1
|
Ma C, Zheng X, Zhang Q, Renaud SJ, Yu H, Xu Y, Chen Y, Gong J, Cai Y, Hong Y, Li H, Liao Q, Guo Y, Kang L, Xie Z. A postbiotic exopolysaccharide synergizes with Lactobacillus acidophilus to reduce intestinal inflammation in a mouse model of colitis. Int J Biol Macromol 2025; 291:138931. [PMID: 39732236 DOI: 10.1016/j.ijbiomac.2024.138931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp. longum XZ01, for its ability to promote the growth of Lactobacillus strains. We then tested a synbiotic formulation of BLEPS-1 and L. acidophilus in a DSS-induced UC mouse model. The combination of BLEPS-1 and L. acidophilus alleviated DSS-induced intestinal inflammation, outperforming either component alone. Administration of BLEPS-1 decreased the proportion of M1 macrophages in the intestine, while M2 macrophages were more abundant following L. acidophilus treatment. Together, BLEPS-1 and L. acidophilus synergistically modulated macrophage polarization toward the M2-type. Administration of BLEPS-1 and L. acidophilus together modulated gut microbiota composition and altered the gut metabolic profile, with BLEPS-1 and L. acidophilus promoting metabolism of short-chain fatty acids and aromatic amino acids, respectively. Our study identified a novel synbiotic formulation with potent immunomodulatory and metabolic activity, laying the groundwork for a promising therapeutic strategy to treat intestinal inflammatory diseases such as colitis.
Collapse
Affiliation(s)
- Chong Ma
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Xiaobin Zheng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Stephen James Renaud
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| | - Hansheng Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Yaning Xu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Yuchun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yonghua Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanjun Hong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Hao Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liang Kang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China.
| |
Collapse
|
2
|
Saedi S, Derakhshan S, Hasani A, Khoshbaten M, Poortahmasebi V, Milani PG, Sadeghi J. Recent Advances in Gut Microbiome Modulation: Effect of Probiotics, Prebiotics, Synbiotics, and Postbiotics in Inflammatory Bowel Disease Prevention and Treatment. Curr Microbiol 2024; 82:12. [PMID: 39589525 DOI: 10.1007/s00284-024-03997-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
The human gastrointestinal tract contains trillions of microbes that affect the body. Dysbiosis in the composition of gut microbiota is one of the leading causes of chronic inflammatory diseases such as inflammatory bowel disease (IBD). IBD is a global public health challenge and millions of people in the world are suffering from this disease. It is a recurring inflammatory disease that affects different parts of the human digestive system. Ulcerative colitis and Crohn's disease are the two main types of IBD with similar clinical symptoms. The increasing incidence and severity of IBD require new treatment methods. The composition of the gut microbiota can be modified using dietary supplements such as prebiotics and bacterial supplements called probiotics. Furthermore, the effects of the microbiome can be improved by using paraprobiotics (non-viable, inactivated bacteria or their components) and/or postbiotics (products of bacterial metabolism).
Collapse
Affiliation(s)
- Samira Saedi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Reasearch Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safoura Derakhshan
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Manouchehr Khoshbaten
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Payam Gonbari Milani
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadeghi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Wang P, Wang S, Wang D, Li Y, Yip RCS, Chen H. Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins-Structure, activity in wounds and their delivery systems. Int J Biol Macromol 2024; 274:133195. [PMID: 38885869 DOI: 10.1016/j.ijbiomac.2024.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Chronic wound healing is a pressing global public health concern. Abuse and drug resistance of antibiotics are the key problems in the treatment of chronic wounds at present. Postbiotics are a novel promising strategy. Previous studies have reported that postbiotics have a wide range of biological activities including antimicrobial, immunomodulatory, antioxidant and anti-inflammatory abilities. However, several aspects related to these postbiotic activities remain unexplored or poorly known. Therefore, this work aims to outline general aspects and emerging trends in the use of postbiotics for wound healing, such as the production, characterization, biological activities and delivery strategies of postbiotics. In this review, a comprehensive overview of the physiological activities and structures of postbiotic biomolecules that contribute to wound healing is provided, such as peptidoglycan, lipoteichoic acid, bacteriocins, exopolysaccharides, surface layer proteins, pili proteins, and secretory proteins (p40 and p75 proteins). Considering the presence of readily degradable components in postbiotics, potential natural polymer delivery materials and delivery systems are emphasized, followed by the potential applications and commercialization prospects of postbiotics. These findings suggest that the treatment of chronic wounds with postbiotic ingredients will help provide new insights into wound healing and better guidance for the development of postbiotic products.
Collapse
Affiliation(s)
- Pu Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Shuxin Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Donghui Wang
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| | - Yuanyuan Li
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Stocking Hall, 411 Tower Road, Ithaca, NY 14853, USA.
| | - Ryan Chak Sang Yip
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, ON M5S 3G5, Canada.
| | - Hao Chen
- Marine College, Shandong University, No. 180 Wen Hua West Road, Gao Strict, Weihai 264209, China.
| |
Collapse
|
4
|
Subudhi RN, Poonia N, Singh D, Arora V. Natural approaches for the management of ulcerative colitis: evidence of preclinical and clinical investigations. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:42. [PMID: 39078427 PMCID: PMC11289194 DOI: 10.1007/s13659-024-00463-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/07/2024] [Indexed: 07/31/2024]
Abstract
Ulcerative colitis (UC) is a recurring autoimmune disorder characterized by persistent inflammation in the mucosal lining of the lower part of the large intestine. Conventional treatment options such as salicylates, corticosteroids, and immunosuppressants often come with severe side effects, limited bioavailability, and the development of drug resistance, which hampers their therapeutic effectiveness. Therefore, it is imperative to explore natural strategies as safe and alternative treatments for UC. Currently, around 40% of UC patients find relief through natural constituents, which can help reduce toxic side effects and maintain clinical remission. This review aims to provide a summary of both preclinical and clinical evidence supporting the efficacy of various natural substances in the prophylaxis of UC. These natural options include plant extracts, essential oils, nutraceuticals, and phytochemicals. Furthermore, we will delve into the potential mechanisms that underlie the protective and curative actions of these novel herbal agents. In summary, this review will explore the effectiveness of natural remedies for UC, shedding light on their preclinical and clinical findings and the mechanisms behind their therapeutic actions. These alternatives offer hope for improved treatment outcomes and reduced side effects for individuals suffering from this challenging autoimmune condition.
Collapse
Affiliation(s)
- Rudra Narayan Subudhi
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Vimal Arora
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
5
|
Liu C, Qi X, Li D, Zhao L, Li Q, Mao K, Shen G, Ma Y, Wang R. Limosilactobacillus fermentum HF06-derived paraprobiotic and postbiotic alleviate intestinal barrier damage and gut microbiota disruption in mice with ulcerative colitis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1702-1712. [PMID: 37851615 DOI: 10.1002/jsfa.13057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Paraprobiotics and postbiotics have shown potential in the treatment of ulcerative colitis (UC). However, their in vivo application is still in its infancy and their mechanisms of action are not well understood. RESULTS Here, we investigated the mitigation effects of Limosilactobacillus fermentum HF06-derived paraprobiotic (6-PA) and postbiotic (6-PS) on dextran sulfate sodium induced UC and the potential mechanisms. Results indicated that the administration of 6-PA and 6-PS resulted in the inhibition of weight loss and colon shortening in mice with UC. Furthermore, they led to a significant reduction in both fecal moisture content and the levels of proinflammatory cytokines and oxidative stress in the intestine of the mice. 6-PA and 6-PS treatment strengthened the intestinal mucosal barrier by dramatically upregulating the levels of zonula occludens-1 and occludin proteins. In addition, 6-PA and 6-PS restored intestinal dysbiosis by regulating abundances of certain bacteria, such as Bifidobacterium, Faecalibaculum, Muribaculaceae, Corynebacterium, Escherichia-Shigella and Clostridium_sensu_stricto_1, and regulated the level of short-chain fatty acids. CONCLUSION These findings illustrated for the first time that L. fermentum HF06-derived paraprobiotic and postbiotic enhanced the intestinal barrier function, and restored gut microbiota alterations. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhong Liu
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xiaofen Qi
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Dan Li
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Le Zhao
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Qiming Li
- Dairy Nutrition and Function, Key Laboratory of Sichuan Province, New Hope Dairy Company Limited, Chengdu, China
| | - Kaidong Mao
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Guiqi Shen
- Jiangsu HOWYOU Biotechnology Co. Ltd, Qidong, China
| | - Ying Ma
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Rongchun Wang
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
6
|
Tian X, Cao H, Yan J, Li C, Li F, Li Y, Huang F, Bao C, Cao Y, Rao Z. Effect of dietary supplementation with recombinant human lysozyme on growth performance, antioxidative characteristics, and intestinal health in broiler chickens. J Anim Sci 2024; 102:skae121. [PMID: 38745481 PMCID: PMC11161903 DOI: 10.1093/jas/skae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Lysozyme is often used as a feed additive to act as an antibacterial protein that boosts the immune system of livestock and poultry while protecting against pathogens. To investigate the effects of recombinant human lysozyme (rhLYZ) from Pichia pastoris and chlortetracycline on broiler chicken's production performance, antioxidant characteristics, and intestinal microbiota, a total of 200, 1-d-old male Arbor Acres broiler chickens (46.53 ± 0.42 g) were selected for a 42-d experiment. Dietary treatments included a basal diet of corn-soybean meal supplemented with either 0 mg/kg (CON), 50 mg/kg aureomycin (ANT), 20 mg/kg rhLYZ (LOW), 60 mg/kg rhLYZ (MEDIUM), or 180 mg/kg rhLYZ (HIGH). Compared with CON, MEDIUM diet increased (P < 0.05) average daily gain (67.40 g) of broilers from day 22 to 42. In the early (1.29) and overall phases (1.69), MEDIUM led to a reduction (P < 0.05) in the feed conversion ratio of broiler chickens. Furthermore, in comparison to the CON and ANT, MEDIUM exhibited reduced (P < 0.05) levels of INF-γ and tumor necrosis factor-α in the serum. In the cecum, the abundance of Monoglobus and Family_XIII_AD3011_group was lower (P < 0.05) in the MEDIUM treatment compared to CON. Overall, supplementation of 60 mg/kg of rhLYZ improved growth performance, nutrient utilization efficiency, and serum immune function, while also influencing the composition of intestinal microbiota. This suggests lysozyme's potential to replace antibiotic additives in feed.
Collapse
Affiliation(s)
- Xuefeng Tian
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Heng Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Juntong Yan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chunyue Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feiyu Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunke Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fei Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chengling Bao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yunhe Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhenghua Rao
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
7
|
Shen X, Xie A, Li Z, Jiang C, Wu J, Li M, Yue X. Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review. Foods 2024; 13:151. [PMID: 38201179 PMCID: PMC10778471 DOI: 10.3390/foods13010151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Chengxi Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Jiaqi Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; (X.S.); (Z.L.); (C.J.); (J.W.)
| | - Xiqing Yue
- Shenyang Key Laboratory of Animal Product Processing, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Zhong Y, Wang T, Wang X, Lü X. The Protective Effect of Heat-Inactivated Companilactobacillus crustorum on Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Nutrients 2023; 15:2746. [PMID: 37375650 PMCID: PMC10305042 DOI: 10.3390/nu15122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Heat-inactivated microorganisms are a typical class of postbiotics with promising potential health effects, as they contain various physiologically active components. Dietary supplementation with Companilactobacillus crustorum MN047 (CC) has been shown to have the potential to alleviate ulcerative colitis (UC). However, it is unclear whether the UC-relieving effect of this strain is partly attributed to its bacterial composition. Therefore, the interventional effects of heat-inactivated CC (HICC) on UC mice were explored. The results showed that the administration of HICC significantly ameliorated the UC-related pathological parameters by (1) alleviating the pathologic lesions of UC (e.g., preventing the increase in disease activity index and the shortening of colon length); (2) ameliorating the colonic inflammation (e.g., inhibiting the expressions of chemokines and pro-inflammatory cytokines, such as Cxcl1, Cxcl5, Ccl7, TNF-α, IL-1β, IL-6, and MCP-1; (3) attenuating the oxidative damage (e.g., suppressing the increase in myeloperoxidase and malondialdehyde); (4) mitigating the damage of gut barrier (e.g., promoting colonic occludin, ZO-1, and claudin levels); and (5) modulating gut microbiota structure (e.g., increasing the relative abundance of potential probiotics, such as Akkermansia and Lactobacillus). In conclusion, our study suggested that HICC can be effective in preventing UC and has the potential as a dietary supplement to intervene in UC.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Tao Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Yangling, Xianyang 712100, China; (Y.Z.); (T.W.); (X.W.)
| |
Collapse
|
9
|
Tarapatzi G, Filidou E, Kandilogiannakis L, Spathakis M, Gaitanidou M, Arvanitidis K, Drygiannakis I, Valatas V, Kotzampassi K, Manolopoulos VG, Kolios G, Vradelis S. The Probiotic Strains Bifidοbacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii Regulate Wound Healing and Chemokine Responses in Human Intestinal Subepithelial Myofibroblasts. Pharmaceuticals (Basel) 2022; 15:1293. [PMID: 36297405 PMCID: PMC9611312 DOI: 10.3390/ph15101293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bifidobacterium lactis, Lactobacillus acidophilus, Lactiplantibacillus plantarum and Saccharomyces boulardii are common probiotic supplements. Colonic subepithelial myofibroblasts (cSEMFs) are actively involved in mucosal wound healing and inflammation. cSEMFs, isolated from healthy individuals, were stimulated with 102 or 104 cfu/mL of these probiotic strains alone and in combination, and their effect on chemokine and wound healing factor expression was assessed by qRT-PCR, ELISA and Sircol Assay, and on cSEMFs migration, by Wound Healing Assay. These strains remained viable and altered cSEMFs’ inflammatory and wound healing behavior, depending on the strain and concentration. cSEMFs treated with a combination of the four probiotics had a moderate, but statistically significant, increase in the mRNA and/or protein expression of chemokines CXCL1, CXCL2, CXCL4, CXCL8, CXCL10, CCL2 and CCL5, and healing factors, collagen type I and III, fibronectin and tissue factor. In contrast, when each strain was administered alone, different effects were observed, with greater increase or decrease in chemokine and healing factor expression, which was balanced by the mixture. Overall, this study highlights that the use of multiple probiotic strains can potentially alert the gut mucosal immune system and promote wound healing, having a better effect on mucosal immunity than the use of single probiotics.
Collapse
Affiliation(s)
- Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Maria Gaitanidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Ioannis Drygiannakis
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Valatas
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Gastroenterology and Hepatology Research Laboratory, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|