1
|
Wang L, Zhang X, Lu J, Huang L. Microbial diversity and interactions: Synergistic effects and potential applications of Pseudomonas and Bacillus consortia. Microbiol Res 2025; 293:128054. [PMID: 39799763 DOI: 10.1016/j.micres.2025.128054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Microbial diversity and interactions in the rhizosphere play a crucial role in plant health and ecosystem functioning. Among the myriads of rhizosphere microbes, Pseudomonas and Bacillus are prominent players known for their multifaceted functionalities and beneficial effects on plant growth. The molecular mechanism of interspecies interactions between natural isolates of Bacillus and Pseudomonas in medium conditions is well understood, but the interaction between the two in vivo remains unclear. This paper focuses on the possible synergies between Pseudomonas and Bacillus associated in practical applications (such as recruiting beneficial microbes, cross-feeding and niche complementarity), and looks forward to the application prospects of the consortium in agriculture, human health and bioremediation. Through in-depth understanding of the interactions between Pseudomonas and Bacillus as well as their application prospects in various fields, this study is expected to provide a new theoretical basis and practical guidance for promoting the research and application of rhizosphere microbes.
Collapse
Affiliation(s)
- Lixue Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xinyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jiahui Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Singh S, Rai PK, Khan AA, Fatima S, Choure K, Joo JC, Pandey A. Whole genome analysis and biocontrol potential of endophytic Bacillus cereus EMS1 against Fusarium wilt in banana. World J Microbiol Biotechnol 2025; 41:119. [PMID: 40164911 DOI: 10.1007/s11274-025-04326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Endophytic bacteria are essential for promoting plant growth and increasing plant resilience to various environmental stresses. Although it is well-documented that several endophytic Bacillus species exhibit plant growth-promoting properties, this is the first report on the genome study of Bacillus cereus EMS1, isolated from Musa acuminata G9 in India. This study analyzed the genomics, plant growth traits, and fusarium wilt mitigation potential of Bacillus cereus EMS1. This analysis identified specific genomic features, including potential mechanisms contributing to plant growth promotion, which were also submitted to NCBI (Bioproject ID: PRJNA784269). The in vivo study showed that EMS1 mitigated the impact of Fusarium oxysporum f. sp. cubense on banana plants. Although it did not affect the number of leaves, other parameters influenced by pathogen infection and EMS1 treatment showed notable differences, including fresh weight (Fusarium oxysporum only: 15 g; EMS1 + Fusarium oxysporum: 21 g), dry weight (Fusarium oxysporum only: 1 g; EMS1 + Fusarium oxysporum: 4.7 g), and root length (Fusarium oxysporum only: 6.5 cm; EMS1 + Fusarium oxysporum: 9 cm). Additionally, genomic analysis revealed that the EMS1 genome contains distinctive genes linked to plant growth and antimicrobial activity. Overall, the findings highlight the potential of endophytic Bacillus cereus EMS1 in promoting plant growth and enhancing banana plant resistance against Fusarium oxysporum.
Collapse
Affiliation(s)
- Shilpi Singh
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Piyush Kant Rai
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India.
| | - Jeong Chan Joo
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, Deogyeong-daero, Giheung- gu, Yongin-si, 17104, Gyeonggi-do, Republic of Korea
| | - Ashutosh Pandey
- Department of Biotechnology, AKS University, Madhya Pradesh, 485001, Satna, India
- University Center for Research and Development (UCRD), Chandigarh university, Punjab, 140413, Mohali, India
| |
Collapse
|
3
|
Arteaga-Ríos IG, Méndez-Rodríguez KB, Ocampo-Pérez R, Guerrero-González MDLL, Rodríguez-Guerra R, Delgado-Sánchez P. Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100312. [PMID: 39717210 PMCID: PMC11665370 DOI: 10.1016/j.crmicr.2024.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Currently, the use of bio-inputs is increasing due to the need to reduce the use of agrochemicals. However, one of the limitations is to preserve the viability of the living microorganisms, so it is important to find an alternative that allows us to obtain different metabolites to produce it. We evaluated three different interactions (contact, diffusible and volatile compounds) in vitro in Arabidopsis thaliana (At) seedlings with the strain Cytobacillus firmus M10 and its filtered secondary metabolites (M10F). The results showed that the seedlings inoculated by contact with the filtrate (AtM10F) presented increases in root length (30 %) and leaf area (33 %), as well as in the volatile interaction (At/M10F) with respect to the uninoculated treatment. For both interactions, the seedlings inoculated with the bacteria by contact (AtM10) and volatile (At/M10) obtained greater biomass (48 and 57 %). Subsequently, an evaluation at the end of the A. thaliana cycle showed that the treatments obtained by contact and distance when reinoculated with the bacteria and the filtrate (AtM10, At-M10 and AtM10F) obtained 50 % more seed yield than the control treatment, while AtM10F presented 72 %, while At/M10F presented the highest no. of siliques and seeds, which increased the yield by 65 %. In the Solanum lycopersicum (Sl) experiment, the filtrate (SlM10F) showed significant differences in seedling height, leaf length and width (23, 24 and 36 %, respectively). It also promoted an increase in fresh and dry weight, producing a greater root area and larger leaves compared to the control (Sl) and the bacteria (SlM10). We performed a qualitative characterization of the secondary metabolites present in the filtrate, where we found 2,4-DTBP, sylvopinol, isophthaladehyde, and eicosane of interest with possible growth-promoting effects on A. thaliana and tomato. We identified volatile compounds present in plant-microorganism and plant-filtrate interactions as possible precursors in the induction of plant growth, among which phenols, alcohols, aldehydes, alkanes, and alkenes stand out. Most of the analyzed compounds have not been found in the literature with reports of growth promoters, is important to mention that due to their characteristic functional groups they can derive and trigger the synthesis of new molecules with agronomic application.
Collapse
Affiliation(s)
- Itzel G Arteaga-Ríos
- Facultad de Agronomía y Veterinaria. Universidad Autónoma de San Luis Potosí. Soledad de Graciano Sánchez, SLP, CP, 78321. México
| | - Karen Beatriz Méndez-Rodríguez
- Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, CP, 78210, México
| | - Raul Ocampo-Pérez
- Facultad de Ciencias Químicas. Universidad Autónoma de San Luis Potosí. San Luis Potosí, SLP, CP, 78210, México
| | | | - Raúl Rodríguez-Guerra
- Campo Experimental General Terán, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Cd. General Terán. NL, CP, 67400, México
| | - Pablo Delgado-Sánchez
- Facultad de Agronomía y Veterinaria. Universidad Autónoma de San Luis Potosí. Soledad de Graciano Sánchez, SLP, CP, 78321. México
| |
Collapse
|
4
|
Akram W, Sharif S, Rehman A, Anjum T, Ali B, Aftab ZEH, Shafqat A, Afzal L, Munir B, Rizwana H, Li G. Exploring the Potential of Bacillus subtilis IS1 and B. amyloliquificiens IS6 to Manage Salinity Stress and Fusarium Wilt Disease in Tomato Plants by Induced Physiological Responses. Microorganisms 2024; 12:2092. [PMID: 39458401 PMCID: PMC11510684 DOI: 10.3390/microorganisms12102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The intensified concerns related to agrochemicals' ecological and health risks have encouraged the exploration of microbial agents as eco-friendly alternatives. Some members of Bacillus spp. are potential plant-growth-promoting agents and benefit numerous crop plants globally. This study aimed to explore the beneficial effects of two Bacillus strains (B. subtilis strain IS1 and B. amyloliquificiens strain IS6) capable of alleviating the growth of tomato plants against salinity stress and Fusarium wilt disease. These strains were able to significantly promote the growth of tomato plants and biomass accumulation in pot trials in the absence of any stress. Under salinity stress conditions (150 mM NaCl), B. subtilis strain IS1 demonstrated superior performance and significantly increased shoot length (45.74%), root length (101.39%), fresh biomass (62.17%), and dry biomass (49.69%) contents compared to control plants. Similarly, B. subtilis strain IS1 (63.7%) and B. amyloliquificiens strain IS6 (32.1%) effectively suppressed Fusarium wilt disease and significantly increased plant growth indices compared to the pathogen control. Furthermore, these strains increased the production of chlorophyll, carotenoid, and total phenolic contents. They significantly affected the activities of enzymes involved in antioxidant machinery and the phenylpropanoid pathway. Hence, this study effectively demonstrates that these Bacillus strains can effectively alleviate the growth of tomato plants under multiple stress conditions and can be used to develop bio-based formulations for use in the fields.
Collapse
Affiliation(s)
- Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Shama Sharif
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Areeba Rehman
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore 54590, Pakistan;
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan (S.S.); (T.A.)
| | - Ayesha Shafqat
- School of Botany, Minhaj University, Lahore 54770, Pakistan;
| | - Laiba Afzal
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (L.A.); (B.M.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Guihua Li
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| |
Collapse
|
5
|
Xia X, Wei Q, Wu H, Chen X, Xiao C, Ye Y, Liu C, Yu H, Guo Y, Sun W, Liu W. Bacillus species are core microbiota of resistant maize cultivars that induce host metabolic defense against corn stalk rot. MICROBIOME 2024; 12:156. [PMID: 39180084 PMCID: PMC11342587 DOI: 10.1186/s40168-024-01887-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Microbes colonizing each compartment of terrestrial plants are indispensable for maintaining crop health. Although corn stalk rot (CSR) is a severe disease affecting maize (Zea mays) worldwide, the mechanisms underlying host-microbe interactions across vertical compartments in maize plants, which exhibit heterogeneous CSR-resistance, remain largely uncharacterized. RESULTS Here, we investigated the microbial communities associated with CSR-resistant and CSR-susceptible maize cultivars using multi-omics analysis coupled with experimental verification. Maize cultivars resistant to CSR reshaped the microbiota and recruited Bacillus species with three phenotypes against Fusarium graminearum including niche pre-emption, potential secretion of antimicrobial compounds, and no inhibition to alleviate pathogen stress. By inducing the expression of Tyrosine decarboxylase 1 (TYDC1), encoding an enzyme that catalyzes the production of tyramine and dopamine, Bacillus isolates that do not directly suppress pathogen infection induced the synthesis of berberine, an isoquinoline alkaloid that inhibits pathogen growth. These beneficial bacteria were recruited from the rhizosphere and transferred to the stems but not grains of the CSR-resistant plants. CONCLUSIONS The current study offers insight into how maize plants respond to and interact with their microbiome and lays the foundation for preventing and treating soil-borne pathogens. Video Abstract.
Collapse
Affiliation(s)
- Xinyao Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Department of Plant Pathology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Qiuhe Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xinyu Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunxia Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yiping Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaotian Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuanwen Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management and Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Liu Z, Zhang J, Fan C, Sun S, An X, Sun Y, Gao T, Zhang D. Influence of Bacillus subtilis strain Z-14 on microbial ecology of cucumber rhizospheric vermiculite infested with fusarium oxysporum f. sp. cucumerinum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105875. [PMID: 38685217 DOI: 10.1016/j.pestbp.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Fusarium oxysporum (FO) is a typical soil-borne pathogenic fungus, and the cucumber wilt disease caused by F. oxysporum f. sp. cucumerinum (FOC) seriously affects crop yield and quality. Vermiculite is increasingly being used as a culture substrate; nevertheless, studies exploring the effectiveness and mechanisms of biocontrol bacteria in this substrate are limited. In this study, vermiculite was used as a culture substrate to investigate the control effect of Bacillus subtilis strain Z-14 on cucumber wilt and the rhizospheric microecology, focusing on colonization ability, soil microbial diversity, and rhizosphere metabolome. Pot experiments showed that Z-14 effectively colonized the cucumber roots, achieving a controlled efficacy of 61.32% for wilt disease. It significantly increased the abundance of Bacillus and the expression of NRPS and PKS genes, while reducing the abundance of FO in the rhizosphere. Microbial diversity sequencing showed that Z-14 reduced the richness and diversity of the rhizosphere bacterial community, increased the richness and diversity of the fungal community, and alleviated the effect of FO on the community structure of the cucumber rhizosphere. The metabolomics analysis revealed that Z-14 affected ABC transporters, amino acid synthesis, and the biosynthesis of plant secondary metabolites. Additionally, Z-14 increased the contents of phenylacetic acid, capsidol, and quinolinic acid, all of which were related to the antagonistic activity in the rhizosphere. Z-14 exhibited a significant control effect on cucumber wilt and influenced the microflora and metabolites in rhizospheric vermiculite, providing a theoretical basis for further understanding the control effect and mechanism of cucumber wilt in different culture substrates.
Collapse
Affiliation(s)
- Zhaosha Liu
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Jizong Zhang
- College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Chenxi Fan
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Shangyi Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Xutong An
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Yanheng Sun
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Tongguo Gao
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China
| | - Dongdong Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China; Hebei Provincial Engineering Research Center for Resource Utilization of Agricultural Wastes, Baoding, China.
| |
Collapse
|
7
|
Meshram S, Adhikari TB. Microbiome-Mediated Strategies to Manage Major Soil-Borne Diseases of Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:364. [PMID: 38337897 PMCID: PMC10856849 DOI: 10.3390/plants13030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
The tomato (Solanum lycopersicum L.) is consumed globally as a fresh vegetable due to its high nutritional value and antioxidant properties. However, soil-borne diseases can severely limit tomato production. These diseases, such as bacterial wilt (BW), Fusarium wilt (FW), Verticillium wilt (VW), and root-knot nematodes (RKN), can significantly reduce the yield and quality of tomatoes. Using agrochemicals to combat these diseases can lead to chemical residues, pesticide resistance, and environmental pollution. Unfortunately, resistant varieties are not yet available. Therefore, we must find alternative strategies to protect tomatoes from these soil-borne diseases. One of the most promising solutions is harnessing microbial communities that can suppress disease and promote plant growth and immunity. Recent omics technologies and next-generation sequencing advances can help us develop microbiome-based strategies to mitigate tomato soil-borne diseases. This review emphasizes the importance of interdisciplinary approaches to understanding the utilization of beneficial microbiomes to mitigate soil-borne diseases and improve crop productivity.
Collapse
Affiliation(s)
- Shweta Meshram
- Department of Plant Pathology, Lovely Professional University, Phagwara 144402, India;
| | - Tika B. Adhikari
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Shrestha A, Limay-Rios V, Brettingham DJL, Raizada MN. Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route. FRONTIERS IN PLANT SCIENCE 2024; 14:1286199. [PMID: 38269134 PMCID: PMC10806238 DOI: 10.3389/fpls.2023.1286199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
In flowering plants, after being released from pollen grains, the male gametes use the style channel to migrate towards the ovary where they fertilize awaiting eggs. Environmental pathogens exploit the style passage, resulting in diseased progeny seed. The belief is that pollen also transmits pathogens into the style. By contrast, we hypothesized that pollen carries beneficial microbes that suppress environmental pathogens on the style passage. No prior studies have reported pollen-associated bacterial functions in any plant species. Here, bacteria were cultured from maize (corn) pollen encompassing wild ancestors and farmer-selected landraces from across the Americas, grown in a common field in Canada for one season. In total, 298 bacterial isolates were cultured, spanning 45 genera, 103 species, and 88 OTUs, dominated by Pantoea, Bacillus, Pseudomonas, Erwinia, and Microbacterium. Full-length 16S DNA-based taxonomic profiling showed that 78% of bacterial taxa from the major wild ancestor of maize (Parviglumis teosinte) were present in at least one cultivated landrace. The species names of the bacterial isolates were used to search the pathogen literature systematically; this preliminary evidence predicted that the vast majority of the pollen-associated bacteria analyzed are not maize pathogens. The pollen-associated bacteria were tested in vitro against a style-invading Fusarium pathogen shown to cause Gibberella ear rot (GER): 14 isolates inhibited this pathogen. Genome mining showed that all the anti-Fusarium bacterial species encode phzF, associated with biosynthesis of the natural fungicide, phenazine. To mimic the male gamete migration route, three pollen-associated bacterial strains were sprayed onto styles (silks), followed by Fusarium inoculation; these bacteria reduced GER symptoms and mycotoxin accumulation in progeny seed. Confocal microscopy was used to search for direct evidence that pollen-associated bacteria can defend living silks against Fusarium graminearum (Fg); bacterial strain AS541 (Kluyvera intermedia), isolated from pollen of ancestral Parviglumis, was observed to colonize the susceptible style/silk entry points of Fg (silk epidermis, trichomes, wounds). Furthermore, on style/silk tissue, AS541 colonized/aggregated on Fg hyphae, and was associated with Fg hyphal breaks. These results suggest that pollen has the potential to carry bacteria that can defend the style/silk passage against an environmental pathogen - a novel observation.
Collapse
Affiliation(s)
- Anuja Shrestha
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Victor Limay-Rios
- Department of Plant Agriculture, University of Guelph, Ridgetown, ON, Canada
| | | | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Huang Y, Yang L, Pan K, Yang Z, Yang H, Liu J, Zhong G, Lu Q. Heavy metal-tolerant bacteria Bacillus cereus BCS1 degrades pyrethroid in a soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132594. [PMID: 37748314 DOI: 10.1016/j.jhazmat.2023.132594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The heightened concern about the environmental impacts of pollutants drives interest in reducing their threats to humans and the environment. Bioremediating polluted sites under environmental stresses like biotic and abiotic poses significant challenges. This study aimed to isolate a bacterium that effectively degrades pyrethroids even under abiotic stresses involving heavy metals and biotic stresses with autochthonous factors. Here, a bacterial strain, Bacillus cereus BCS1 was isolated. The response surface methodology was established to quantify the environmental impacts on pyrethroid degradation. BCS1 effectively degraded pyrethroids across conditions at 21-36 °C, pH 6.5-8.0 and inoculum sizes 1.9-4.1 mg·L-1, exceeding 90% degradation. Notably, over 84% of β-cypermethrin (β-CP) was degraded even when exposed to various concentrations of lead (10-1000 mg·L-1), chromium (10-1000 mg·L-1), or cadmium (0.5-50 mg·L-1). Moreover, BCS1 significantly accelerated β-CP degradation in soil-plant systems, displaying biotic stress tolerance, with lower half-life values (10.1 and 9.5 d) in soil and higher removal (92.1% and 60.9%) in plants compared to controls (27.7 and 25.7 d), and (18.2% and 24.3%). This study presents a novel strain capable of efficiently degrading pyrethroids and displaying remarkable environmental stress resistance. Findings shed light on bioremediating organic pollutants in complex soil ecosystems.
Collapse
Affiliation(s)
- Yanfeng Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhengyi Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hongxia Yang
- Huangpu Customs Technology Center, China; Guangdong Provincial Key Laboratory for Port Security Intelligent Testing, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
10
|
Bhagat N, Vakhlu J. Effects of biocontrol Bacillus sp. strain D5 on the pathogenic Fusarium oxysporum R1 at the microscopic and molecular level in Crocus sativus L. (saffron) corm. FEMS MICROBES 2024; 5:xtad025. [PMID: 38250179 PMCID: PMC10799715 DOI: 10.1093/femsmc/xtad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Corm rot of saffron caused by Fusarium oxysporum is a major threat to saffron cultivation the world over. To minimize the ill effects of chemical fungicides, attention has been shifted to the use of biocontrol agents for disease management in a sustainable way. In saffron, various biocontrol agents against corm rot disease have been reported and characterized but no study has been done so far to understand their interaction at the molecular level. The present study was conducted to unravel the mechanism of action of an already characterized native biocontrol agent i.e. Bacillus sp. strain D5 (Bar D5) against F. oxsporum R1 (Fox R1) in the saffron corm. The growth inhibition of Fox R1 was observed in vitro and in planta (saffron corm) by real time imaging. Bacillus sp. strain D5 reduced Fox R1 load in infected corms by 50% as quantified by q-PCR and the colony-forming unit method. Comparative transcriptome analysis revealed upregulation and downregulation of various Fox R1 genes in presence of Bar D5. The genes related to carbon metabolism, cell wall and membrane synthesis, and growth of Fox R1 were significantly downregulated in Bar D5-primed and Fox R1-inoculated corms as compared to only Fox R1-inoculated corms.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Jyoti Vakhlu
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| |
Collapse
|
11
|
Das S, Rabha J, Narzary D. Assessment of soil yeasts Papiliotrema laurentii S-08 and Saitozyma podzolica S-77 for plant growth promotion and biocontrol of Fusarium wilt of brinjal. J Appl Microbiol 2023; 134:lxad252. [PMID: 37930719 DOI: 10.1093/jambio/lxad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
AIM This study aimed to determine the efficacy of the soil yeasts Papiliotrema laurentii S-08 and Saitozyma podzolica S-77 for plant growth promotion (PGP) and biocontrol of wilt disease in brinjal plants while applying yeasts individually or as a consortium in pot experiments. METHODS AND RESULTS The yeasts were tested for various PGP characteristics and antagonistic activity against the phytopathogen Fusarium oxysporum f. sp. melongenae. Both the yeast isolates demonstrated some PGP attributes as well as inhibited the growth of the phytopathogen. A gas chromatography-mass spectrometry analysis of the yeast metabolites revealed the presence of several antifungal compounds. The pot experiment performed under nursery conditions showed that applying these yeasts, individually or in consortium, decreased the percent disease incidence in brinjal seedlings while significantly enhancing their growth parameters. CONCLUSION Papiliotrema laurentii S-08 and S. podzolica S-77 can be used in brinjal plants as plant growth promoters and also as biocontrol agents against the brinjal wilt disease.
Collapse
Affiliation(s)
- Sukanya Das
- Microbiology & Molecular Systematics Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India
| | - Jintu Rabha
- Microbiology & Molecular Systematics Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India
| | - Diganta Narzary
- Microbiology & Molecular Systematics Laboratory, Department of Botany, Gauhati University, Guwahati 781014, Assam, India
| |
Collapse
|
12
|
Al-Mutar DMK, Noman M, Alzawar NSA, Qasim HH, Li D, Song F. The Extracellular Lipopeptides and Volatile Organic Compounds of Bacillus subtilis DHA41 Display Broad-Spectrum Antifungal Activity against Soil-Borne Phytopathogenic Fungi. J Fungi (Basel) 2023; 9:797. [PMID: 37623568 PMCID: PMC10455929 DOI: 10.3390/jof9080797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Fusarium oxysporum f. sp. niveum (Fon) is a devastating soil-borne fungus causing Fusarium wilt in watermelon. The present study investigated the biochemical mechanism underlying the antifungal activity exhibited by the antagonistic bacterial strain DHA41, particularly against Fon. Molecular characterization based on the 16S rRNA gene confirmed that DHA41 is a strain of Bacillus subtilis, capable of synthesizing antifungal lipopeptides, such as iturins and fengycins, which was further confirmed by detecting corresponding lipopeptide biosynthesis genes, namely ItuB, ItuD, and FenD. The cell-free culture filtrate and extracellular lipopeptide extract of B. subtilis DHA41 demonstrated significant inhibitory effects on the mycelial growth of Fon, Didymella bryoniae, Sclerotinia sclerotiorum, Fusarium graminearum, and Rhizoctonia solani. The lipopeptide extract showed emulsification activity and inhibited Fon mycelial growth by 86.4% at 100 µg/mL. Transmission electron microscope observations confirmed that the lipopeptide extract disrupted Fon cellular integrity. Furthermore, B. subtilis DHA41 emitted volatile organic compounds (VOCs) that exhibited antifungal activity against Fon, D. bryoniae, S. sclerotiorum, and F. graminearum. These findings provide evidence that B. subtilis DHA41 possesses broad-spectrum antifungal activity against different fungi pathogens, including Fon, through the production of extracellular lipopeptides and VOCs.
Collapse
Affiliation(s)
- Dhabyan Mutar Kareem Al-Mutar
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Basra Agriculture Directorate, Almudaina 61008, Iraq;
| | - Muhammad Noman
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | | | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.M.K.A.-M.); (M.N.); (D.L.)
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Al-Mutar DMK, Noman M, Abduljaleel Alzawar NS, Li D, Song F. Cyclic Lipopeptides of Bacillus amyloliquefaciens DHA6 Are the Determinants to Suppress Watermelon Fusarium Wilt by Direct Antifungal Activity and Host Defense Modulation. J Fungi (Basel) 2023; 9:687. [PMID: 37367623 DOI: 10.3390/jof9060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
Fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon), poses a serious threat to watermelon productivity. We previously characterized six antagonistic bacterial strains, including DHA6, capable of suppressing watermelon Fusarium wilt under greenhouse conditions. This study investigates the role of extracellular cyclic lipopeptides (CLPs) produced by strain DHA6 in Fusarium wilt suppression. Taxonomic analysis based on the 16S rRNA gene sequence categorized strain DHA6 as Bacillus amyloliquefaciens. MALDI-TOF mass spectrometry identified five families of CLPs, i.e., iturin, surfactin, bacillomycin, syringfactin, and pumilacidin, in the culture filtrate of B. amyloliquefaciens DHA6. These CLPs exhibited significant antifungal activity against Fon by inducing oxidative stress and disrupting structural integrity, inhibiting mycelial growth and spore germination. Furthermore, pretreatment with CLPs promoted plant growth and suppressed watermelon Fusarium wilt by activating antioxidant enzymes (e.g., catalase, superoxide dismutase, and peroxidase) and triggering genes involved in salicylic acid and jasmonic acid/ethylene signaling in watermelon plants. These results highlight the critical roles of CLPs as determinants for B. amyloliquefaciens DHA6 in suppressing Fusarium wilt through direct antifungal activity and modulation of plant defense responses. This study provides a foundation for developing B. amyloliquefaciens DHA6-based biopesticides, serving as both antimicrobial agents and resistance inducers, to effectively control Fusarium wilt in watermelon and other crops.
Collapse
Affiliation(s)
- Dhabyan Mutar Kareem Al-Mutar
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Basra Agriculture Directorate, Almudaina 61008, Iraq
| | - Muhammad Noman
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | | | - Dayong Li
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fengming Song
- Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Kulkova I, Dobrzyński J, Kowalczyk P, Bełżecki G, Kramkowski K. Plant Growth Promotion Using Bacillus cereus. Int J Mol Sci 2023; 24:ijms24119759. [PMID: 37298706 DOI: 10.3390/ijms24119759] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) appear to be a sensible competitor to conventional fertilization, including mineral fertilizers and chemical plant protection products. Undoubtedly, one of the most interesting bacteria exhibiting plant-stimulating traits is, more widely known as a pathogen, Bacillus cereus. To date, several environmentally safe strains of B. cereus have been isolated and described, including B. cereus WSE01, MEN8, YL6, SA1, ALT1, ERBP, GGBSTD1, AK1, AR156, C1L, and T4S. These strains have been studied under growth chamber, greenhouse, and field conditions and have shown many significant traits, including indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylic acid (ACC) deaminase production or phosphate solubilization, which allows direct plant growth promotion. It includes an increase in biometrics traits, chemical element content (e.g., N, P, and K), and biologically active substances content or activity, e.g., antioxidant enzymes and total soluble sugar. Hence, B. cereus has supported the growth of plant species such as soybean, maize, rice, and wheat. Importantly, some B. cereus strains can also promote plant growth under abiotic stresses, including drought, salinity, and heavy metal pollution. In addition, B. cereus strains produced extracellular enzymes and antibiotic lipopeptides or triggered induced systemic resistance, which allows indirect stimulation of plant growth. As far as biocontrol is concerned, these PGPB can suppress the development of agriculturally important phytopathogens, including bacterial phytopathogens (e.g., Pseudomonas syringae, Pectobacterium carotovorum, and Ralstonia solanacearum), fungal phytopathogens (e.g., Fusarium oxysporum, Botrytis cinerea, and Rhizoctonia solani), and other phytopathogenic organisms (e.g., Meloidogyne incognita (Nematoda) and Plasmodiophora brassicae (Protozoa)). In conclusion, it should be noted that there are still few studies on the effectiveness of B. cereus under field conditions, particularly, there is a lack of comprehensive analyses comparing the PGP effects of B. cereus and mineral fertilizers, which should be reduced in favor of decreasing the use of mineral fertilizers. It is also worth mentioning that there are still very few studies on the impact of B. cereus on the indigenous microbiota and its persistence after application to soil. Further studies would help to understand the interactions between B. cereus and indigenous microbiota, subsequently contributing to increasing its effectiveness in promoting plant growth.
Collapse
Affiliation(s)
- Iryna Kulkova
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Jakub Dobrzyński
- Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110 Jabłonna, Poland
| | - Grzegorz Bełżecki
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 Str., 05-110 Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| |
Collapse
|
15
|
Grahovac J, Pajčin I, Vlajkov V. Bacillus VOCs in the Context of Biological Control. Antibiotics (Basel) 2023; 12:antibiotics12030581. [PMID: 36978448 PMCID: PMC10044676 DOI: 10.3390/antibiotics12030581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
A contemporary agricultural production system relying on heavy usage of agrochemicals represents a questionable outlook for sustainable food supply in the future. The visible negative environmental impacts and unforeseen consequences to human and animal health have been requiring a shift towards the novel eco-friendly alternatives for chemical pesticides for a while now. Microbial-based biocontrol agents have shown a promising potential for plant disease management. The bacteria of the genus Bacillus have been among the most exploited microbial active components due to several highly efficient mechanisms of action against plant pathogens, as well as a palette of additional plant-beneficial mechanisms, together with their suitable properties for microbial biopesticide formulations. Among other bioactive metabolites, volatile organic compounds (VOCs) have been investigated for their biocontrol applications, exhibiting the main advantage of long-distance effect without the necessity for direct contact with plants or pathogens. The aim of this study is to give an overview of the state-of-the-art in the field of Bacillus-based VOCs, especially in terms of their antibacterial, antifungal, and nematicidal action as the main segments determining their potential for biocontrol applications in sustainable agriculture.
Collapse
|
16
|
Harish S. Bio-Prospecting of Endospore-Based Formulation of Bacillus sp. BST18 Possessing Antimicrobial Genes for the Management of Soil-Borne Diseases of Tomato. Curr Microbiol 2022; 79:380. [DOI: 10.1007/s00284-022-03077-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
17
|
Wang B, Lei X, Chen J, Li W, Long Y, Wang W. Antifungal Activities of Bacillus mojavensis BQ-33 towards the Kiwifruit Black Spot Disease Caused by the Fungal Pathogen Didymella glomerata. Microorganisms 2022; 10:microorganisms10102085. [PMID: 36296359 PMCID: PMC9611226 DOI: 10.3390/microorganisms10102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
‘Hongyang’ kiwifruit (Actinidia chinensis, cultivar ‘Hongyang’) black spot disease is caused by the fungal pathogen Didymella glomerata, and is a serious disease, causing considerable losses to the kiwifruit industry during growth of the fruit. Hence, we aimed to identify a potential biocontrol agent against D. glomerata. In this study, bacterial isolates from the rhizosphere soil of kiwifruit were tested for their potential antifungal activity against selected fungal pathogens. Based on a phylogenetic tree constructed using sequences of 16S rDNA and the gyrA gene, BQ-33 with the best antifungal activity was identified as Bacillus mojavensis. We evaluated the antagonistic activity and inhibitory mechanism of BQ-33 against D. glomerata. Confrontation experiments showed that both BQ-33 suspension and the sterile supernatant (SS) produced by BQ-33 possessed excellent broad-spectrum antifungal activity. Furthermore, the SS damaged the cell membrane and cell wall of the mycelia, resulting in the leakage of a large quantity of small ions (Na+, K+), soluble proteins and nucleic acids. Chitinase and β-1,3-glucanase activities in SS increased in correlation with incubation time and remained at a high level for several days. An in vivo control efficacy assay indicated that 400 mL L−1 of SS completely inhibited kiwifruit black spot disease caused by D. glomerata. Therefore, BQ-33 is a potential biocontrol agent against kiwifruit black spot and plant diseases caused by other fungal pathogens. To our knowledge, this is the first report of the use of a rhizosphere microorganism as a biocontrol agent against kiwifruit black spot disease caused by D. glomerata.
Collapse
Affiliation(s)
- Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Lei
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jia Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenzhi Li
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.L.); (W.W.)
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.L.); (W.W.)
| |
Collapse
|
18
|
Kumar S, Rajan A, Sunil CK, Radhakrishnan M, Rawson A. Recent Advances in The Utilization of Industrial Byproduct and Wastes Generated at Different Stages of Tomato Processing: Status Report. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sumit Kumar
- Centre of Excellence for Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
| | - Anbarasan Rajan
- Centre of Excellence for Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
| | - C. K. Sunil
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Thanjavur India
| | - Mahendran Radhakrishnan
- Centre of Excellence for Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
| | - Ashish Rawson
- Centre of Excellence for Non‐Thermal Processing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology Entrepreneurship and Management Thanjavur India
| |
Collapse
|
19
|
Wang K, Wang Z, Xu W. Induced oxidative equilibrium damage and reduced toxin synthesis in Fusarium oxysporum f. sp. niveum by secondary metabolites from Bacillus velezensis WB. FEMS Microbiol Ecol 2022; 98:6626022. [PMID: 35776952 DOI: 10.1093/femsec/fiac080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 11/14/2022] Open
Abstract
In this study, the antifungal mechanism of secondary metabolites from the WB strain against Fusarium oxysporum f. sp. niveum (Fon) was investigated. The WB strain induced the accumulation of reactive oxygen species (ROS) in Fon hyphae and caused morphological changes, including surface subsidence and shrinkage deformation. The cell-free supernatants (CFSs) from WB treatment caused a significant increase in superoxide dismutase, catalase, peroxidase and glutathione reductase activities and the contents of soluble protein and malondialdehyde. Additionally, CFSs from WB decreased the fusaric acid concentration in Fon. Transcriptome analysis revealed that the expression of some antioxidant-related genes was upregulated and that the expression of mycotoxin-related genes was downregulated. Four polypeptide compounds from the WB strain, including iturin A, fengycin, surfactin and bacitracin, were identified by UHPLC-ESI-MS/MS analysis and complete genome mining. RT-qPCR and a quantitative analysis confirmed that the presence of Fon induced the expression of polypeptide genes and elevated polypeptide production. The combined minimum inhibitory concentration and quantitative analysis of four polypeptides revealed that iturin A, fengycin, surfactin and bacitracin might be responsible for inhibiting the growth of Fon. In conclusion, secondary metabolites from strain WB exhibited antifungal effects on Fon by triggering oxidative stress and decreasing toxin levels.
Collapse
Affiliation(s)
- Kexin Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Zhigang Wang
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| | - Weihui Xu
- College of Life Science and Agroforestry, Qiqihar University, Qiqihar 161006, China.,Heilongjiang Provincial Technology Innovation Center of Agromicrobial Preparation Industrialization, Qiqihar 161006, China
| |
Collapse
|
20
|
Petrova D, Gašić U, Yocheva L, Hinkov A, Yordanova Z, Chaneva G, Mantovska D, Paunov M, Ivanova L, Rogova M, Shishkova K, Todorov D, Tosheva A, Kapchina-Toteva V, Vassileva V, Atanassov A, Mišić D, Bonchev G, Zhiponova M. Catmint ( Nepeta nuda L.) Phylogenetics and Metabolic Responses in Variable Growth Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:866777. [PMID: 35651766 PMCID: PMC9150856 DOI: 10.3389/fpls.2022.866777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Nepeta nuda (catmint; Lamiaceae) is a perennial medicinal plant with a wide geographic distribution in Europe and Asia. This study first characterized the taxonomic position of N. nuda using DNA barcoding technology. Since medicinal plants are rich in secondary metabolites contributing to their adaptive immune response, we explored the N. nuda metabolic adjustment operating under variable environments. Through comparative analysis of wild-grown and in vitro cultivated plants, we assessed the change in phenolic and iridoid compounds, and the associated immune activities. The wild-grown plants from different Bulgarian locations contained variable amounts of phenolic compounds manifested by a general increase in flowers, as compared to leaves, while a strong reduction was observed in the in vitro plants. A similar trend was noted for the antioxidant and anti-herpesvirus activity of the extracts. The antimicrobial potential, however, was very similar, regardless the growth conditions. Analysis of the N. nuda extracts led to identification of 63 compounds including phenolic acids and derivatives, flavonoids, and iridoids. Quantification of the content of 21 target compounds indicated their general reduction in the extracts from in vitro plants, and only the ferulic acid (FA) was specifically increased. Cultivation of in vitro plants under different light quality and intensity indicated that these variable light conditions altered the content of bioactive compounds, such as aesculin, FA, rosmarinic acid, cirsimaritin, naringenin, rutin, isoquercetin, epideoxyloganic acid, chlorogenic acid. Thus, this study generated novel information on the regulation of N. nuda productivity using light and other cultivation conditions, which could be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- Detelina Petrova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Uroš Gašić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Lyubomira Yocheva
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anton Hinkov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Zhenya Yordanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ganka Chaneva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Desislava Mantovska
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Momchil Paunov
- Department of Biophysics and Radiobiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Lyubomira Ivanova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mariya Rogova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Daniel Todorov
- Laboratory of Virology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Anita Tosheva
- Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Veneta Kapchina-Toteva
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Danijela Mišić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Georgi Bonchev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| |
Collapse
|
21
|
Choi HW, Ahsan SM. Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot. THE PLANT PATHOLOGY JOURNAL 2022; 38:33-45. [PMID: 35144360 PMCID: PMC8831357 DOI: 10.5423/ppj.oa.12.2021.0187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/08/2023]
Abstract
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729,
Korea
| | - S. M. Ahsan
- Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University, Andong 36729,
Korea
| |
Collapse
|
22
|
Duan Y, Chen R, Zhang R, Jiang W, Chen X, Yin C, Mao Z. Isolation, Identification, and Antibacterial Mechanisms of Bacillus amyloliquefaciens QSB-6 and Its Effect on Plant Roots. Front Microbiol 2021; 12:746799. [PMID: 34603274 PMCID: PMC8482014 DOI: 10.3389/fmicb.2021.746799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 01/22/2023] Open
Abstract
Apple replant disease (ARD) is a common problem in major apple planting areas, and biological factors play a leading role in its etiology. Here, we isolated the bacterial strain QSB-6 from the rhizosphere soil of healthy apple trees in a replanted orchard using the serial dilution method. Strain QSB-6 was provisionally identified as Bacillus amyloliquefaciens based on its morphology, physiological and biochemical characteristics, carbon source utilization, and chemical sensitivity. Maximum likelihood analysis based on four gene sequences [16S ribosomal RNA gene (16S rDNA), DNA gyrase subunit A (gyrA), DNA gyrase subunit B (gyrB), and RNA polymerase subunit B (rpoB)] from QSB-6 and other strains indicated that it had 100% homology with B. amyloliquefaciens, thereby confirming its identification. Flat standoff tests showed that strain QSB-6 had a strong inhibitory effect on Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Fusarium oxysporum, Alternaria alternata, Aspergillus flavus, Phoma sp., Valsa mali, Rhizoctonia solani, Penicillium brasilianum, and Albifimbria verrucaria, and it had broad-spectrum antibacterial characteristics. Extracellular metabolites from strain QSB-6 showed a strong inhibitory effect on Fusarium hyphal growth and spore germination, causing irregular swelling, atrophy, rupture, and cytoplasmic leakage of fungal hyphae. Analysis of its metabolites showed that 1,2-benzenedicarboxylic acid and benzeneacetic acid, 3- hydroxy-, methyl ester had good inhibitory effects on Fusarium, and increased the length of primary roots and the number of lateral roots of Arabidopsis thaliana plantlet. Pot experiments demonstrated that a QSB-6 bacterial fertilizer treatment (T2) significantly improved the growth of Malus hupehensis Rehd. seedlings. It increased root length, surface area, tips, and forks, respiration rate, protective enzyme activities, and the number of soil bacteria while reducing the number of soil fungi. Fermentation broth from strain QSB-6 effectively prevented root damage from Fusarium. terminal restriction fragment length polymorphism (T-RFLP) and quantitative PCR (qPCR) assays showed that the T2 treatment significantly reduced the abundance of Fusarium in the soil and altered the soil fungal community structure. In summary, B. amyloliquefaciens QSB-6 has a good inhibitory effect on Fusarium in the soil and can significantly promote plant root growth. It has great potential as a biological control agent against ARD.
Collapse
Affiliation(s)
- Yanan Duan
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Ran Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Rong Zhang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Weitao Jiang
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Xuesen Chen
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Chengmiao Yin
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| | - Zhiquan Mao
- National Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, China
| |
Collapse
|