1
|
Teixeira EAA, de Souza LMD, Vieira R, Lirio JM, Coria SH, Convey P, Rosa CA, Rosa LH. Enzymes and biosurfactants of industrial interest produced by culturable fungi present in sediments of Boeckella Lake, Hope Bay, north-east Antarctic Peninsula. Extremophiles 2024; 28:30. [PMID: 38907846 DOI: 10.1007/s00792-024-01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
This study characterized cultivable fungi present in sediments obtained from Boeckella Lake, Hope Bay, in the north-east of the Antarctic Peninsula, and evaluated their production of enzymes and biosurfactants of potential industrial interest. A total of 116 fungal isolates were obtained, which were classified into 16 genera within the phyla Ascomycota, Basidiomycota and Mortierellomycota, in rank. The most abundant genera of filamentous fungi included Pseudogymnoascus, Pseudeurotium and Antarctomyces; for yeasts, Thelebolales and Naganishia taxa were dominant. Overall, the lake sediments exhibited high fungal diversity and moderate richness and dominance. The enzymes esterase, cellulase and protease were the most abundantly produced by these fungi. Ramgea cf. ozimecii, Holtermanniella wattica, Leucosporidium creatinivorum, Leucosporidium sp., Mrakia blollopis, Naganishia sp. and Phenoliferia sp. displayed enzymatic index > 2. Fourteen isolates of filamentous fungi demonstrated an Emulsification Index 24% (EI24%) ≥ 50%; among them, three isolates of A. psychrotrophicus showed an EI24% > 80%. Boeckella Lake itself is in the process of drying out due to the impact of regional climate change, and may be lost completely in approaching decades, therefore hosts a threatened community of cultivable fungi that produce important biomolecules with potential application in biotechnological processes.
Collapse
Affiliation(s)
- Elisa Amorim Amâncio Teixeira
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Láuren Machado Drumond de Souza
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Rosemary Vieira
- Departamento de Geografia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Peter Convey
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Las Palmeras 3425, Santiago, Chile
- Cape Horn International Center (CHIC), Puerto Williams, Chile
| | - Carlos Augusto Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Luiz Henrique Rosa
- Laboratório de Microbiologia Polar E Conexões Tropicais, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, P. O. Box 486, Belo Horizonte, MG, CEP 31270-901, Brazil.
| |
Collapse
|
2
|
Wagner DN, Varaljay VA, Lyon WJ, Crouch AL, Allex-Buckner C, Biffinger JC, Crookes-Goodson WJ, Kelley-Loughnane N, Stamps BW. Draft genome sequence of potentially dikaryotic black fungus Aureobasidium melanogenum isolated from aircraft. Microbiol Resour Announc 2024; 13:e0075623. [PMID: 38376194 PMCID: PMC10927640 DOI: 10.1128/mra.00756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
The Ascomycota yeast Aureobasidium melanogenum strain W12 was isolated from an aircraft polymer-coated surface. The genome size is 53,160,883 bp with a G + C content of 50.13%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases potentially used for survival on polymer coatings on aircraft.
Collapse
Affiliation(s)
- Dominique N. Wagner
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Vanessa A. Varaljay
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
| | - Wanda J. Lyon
- 711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
| | - Audra L. Crouch
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Clayton Allex-Buckner
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | | | - Wendy J. Crookes-Goodson
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
| | - Blake W. Stamps
- Biomaterials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, Ohio, USA
| |
Collapse
|
3
|
Lu Q, Regan DP, Barlow DE, Fears KP. Antimicrobial efficacy of cyclic α- and β-peptides incorporated in polyurethane coatings. Biointerphases 2023; 18:031008. [PMID: 37289032 DOI: 10.1116/6.0002515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Microbial growth on surfaces poses health concerns and can accelerate the biodegradation of engineered materials and coatings. Cyclic peptides are promising agents to combat biofouling because they are more resistant to enzymatic degradation than their linear counterparts. They can also be designed to interact with extracellular targets and intracellular targets and/or self-assemble into transmembrane pores. Here, we determine the antimicrobial efficacy of two pore-forming cyclic peptides, α-K3W3 and β-K3W3, against bacterial and fungal liquid cultures and their capacity to inhibit biofilm formation on coated surfaces. These peptides display identical sequences, but the additional methylene group in the peptide backbone of β-amino acids results in a larger diameter and an enhancement in the dipole moment. In liquid cultures, β-K3W3 exhibited lower minimum inhibitory concentration values and greater microbicidal power in reducing the number of colony forming units (CFUs) when exposed to a gram-positive bacterium, Staphylococcus aureus, and two fungal strains, Naganishia albida and Papiliotrema laurentii. To evaluate the efficacy against the formation of fungal biofilms on painted surfaces, cyclic peptides were incorporated into polyester-based thermoplastic polyurethane. The formation of N. albida and P. laurentii microcolonies (105 per inoculation) for cells extracted from coatings containing either peptide could not be detected after a 7-day exposure. Moreover, very few CFUs (∼5) formed after 35 days of repeated depositions of freshly cultured P. laurentii every 7 days. In contrast, the number of CFUs for cells extracted from the coating without cyclic peptides was >8 log CFU.
Collapse
Affiliation(s)
- Qin Lu
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Daniel P Regan
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Daniel E Barlow
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| | - Kenan P Fears
- Chemistry Division, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375
| |
Collapse
|
4
|
Draft Genome Sequence of the Nonmotile
Tremellomycetes
Yeast Naganishia albida, Isolated from Aircraft. Microbiol Resour Announc 2022; 11:e0024222. [PMID: 35946952 PMCID: PMC9476931 DOI: 10.1128/mra.00242-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The Basidiomycota yeast Naganishia albida strain 5307AI was isolated from an aircraft polymer-coated surface. The genome size is 20,642,279 bp, with a G+C content of 53.99%. The genome contains fatty acid transporters, cutinases, hydroxylases, and lipases that are likely used for survival on polymer coatings on aircraft.
Collapse
|
5
|
Masthay MB, McLean JB, Santos AL, Pirlo RK, Biffinger JC. Calculation of the Relative Basicity of Three α,ω‐Diphenylpolyenes with Trifluoroacetic Acid. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mark B. Masthay
- Chemistry Department, University of Dayton 300 College Park Dayton OH U.S.A
| | - Jack B. McLean
- Chemistry Department, University of Dayton 300 College Park Dayton OH U.S.A
| | - Ariana L. Santos
- Chemistry Department, University of Dayton 300 College Park Dayton OH U.S.A
| | - Russell K. Pirlo
- Chemical Engineering Department, University of Dayton 300 College Park Dayton OH
| | | |
Collapse
|