of a patient admitted to the cardiovascular intensive care unit in a different hospital. Antimicrobial-susceptibility testing and transformation experiments were performed for phenotypic analysis. Whole-genome sequencing was performed using Illumina and Oxford Nanopore platforms. The comparative analysis of plasmids was performed using BLASTn, and the IncQ1 plasmids showed a high identity and similar size. A. veronii harbored blaGES-7 in a class 1 integron (In2061), recently described by our group, and K. variicola carried blaGES-5 in the known class 1 integron. Both integrons showed a fused gene cassette that encodes resistance to aminoglycosides and fluoroquinolones, with an IS6100 truncating the 3'-conserved segment. The fused genes are transcribed together, although the attC site is disrupted. These gene cassettes can no longer be mobilized. This study revealed a mobilome that may contribute to the dissemination of GES-type β-lactamases in Brazil. Class 1 integrons are hot spots for bacterial evolution, and their insertion into small IncQ-like plasmids displayed successful recombination, allowing the spread of blaGES variants in various environments. Therefore, they can become prevalent across clinically relevant pathogens.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
| | - Dany Mesa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Damaris Krul
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Larissa Bail
- Universidade Estadual de Ponta Grossa, Ponta Grossa, Paraná, Brazil
| | | | - Jussara Kasuko Palmeiro
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Zhang Q, Zhang S, Xu B, Dong L, Zhao Z, Li B. Molecular Epidemiological Characteristics of Carbapenem Resistant Aeromonas from Hospital Wastewater. Infect Drug Resist 2024; 17:2439-2448. [PMID: 38912216 PMCID: PMC11193444 DOI: 10.2147/idr.s460715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Hospital wastewater (HWW) promotes the spread of carbapenem resistance genes (CRGs). Aeromonas carry a large number of CRGs in HWW, they may play a role as a suitable reservoir for CRGs, while resistomes in HWW are still poorly characterized regarding carbapenem resistant Aeromonas. Thus, the aim of the study was to evaluate the molecular epidemiological characteristics of carbapenem resistant Aeromonas in HWW. Methods A total of 33 carbapenem resistant Aeromonas were isolated from HWW. Antimicrobial susceptibility testing and polymerase chain reaction (PCR) were used to assess the antimicrobial resistance profiles. Molecular typing was performed using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and multilocus sequence typing (MLST). The horizontal transmission mode of bla KPC was explored through conjugation and transformation experiments. The stability of bla KPC-IncP-6 plasmids was assessed through plasmid stability and in vitro competition test. The PCR mapping method was used to investigate the structural diversity of bla KPC. Results The detection rates of bla KPC and cphA in Aeromonas were 97.0% and 39.4% respectively. Aeromonas caviae were grouped into 13 clusters by ERIC-PCR and 12 STs by MLST. Aeromonas veronii were grouped into 11 clusters by ERIC-PCR and 4 STs by MLST. 56.3% bla KPC were located on mobilizable IncP-6 plasmids. bla KPC-IncP-6 plasmid showed high stability and low cost fitness. Conclusion Carbapenem resistant Aeromonas from HWW mainly carried bla KPC, which exhibited great structural diversity. Aeromonas might serve as reservoirs for bla KPC and bla KPC might spread mainly through transformation in HWW.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, 350001, People’s Republic of China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, 350001, People’s Republic of China
| | - Binbin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, 350001, People’s Republic of China
| | - Luyan Dong
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, 350001, People’s Republic of China
| | - Zhichang Zhao
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fujian, 350001, People’s Republic of China
| |
Collapse
|
5
|
Siqueira JAM, Teixeira DM, da Piedade GJL, Souza CDO, Moura TCF, Bahia MDNM, Brasiliense DM, Santos DSADS, Morais LLCDS, da Silva DDFL, Carneiro BS, Pinheiro KDC, Junior ECS, Catete CP, Souza E Guimarães RJDP, Ferreira JL, Chagas Junior WDD, Machado RS, Tavares FN, Resque HR, Dos Santos Lobo P, Guerra SDFDS, Soares LS, da Silva LD, Gabbay YB. Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. J Appl Microbiol 2024; 135:lxae101. [PMID: 38627246 DOI: 10.1093/jambio/lxae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
AIMS The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.
Collapse
Affiliation(s)
| | - Dielle Monteiro Teixeira
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Cintya de Oliveira Souza
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Tuane Carolina Ferreira Moura
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Marcia de Nazaré Miranda Bahia
- Laboratório de Enteroinfecções Bacterianas II, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Danielle Murici Brasiliense
- Laboratório de Patógenos Especiais, Seção de Bacteriologia e Micologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | | | | | - Bruno Santana Carneiro
- Laboratório de Indicadores Físico-Químicos de Qualidade da Água, Seção de Meio Ambiente, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Kenny da Costa Pinheiro
- Laboratório de Bioinformática, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Edivaldo Costa Sousa Junior
- Laboratório de Epidemiologia em Leishmanioses, Seção de Parasitologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Clístenes Pamplona Catete
- Laboratório de Geoprocessamento, Seção de Epidemiologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - James Lima Ferreira
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Raiana Scerni Machado
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Fernando Neto Tavares
- Laboratório de Enterovírus, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Hugo Reis Resque
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Patrícia Dos Santos Lobo
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | | | - Luana Silva Soares
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Luciana Damascena da Silva
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| | - Yvone Benchimol Gabbay
- Laboratório de Vírus Gastroentéricos, Seção de Virologia, Instituto Evandro Chagas (SVSA/MS), CEP 67030-000, Brazil
| |
Collapse
|
6
|
Gray HK, Bisht A, Caldera JR, Fossas Braegger NM, Cambou MC, Sakona AN, Beaird OE, Uslan DZ, Walton SC, Yang S. Nosocomial infections by diverse carbapenemase-producing Aeromonas hydrophila associated with combination of plumbing issues and heat waves. Am J Infect Control 2024; 52:337-343. [PMID: 37778710 DOI: 10.1016/j.ajic.2023.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Aquatic opportunistic pathogen Aeromonas hydrophila, known to persist in low-nutrient chlorinated waters, can cause life-threatening infections. Two intensive care units experienced a cluster of Aeromonas infections following outdoor temperature spikes coinciding with recurrent plumbing issues, with fatalities due to severe underlying comorbidities co-occurring with extensively-drug resistant (XDR) Aeromonas. METHODS We investigated this cluster using whole genome sequencing to assess genetic relatedness of isolates and identify antimicrobial resistance determinants. Three A. hydrophila were isolated from patients staying in or adjacent to rooms with plumbing issues during or immediately after periods of elevated outdoor temperatures. Sinks and faucets were swabbed for culture. RESULTS All A. hydrophila clinical isolates exhibited carbapenem resistance but were not genetically related. Diverse resistance determinants corresponding to extensively-drug resistant were found, including co-occurring KPC-3 and VIM-2, OXA-232, and chromosomal CphA-like carbapenemase genes, contributing to major treatment challenges. All 3 patients were treated with multiple antibiotic regimens to overcome various carbapenemase classes and expired due to underlying comorbidities. Environmental culture yielded no Aeromonas. CONCLUSIONS While the investigation revealed no singular source of contamination, it supports a possible link between plumbing issues, elevated outdoor temperatures and incidence of nosocomial Aeromonas infections. The diversity of carbapenemase genes detected in these wastewater-derived Aeromonas warrants heightened infection prevention precautions during periods of plumbing problems especially with heat waves.
Collapse
Affiliation(s)
- Hannah K Gray
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Anjali Bisht
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA
| | - J R Caldera
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Nicole M Fossas Braegger
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Mary C Cambou
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ashlyn N Sakona
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Omer E Beaird
- Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Daniel Z Uslan
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA; Department of Medicine, Division of Infection Diseases, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Shaunte C Walton
- Department of Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, CA
| | - Shangxin Yang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA.
| |
Collapse
|
7
|
Nascimento M, Rodrigues J, Matias R, Jordao L. Aeromonas spp. in Freshwater Bodies: Antimicrobial Resistance and Biofilm Assembly. Antibiotics (Basel) 2024; 13:166. [PMID: 38391552 PMCID: PMC10886317 DOI: 10.3390/antibiotics13020166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Aeromonas spp. are environmental bacteria able to infect animals and humans. Here, we aim to evaluate the role of biofilms in Aeromonas persistence in freshwater. Aeromonas were isolated from water and biofilm samples and identified by Vitek-MS and 16S rRNA sequencing. Antibiotic susceptibility profiles were determined according to EUCAST, and a crystal violet assay was used to assess biofilm assembly. MTT and the enumeration of colony-forming units were used to evaluate biofilm and planktonic Aeromonas susceptibility to chlorination, respectively. Identification at the species level was challenging, suggesting the need to improve the used methodologies. Five different Aeromonas species (A. salmonicida, A. hydrophila, A. media, A. popoffii and A. veronii) were identified from water, and one species was identified from biofilms (A. veronii). A. veronnii and A. salmonicida presented resistance to different antibiotics, whith the highest resistance rate observed for A. salmonicida (multiple antibiotic resistance index of 0.25). Of the 21 isolates, 11 were biofilm producers, and 10 of them were strong biofilm producers (SBPs). The SBPs presented increased tolerance to chlorine disinfection when compared with their planktonic counterparts. In order to elucidate the mechanisms underlying biofilm tolerance to chlorine and support the importance of preventing biofilm assembly in water reservoirs, further research is required.
Collapse
Affiliation(s)
- Maria Nascimento
- Department of Environmental Health (DSA), National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Joao Rodrigues
- Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Rui Matias
- Department of Infectious Diseases (DDI), National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Luisa Jordao
- Department of Environmental Health (DSA), National Institute of Health Dr. Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| |
Collapse
|
8
|
Seethalakshmi PS, RU VPN, Prabhakaran A, Prathiviraj R, Pamanji R, Kiran GS, Selvin J. Genomic investigation unveils high-risk ESBL producing Enterobacteriaceae within a rural environmental water body. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100216. [PMID: 38274946 PMCID: PMC10809108 DOI: 10.1016/j.crmicr.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Antimicrobial resistance is regarded as a global threat to public health, animals, and the environment, emerging in response to extensive utilization of antimicrobials. The determinants of antimicrobial resistance are transported to susceptible bacterial populations through genetic recombination or through gene transfer, mediated by bacteriophages, plasmids, transposons, and insertion sequences. To determine the penetration of antimicrobial resistance into the bacterial population of the Thiruvandarkoil Lake, a water body located in the rural settings of Puducherry, India, culture-based microbiological and genomic approaches were used. Resistant bacterial isolates obtained from microbiological screening were subjected to whole genome sequencing and the genetic determinants of antimicrobial resistance were identified using in silico genomic tools. Cephalosporin-resistant isolates were found to produce extended spectrum beta lactamases, encoded by blaVEB-6 (in Proteus mirabilis PS01), blaSHV-12 and ompK36 mutation (in Klebsiella quasipneumoniae PS02) and blaSHV-12, blaACT-16, blaCTX-M and blaNDM-1 in (Enterobacter hormaechei PS03). Genes encoding heavy metal resistance, virulence and resistance to detergents were also detected in these resistant isolates. Among ESBL-producing organisms, one mcr-9-positive Enterobacter hormaechei was also identified in this study. To our knowledge, this is the first report of mcr-9 carrying bacterium in the environment in India. This study seeks the immediate attention of policy makers, researchers, government officials and environmental activists in India, to develop surveillance programs to monitor the dissemination of antimicrobial resistance in the environment.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | | | | | | | - Rajesh Pamanji
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
9
|
Roh H, Kannimuthu D. Comparative resistome analysis of Aeromonas species in aquaculture reveals antibiotic resistance patterns and phylogeographic distribution. ENVIRONMENTAL RESEARCH 2023; 239:117273. [PMID: 37805184 DOI: 10.1016/j.envres.2023.117273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
The overuse of antibiotics in aquaculture drives the emergence of multi-drug-resistant bacteria, and antibiotic-resistant genes (ARGs) can be disseminated to other bacteria through vertical- and horizontal gene transfer (VGT and HGT) under selective pressure. Profiling the antibiotic resistome and understanding the global distribution of ARGs constitutes the first step in developing a control strategy. Hence, this study utilized extensive genomic data from hundreds of Aeromonas strains in aquaculture to profile resistome patterns and explores their association with isolation year, country, and species characteristics. Overall, ∼400 Aeromonas genomes were used to predict the ARGs from A. salmonicida, A. hydrophila, A. veronii, A. media, and A. sobria. ARGs such as sul1, tet(A), and tet(D), which display a similar proportion of positive strains among species, were subjected to phylodynamic and phylogeographic analyses. More than a hundred ARGs were identified, some of which exhibited either species-specific or non-species-specific patterns. A. salmonicida and A. media were found to have a higher proportion of species-specific ARGs than other strains, which might lead to more distinct patterns of ARG acquisition. Overall, ∼25% of strains have either sul1, tet(A), or tet(D) gene(s), but no significant difference was observed in the proportion of positive strains by species. Phylogeographic analysis revealed that the abundant numbers of sul1, tet(A), and/or tet(D) introduced in a few East Asian and North American countries could spread to both adjacent and faraway countries. In recent years, the proportions of these ARGs have dramatically increased, particularly in strains sourced from aquatic environments, suggesting control is required of the overuse of antibiotics in aquaculture. The findings of this research offer significant insights into the global dissemination of ARGs.
Collapse
Affiliation(s)
- HyeongJin Roh
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870, Nordnes, 5870, Bergen, Norway.
| | - Dhamotharan Kannimuthu
- Pathogen Transmission and Disease Research Group, Institute of Marine Research, PO Box 1870, Nordnes, 5870, Bergen, Norway
| |
Collapse
|
10
|
Drk S, Puljko A, Dželalija M, Udiković-Kolić N. Characterization of Third Generation Cephalosporin- and Carbapenem-Resistant Aeromonas Isolates from Municipal and Hospital Wastewater. Antibiotics (Basel) 2023; 12:antibiotics12030513. [PMID: 36978380 PMCID: PMC10044312 DOI: 10.3390/antibiotics12030513] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the greatest threats to global health, and Aeromonas species have the potential to spread AR in the aquatic environment. The spread of resistance to antibiotics important to human health, such as third-generation cephalosporins (3GCs) and carbapenems, is of great concern. We isolated and identified 15 cefotaxime (3GC)- and 51 carbapenem-resistant Aeromonas spp. from untreated hospital and treated municipal wastewater in January 2020. The most common species were Aeromonas caviae (58%), A. hydrophila (17%), A. media (11%), and A. veronii (11%). Almost all isolates exhibited a multidrug-resistant phenotype and harboured a diverse plasmidome, with the plasmid replicons ColE, IncU, and IncR being the most frequently detected. The most prevalent carbapenemase gene was the plasmid-associated blaKPC-2 and, for the first time, the blaVIM-2, blaOXA-48, and blaIMP-13 genes were identified in Aeromonas spp. Among the 3GC-resistant isolates, the blaGES-5 and blaMOX genes were the most prevalent. Of the 10 isolates examined, three were capable of transferring carbapenem resistance to susceptible recipient E. coli. Our results suggest that conventionally treated municipal and untreated hospital wastewater is a reservoir for 3GC- and carbapenem-resistant, potentially harmful Aeromonas spp. that can be introduced into aquatic systems and pose a threat to both the environment and public health.
Collapse
Affiliation(s)
- Sara Drk
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Ana Puljko
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
| | - Nikolina Udiković-Kolić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička 54, 10 002 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
11
|
Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics (Basel) 2023; 12:antibiotics12010084. [PMID: 36671285 PMCID: PMC9854640 DOI: 10.3390/antibiotics12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has become one of the greatest challenges worldwide, hampering the treatment of a plethora of infections. Indeed, the AMR crisis poses a threat to the achievement of the United Nations' Sustainable Development Goals and, due to its multisectoral character, a holistic approach is needed to tackle this issue. Thus, the investigation of environments beyond the clinic is of utmost importance. Here, we investigated thirteen strains of antimicrobial-resistant Aeromonas isolated from an urban estuary in Brazil. Most strains carried at least one antimicrobial resistance gene and 11 carried at least one heavy metal resistance gene. Noteworthy, four (30.7%) strains carried the blaKPC gene, coding for a carbapenemase. In particular, the whole-genome sequence of Aeromonas hydrophila strain 34SFC-3 was determined, revealing not only the presence of antimicrobial and heavy metal resistance genes but also a versatile virulome repertoire. Mobile genetic elements, including insertion sequences, transposons, integrative conjugative elements, and an IncQ1 plasmid were also detected. Considering the ubiquity of Aeromonas species, their genetic promiscuity, pathogenicity, and intrinsic features to endure environmental stress, our findings reinforce the concept that A. hydrophila truly is a "Jack of all trades'' that should not be overlooked under the One Health perspective.
Collapse
|
12
|
Unravelling complex transposable elements surrounding bla GES-16 in a Pseudomonas aeruginosa ExoU strain. J Glob Antimicrob Resist 2022; 30:143-147. [PMID: 35447384 DOI: 10.1016/j.jgar.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/16/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES We characterised the complex surrounding regions of blaGES-16 in a Pseudomonas aeruginosa exoU+ strain (P-10.226) in Brazil. METHODS Species identification was performed by MALDI-TOF MS, and the antimicrobial susceptibility profile was determined by broth microdilution based on European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints. The whole genome sequencing (WGS) of P-10.226 strain was performed using both short-read paired-end sequencing on the Illumina MiSeq platform as well as the long-read Oxford Nanopore MinION. RESULTS WGS analysis showed that P-10.226 carried blaGES-16, which was found as a gene cassette inserted into a novel class I integron, In1992 (aadB-blaOXA-56-blaGES-16-aadB-aadA6c), whose 3'-CS was truncated by a nested transposable element, IS5564::ISPa157. The structure was even more complex since IS6100-ΔIS6100 structure and a TnAs2-like harbouring the operon merRTPADE was found downstream In1992. Fragments of TnAs3 harbouring 25-bp imperfect inverted repeats were identified bordering the intl1 of In1992 and also flanking IS6100-ΔIS6100, which might be genetic marks of its previous presence in the genome. Interestingly, In1992 also shows a distinct cassette array from In581 (blaGES-16-dfrA22-aacA27-aadA1), which was previously reported in Serratia marcescens strains recovered in Brazil. Finally, exoU gene, which encodes a potent cytotoxin of type III secretion systems (T3SS) effector proteins from P. aeruginosa and is associated to severe infections, was also detected. CONCLUSION We described the novel In1992 carrying blaGES-16 surrounded by complex transposition events in a XDR P. aeruginosa strain. The identification of many sets of direct repeats adjacent to TnAs3 fragments indicates a major past of transposition events that shaped the current genetic environment of In1992.
Collapse
|
13
|
Conte D, Mesa D, Jové T, Zamparette CP, Sincero TCM, Palmeiro JK, Dalla-Costa LM. Novel Insights into blaGES Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Microbiol Spectr 2022; 10:e0246921. [PMID: 35880869 PMCID: PMC9430818 DOI: 10.1128/spectrum.02469-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of blaGES in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, blaGES-5 was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, blaGES-5 was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented blaGES-1, one Aeromonas veronii isolate presented blaGES-7, and another A. veronii isolate presented blaGES-16. Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. blaGES genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with blaGES-5, and K. quasipneumoniae carried two copies of blaGES-5 at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion.
Collapse
Affiliation(s)
- Danieli Conte
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - Dany Mesa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| | - Thomas Jové
- University of Limoges, INSERM, CHU Limoges, RESINFIT, Limoges, France
| | - Caetana Paes Zamparette
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Thaís Cristine Marques Sincero
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Jussara Kasuko Palmeiro
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
- Departamento de Análises Clínicas, Universidade Federal de Santa Catarina (ACL-UFSC), Florianópolis, Santa Catarina, Brazil
- Laboratório de Microbiologia Molecular Aplicada, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe (FPP), Curitiba, Paraná, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Curitiba, Paraná, Brazil
| |
Collapse
|
14
|
Pessoa RBG, de Oliveira WF, Correia MTDS, Fontes A, Coelho LCBB. Aeromonas and Human Health Disorders: Clinical Approaches. Front Microbiol 2022; 13:868890. [PMID: 35711774 PMCID: PMC9195132 DOI: 10.3389/fmicb.2022.868890] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
The genus Aeromonas comprises more than 30 Gram-negative bacterial species and naturally inhabitants from aquatic environments. These microorganisms, commonly regarded as pathogens of fish and several other animals, have been gaining prominence on medical trial due to its ability to colonize and infect human beings. Besides water, Aeromonas are widely spreaded on most varied sources like soil, vegetables, and food; Although its opportunistic nature, they are able to cause infections on immunocompromised or immunocompetent patients. Aeromonas species regarded as potential human pathogens are usually A. hydrophila, A. caviae, and A. veronii biovar sobria. The main clinical manifestations are gastrointestinal tract disorders, wound, and soft tissue infections, as well as septicemia. Regarding to antibiotic responses, the bacteria present a diversified susceptibility profile and show inherence resistance to ampicillin. Aeromonas, as an ascending genus in microbiology, has been carefully studied aiming comprehension and development of methods for detection and medical intervention of infectious processes, not fully elucidated in medicine. This review focuses on current clinical knowledge related to human health disorders caused by Aeromonas to contribute on development of efficient approaches able to recognize and impair the pathological processes.
Collapse
Affiliation(s)
| | - Weslley Felix de Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|
15
|
Mantareva VN, Kussovski V, Orozova P, Dimitrova L, Kulu I, Angelov I, Durmus M, Najdenski H. Photodynamic Inactivation of Antibiotic-Resistant and Sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines 2022; 10:biomedicines10020384. [PMID: 35203593 PMCID: PMC8962408 DOI: 10.3390/biomedicines10020384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial multidrug resistance (AMR) of pathogenic bacteria towards currently used antibiotics has a remarkable impact on the quality and prolongation of human lives. An effective strategy to fight AMR is the method PhotoDynamic Therapy (PDT). PDT is based on a joint action of a photosensitizer, oxygen, and light within a specific spectrum. This results in the generation of singlet oxygen and other reactive oxygen species that can inactivate the pathogenic cells without further regrowth. This study presents the efficacy of a new Pd(II)- versus Zn(II)-phthalocyanine complexes with peripheral positions of methylpyridiloxy substitution groups (pPdPc and ZnPcMe) towards Gram-negative bacteria Aeromonas hydrophila (A.hydrophila). Zn(II)-phthalocyanine, ZnPcMe was used as a reference compound for in vitro studies, bacause it is well-known with a high photodynamic inactivation ability for different pathogenic microorganisms. The studied new isolates of A.hydrophila were antibiotic-resistant (R) and sensitive (S) strains. The photoinactivation results showed a full effect with 8 µM pPdPc for S strain and with 5 µM ZnPcMe for both R and S strains. Comparison between both new isolates of A.hydrophila (S and R) suggests that the uptakes and more likely photoinactivation efficacy of the applied phthalocyanines are independent of the drug sensitivity of the studied strains.
Collapse
Affiliation(s)
- Vanya N. Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Correspondence:
| | - Vesselin Kussovski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.K.); (L.D.); (H.N.)
| | - Petya Orozova
- National Diagnostic Research Veterinary Institute, 1000 Sofia, Bulgaria;
| | - Lyudmila Dimitrova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.K.); (L.D.); (H.N.)
| | - Irem Kulu
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey; (I.K.); (M.D.)
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Mahmut Durmus
- Department of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey; (I.K.); (M.D.)
| | - Hristo Najdenski
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (V.K.); (L.D.); (H.N.)
| |
Collapse
|