1
|
Nawaz S, Shoaib M, Huang C, Jiang W, Bao Y, Wu X, Nie L, Fan W, Wang Z, Chen Z, Yin H, Han X. Molecular Characterization, Antibiotic Resistance, and Biofilm Formation of Escherichia coli Isolated from Commercial Broilers from Four Chinese Provinces. Microorganisms 2025; 13:1017. [PMID: 40431190 PMCID: PMC12113953 DOI: 10.3390/microorganisms13051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Escherichia coli (E. coli) represents a significant etiological agent of colibacillosis in poultry, resulting in considerable economic losses for the global poultry sector. The present study aimed to determine molecular characterization, antibiotic resistance, and biofilm formation of E. coli strains isolated from diseased broilers from four provinces of China. A total of 200 tissue samples were collected from the intestine, liver, crop, heart, and spleen and processed for microbiological examination. Molecular detection of E. coli strains, virulence genes, and serotypes was performed using polymerase chain reaction (PCR). Antibiotic susceptibility testing and biofilm formation were assessed using disk diffusion and 96-well microtiter plate assays. The study retrieved 68% (136/200) of E. coli strains from collected samples. Most of the E. coli strains were resistant to enrofloxacin (56%), followed by cefepime (54%), amoxicillin/clavulanate (52%), streptomycin (50%), ampicillin (48%), clindamycin (47%), kanamycin (41%), polymyxin B (37%), tetracycline (35%), sulfamethoxazole/trimethoprim (33%), ceftazidime (31%), meropenem (4.7%), and florfenicol (2.9%). Similarly, the E. coli strains tested positive for at least one virulence gene and specific serotypes. Among these, O145 was the most prevalent serotype, identified in 22 isolates (16.2%), followed by O8 (12.5%), O102 (11.8%), and O9 (11.0%). The tsh gene (10.2%) was the most prevalent virulence gene. This study found that 47.1% of E. coli strains were biofilm-producing, with 62.5% exhibiting weak biofilm production, 29.7% mild biofilm production, and 7.8% strong biofilm production. Similarly, 24.2% of the E. coli strains were avian pathogenic E. coli strains due to the presence of five or more virulence genes, specifically tsh, ompA, fimC, iss, fyuA, and astA, in a single strain by multiplex PCR. The present study recommends continuous surveillance and effective control measures to reduce the burden of avian pathogenic E. coli-related infections in poultry.
Collapse
Affiliation(s)
- Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Muhammad Shoaib
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Cuiqin Huang
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China; (C.H.); (Y.B.)
| | - Wei Jiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Yinli Bao
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China; (C.H.); (Y.B.)
| | - Xiuyi Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Lianhua Nie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Wenyan Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Zhaoguo Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China; (C.H.); (Y.B.)
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (S.N.); (W.J.); (X.W.); (L.N.); (W.F.); (Z.W.); (Z.C.)
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, Fujian Province, College of Life Science, Longyan University, Longyan 364012, China; (C.H.); (Y.B.)
| |
Collapse
|
2
|
Wu J, Yang B, Jiang W, Yin H, Han X, Zhang L. D-amino acid enhanced the sensitivity of avian pathogenic Escherichia coli to tetracycline and amikacin. Front Vet Sci 2025; 12:1553937. [PMID: 40177665 PMCID: PMC11962725 DOI: 10.3389/fvets.2025.1553937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) biofilm formation has led to increased antibiotic resistance, presenting a significant challenge for the prevention and control of the disease. While certain D-amino acids (D-AAs) have been shown to inhibit the formation of various bacterial biofilms, role in APEC biofilms remains unexplored. This study investigates the effects of 19 different D-AAs on clinically isolated APEC biofilm. The results showed that D-tyrosine (D-Tyr), D-leucine (D-Leu), D-tryptophan (D-Trp), and D-methionine (D-Met) can reduce APEC formation by over 50% at a concentration of 5 mM. Subsequently, four D-AAs were selected for combination treatment with antibiotics (ceftazidime, amikacin, tetracycline, and ciprofloxacin). The findings reveal that D-Tyr enhance the sensitivity of APEC to amikacin and tetracycline, while D-Met increases the sensitivity of APEC to amikacin. The mechanisms by which D-Tyr and D-Met enhance antibiotic sensitivity were further investigated. Following treatment with D-Tyr and D-Met, scanning electron microscope (SEM) observations indicated a reduction in the number of bacteria on the surface of the cell crawl, but the shape and structure of the cells remain unchanged. Notably, the surface hydrophobicity was decreased by 33.86% and 56%, and the output of extracellular polysaccharide was decreased by 46.63% and 57.69%, respectively. Additionally, genes related to biofilm synthesis (pgaA, pgaC, and luxS) were down-regulated (p < 0.05), whereas porin protein-encoding genes (ompC and ompF) were up-regulated (p < 0.05), which inhibited formation of biofilm and enhanced the sensitivity of APEC to amikacin and tetracycline and by decreasing the hydrophobicity and extracellular polysaccharide content on cell surface and up-regulated porin genes and down-regulating the genes related to biofilm formation. According to the different D-AAs involved in this study, it can provide new ideas for the treatment of APEC.
Collapse
Affiliation(s)
- Jing Wu
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alar, China
| | - Bin Yang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alar, China
| | - Wei Jiang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Longyan University, Longyan, Fujian, China
| | - Lili Zhang
- Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Xinjiang Production and Construction Corps, College of Life Science, Tarim University, Alar, China
| |
Collapse
|
3
|
Elafify M, Liao X, Feng J, Ahn J, Ding T. Biofilm formation in food industries: Challenges and control strategies for food safety. Food Res Int 2024; 190:114650. [PMID: 38945629 DOI: 10.1016/j.foodres.2024.114650] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.
Collapse
Affiliation(s)
- Mahmoud Elafify
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xinyu Liao
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Jinsong Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Juhee Ahn
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| | - Tian Ding
- Future Food Laboratory, Innovative Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
4
|
Chevez ZR, Dunn LL, da Silva ALBR, Rodrigues C. Prevalence of STEC virulence markers and Salmonella as a function of abiotic factors in agricultural water in the southeastern United States. Front Microbiol 2024; 15:1320168. [PMID: 38832116 PMCID: PMC11144861 DOI: 10.3389/fmicb.2024.1320168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Fresh produce can be contaminated by enteric pathogens throughout crop production, including through contact with contaminated agricultural water. The most common outbreaks and recalls in fresh produce are due to contamination by Salmonella enterica and Shiga toxin-producing E. coli (STEC). Thus, the objectives of this study were to investigate the prevalence of markers for STEC (wzy, hly, fliC, eaeA, rfbE, stx-I, stx-II) and Salmonella (invA) in surface water sources (n = 8) from produce farms in Southwest Georgia and to determine correlations among the prevalence of virulence markers for STEC, water nutrient profile, and environmental factors. Water samples (500 mL) from eight irrigation ponds were collected from February to December 2021 (n = 88). Polymerase chain reaction (PCR) was used to screen for Salmonella and STEC genes, and Salmonella samples were confirmed by culture-based methods. Positive samples for Salmonella were further serotyped. Particularly, Salmonella was detected in 6/88 (6.81%) water samples from all ponds, and the following 4 serotypes were detected: Saintpaul 3/6 (50%), Montevideo 1/6 (16.66%), Mississippi 1/6 (16.66%), and Bareilly 1/6 (16.66%). Salmonella isolates were only found in the summer months (May-Aug.). The most prevalent STEC genes were hly 77/88 (87.50%) and stx-I 75/88 (85.22%), followed by fliC 54/88 (61.63%), stx-II 41/88 (46.59%), rfbE 31/88 (35.22%), and eaeA 28/88 (31.81%). The wzy gene was not detected in any of the samples. Based on a logistic regression analysis, the odds of codetection for STEC virulence markers (stx-I, stx-II, and eaeA) were negatively correlated with calcium and relative humidity (p < 0.05). A conditional forest analysis was performed to assess predictive performance (AUC = 0.921), and the top predictors included humidity, nitrate, calcium, and solar radiation. Overall, information from this research adds to a growing body of knowledge regarding the risk that surface water sources pose to produce grown in subtropical environmental conditions and emphasizes the importance of understanding the use of abiotic factors as a holistic approach to understanding the microbial quality of water.
Collapse
Affiliation(s)
- Zoila R. Chevez
- Department of Horticulture, Auburn University, Auburn, AL, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL, United States
| |
Collapse
|
5
|
Gado WS, Al-Gamal AG, Badawy MSEM, Labena A, Zakaria K, Kabel KI. Detectable quorum signaling molecule via PANI-metal oxides nanocomposites sensors. Sci Rep 2024; 14:10041. [PMID: 38693218 PMCID: PMC11063039 DOI: 10.1038/s41598-024-60093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The detection of N-hexanoyl-l-homoserine lactone (C6-HSL), a crucial signal in Gram-negative bacterial communication, is essential for addressing microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB) in oil and gas industries. Metal oxides (MOx) intercalated into conducting polymers (CPs) offer a promising sensing approach due to their effective detection of biological molecules such as C6-HSL. In this study, we synthesized and characterized two MOx/polyaniline-dodecyl benzene sulfonic acid (PANI-DBSA) nanocomposites, namely ZnO/PANI-DBSA and Fe2O3/PANI-DBSA. These nanocomposites were applied with 1% by-weight carbon paste over a carbon working electrode (WE) for qualitative and quantitative detection of C6-HSL through electrochemical analysis. The electrochemical impedance spectroscopy (EIS) confirmed the composites' capability to monitor C6-HSL produced by SRB-biofilm, with detection limits of 624 ppm for ZnO/PANI-DBSA and 441 ppm for Fe2O3/PANI-DBSA. Furthermore, calorimetric measurements validated the presence of SRB-biofilm, supporting the EIS analysis. The utilization of these MOx/CP nanocomposites offers a practical approach for detecting C6-HSL and monitoring SRB-biofilm formation, aiding in MIC management in oil and gas wells. The ZnO/PANI-DBSA-based sensor exhibited higher sensitivity towards C6-HSL compared to Fe2O3/PANI-DBSA, indicating its potential for enhanced detection capabilities in this context. Stability tests revealed ZnO/PANI-DBSA's superior stability over Fe2O3/PANI-DBSA, with both sensors retaining approximately 85-90% of their initial current after 1 month, demonstrating remarkable reproducibility and durability.
Collapse
Affiliation(s)
- Walaa S Gado
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt.
| | | | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - A Labena
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khaled Zakaria
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khalid I Kabel
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Borges KA, Furian TQ, de Brito BG, de Brito KCT, da Rocha DT, Salle CTP, Moraes HLDS, do Nascimento VP. Characterization of avian pathogenic Escherichia coli isolates based on biofilm formation, ESBL production, virulence-associated genes, and phylogenetic groups. Braz J Microbiol 2023; 54:2413-2425. [PMID: 37344657 PMCID: PMC10485228 DOI: 10.1007/s42770-023-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Escherichia coli is a part of both animal and human commensal microbiota. Avian pathogenic E. coli (APEC) is responsible for colibacillosis in poultry, an economically important disease. However, the close similarities among APEC isolates make it difficult to differentiate between pathogenic and commensal bacteria. The aim of this study was to determine phenotypic and molecular characteristics of APEC isolates and to compare them with their in vivo pathogenicity indices. A total of 198 APEC isolates were evaluated for their biofilm-producing ability and extended-spectrum β-lactamase (ESBL) production phenotypes. In addition, 36 virulence-associated genes were detected, and the isolates were classified into seven phylogenetic groups using polymerase chain reaction. The sources of the isolates were not associated with biofilms, ESBL, genes, or phylogroups. Biofilm and ESBL production were not associated with pathogenicity. Group B2 had the highest pathogenicity index. Groups B2 and E were positively associated with high-pathogenicity isolates and negatively associated with low-pathogenicity isolates. In contrast, groups A and C were positively associated with apathogenic isolates, and group B1 was positively associated with low-pathogenicity isolates. Some virulence-associated genes showed positive or negative associations with specific phylogenetic groups. None of the individual techniques produced results that correlated with the in vivo pathogenicity index. However, the combination of two techniques, namely, detection of virulence-associated genes and the phylogenetic groups, could help the classification of the isolates as pathogenic or commensal.
Collapse
Affiliation(s)
- Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Benito Guimarães de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | - Kelly Cristina Tagliari de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | | | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| |
Collapse
|
7
|
Tetz G, Tetz V. Overcoming Antibiotic Resistance with Novel Paradigms of Antibiotic Selection. Microorganisms 2022; 10:2383. [PMID: 36557636 PMCID: PMC9781420 DOI: 10.3390/microorganisms10122383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Conventional antimicrobial susceptibility tests, including phenotypic and genotypic methods, are insufficiently accurate and frequently fail to identify effective antibiotics. These methods predominantly select therapies based on the antibiotic response of only the lead bacterial pathogen within pure bacterial culture. However, this neglects the fact that, in the majority of human infections, the lead bacterial pathogens are present as a part of multispecies communities that modulate the response of these lead pathogens to antibiotics and that multiple pathogens can contribute to the infection simultaneously. This discrepancy is a major cause of the failure of antimicrobial susceptibility tests to detect antibiotics that are effective in vivo. This review article provides a comprehensive overview of the factors that are missed by conventional antimicrobial susceptibility tests and it explains how accounting for these methods can aid the development of novel diagnostic approaches.
Collapse
Affiliation(s)
- George Tetz
- Human Microbiology Institute, New York, NY 100141, USA
| | | |
Collapse
|