1
|
Shen W, Wu Y, Li F, Zhang S, Jin H, Gao B. The impact of microplastic and sulfanilamide co-exposure on soil microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117968. [PMID: 40022827 DOI: 10.1016/j.ecoenv.2025.117968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Microplastics, as emerging contaminants, can absorb antibiotics, and their coexistence in soil ecosystems poses serious threats to soil health. While previous studies have primarily focused on the individual effects of microplastics or antibiotics, the interactions between these pollutants in soil environments remain poorly understood. In this study, we investigated the combined effects of sulfonamide antibiotics and microplastics-both non-degradable low-density polyethylene and degradable polylactic acid-on soil microbiota and physicochemical properties. Our findings revealed significant changes in soil properties under co-exposure conditions. Dissolved organic carbon emerged as the most influential factor affecting bacterial and fungal diversity. Co-exposure altered the composition of bacterial and fungal communities at both the phylum and genus levels, with soil bacteria showing stronger responses than fungi. Importantly, co-exposure exacerbated the ecological risks associated with individual contaminants. We also observed differences in how non-degradable and degradable microplastics impacted the stability and complexity of microbial community networks. Notably, co-exposure to degradable microplastics and sulfonamides led to a significant increase in the expression of antibiotic resistance genes (sul1 and int1). These findings enhance our understanding of the combined effects of microplastics and antibiotics on soil ecosystems and underscore the need for further research into their ecological risks.
Collapse
Affiliation(s)
- Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, 200240, China
| | - Yang Wu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, and School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Futao Li
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shirui Zhang
- Changwang School of Honors, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hongmei Jin
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
2
|
Fan L, Chen S, Guo Z, Hu R, Yao L. Soil pH enhancement and alterations in nutrient and Bacterial Community profiles following Pleioblastus amarus expansion in tea plantations. BMC PLANT BIOLOGY 2024; 24:837. [PMID: 39242495 PMCID: PMC11378374 DOI: 10.1186/s12870-024-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND The expansion of bamboo forests increases environmental heterogeneity in tea plantation ecosystems, affecting soil properties and microbial communities. Understanding these impacts is essential for developing sustainable bamboo management and maintaining ecological balance in tea plantations. METHODS We studied the effect of the continuous expansion of Pleioblastus amarus into tea plantations, by establishing five plot types: pure P. amarus forest area (BF), P. amarus forest interface area (BA), mixed forest interface area (MA), mixed forest center area (TB), and pure tea plantation area (TF). We conducted a comprehensive analysis of soil chemical properties and utilized Illumina sequencing to profile microbial community composition and diversity, emphasizing their responses to bamboo expansion. RESULTS (1) Bamboo expansion significantly raised soil pH and enhanced levels of organic matter, nitrogen, and phosphorus, particularly noticeable in BA and MA sites. In the TB sites, improvements in soil nutrients were statistically indistinguishable from those in pure tea plantation areas. (2) Continuous bamboo expansion led to significant changes in soil bacterial diversity, especially noticeable between BA and TF sites, while fungal diversity was unaffected. (3) Bamboo expansion substantially altered the composition of less abundant bacterial and fungal communities, which proved more sensitive to changes in soil chemical properties. CONCLUSION The expansion of bamboo forests causes significant alterations in soil pH and nutrient characteristics, impacting the diversity and composition of soil bacteria in tea plantations. However, as expansion progresses, its long-term beneficial impact on soil quality in tea plantations appears limited.
Collapse
Affiliation(s)
- Lili Fan
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Shuanglin Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ziwu Guo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, China
| | - Ruicai Hu
- Longyou County Forestry Technology Extension Station, Quzhou, 324400, China
| | - Liangjin Yao
- Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| |
Collapse
|
3
|
Zabihollahi S, Rahmani A, Aghadadashi V, Khazaei M, Samadi MT, Leili M, Afshar S, Safari Sinegani AA, Karami P, Zafari D. Investigation of the effects of different substrates on the promotion of the soil microbial consortium, encompassing bacteria and fungi, in the bioremediation of decabromodiphenyl ether (BDE-209). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16359-16374. [PMID: 38316742 DOI: 10.1007/s11356-024-32152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
Decabromodiphenyl ether (BDE-209) is recognized as an emerging and hazardous pollutant in numerous ecosystems. Despite this, only a few studies have concurrently investigated the biodegradation of BDE-209 by a microbial consortium comprising both bacteria and fungi. Consequently, the interactions between bacterial and fungal populations and their mutual effects on BDE-209 degradation remain unclear. Our main objective was to concurrently assess the changes and activity of bacterial and fungal communities during the biodegradation of BDE-209 in a real soil matrix. In the present study, various organic substrates were employed to promote soil biomass for the biodegradation of BDE-209. Soil respiration and molecular analysis were utilized to monitor biological activity and biomass community structure, respectively. The findings revealed that the use of wheat straw in the soil matrix resulted in the highest soil respiration and microbial activity among the treatments. This approach obviously provided suitable habitats for the soil microflora, which led to a significant increase in the biodegradability of BDE-209 (49%). Biomass survival efforts and the metabolic pathway of lignin degradation through co-metabolism contributed to the biodegradation of BDE-209. Microbial community analysis identified Proteobacteria (Alphaproteobacteria-Betaproteobacteria), Firmicutes, Bacteroides (bacterial phyla), as well as Ascomycota and Basidiomycota (fungal phyla) as the key microorganisms in the biological community involved in the biodegradation of BDE-209. This study demonstrated that applying wheat straw can improve both the biological activity and the biodegradation of BDE-209 in the soil of polluted sites.
Collapse
Affiliation(s)
- Solmaz Zabihollahi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Department of Environmental Health Engineering,, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Rahmani
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Vahid Aghadadashi
- Iranian National Institute for Oceanography and Atmospheric Sciences (INIOAS), Tehran, Iran
| | - Mohammad Khazaei
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Samadi
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, cancer research center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Pezhman Karami
- Department of Microbiology, Hamadan University of Medical Sciences, Hamadan, Iran
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Dostmorad Zafari
- Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
4
|
Bernal P. How are microbes helping end hunger? Microb Biotechnol 2024; 17:e14432. [PMID: 38465536 PMCID: PMC10926054 DOI: 10.1111/1751-7915.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
This article explores the potential of microbiology to positively impact all aspects of the food supply chain, improving the quantity, quality, safety, and nutritional value of food products by providing innovative ways of growing, processing, and preserving food and thus contributing to Zero Hunger, one of the Sustainable Development Goals (SDGs) of the United Nations.
Collapse
Affiliation(s)
- Patricia Bernal
- Departamento de Microbiología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
| |
Collapse
|
5
|
Wang J, Chen Y, Du W, Yang S, He Y, Zhao X, Sun W, Chen Q. Insights into the responses of fungal taxonomy and function to different metal(loid) contamination levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162931. [PMID: 36934934 DOI: 10.1016/j.scitotenv.2023.162931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Fungi possess prominent tolerance and detoxification capacities in highly metal(loid)-polluted systems, yet little is known about their responding behaviors under different contamination conditions. Here, we systematically investigated the structure and function profiles of fungal communities in an abandoned reservoir mainly contaminated by multiple metal(loid)s such as Al, Be, Cd, Co, Cr, and Cu. This abandoned reservoir consisted of three distinct zones, i.e., Zone I with the shortest deprecation time and the highest metal(loid) contamination; Zone II with the medium deprecation time and medium metal(loid) contamination; and Zone III with the longest abandonment time and the lowest metal(loid)contamination. The lowest pH and the highest contents of OM, TN, and TP were also observed for the high-contamination Zone I, followed by the moderate-contamination Zone II and the low-contamination Zone III. Fungal biodiversity was found to be robust and dominated by many endurable genera in Zone I, and notable cooperative relationships among fungal species facilitated their viability and prosperity under severe metal(loid) contaminations. Differently, the lowest biodiversity and fragile co-occurrence network were identified in Zone II. As metal(loid) contaminations reduced from Zone I to Zone III, dominant fungal functions gradually changed from undefined saprotroph guild to parasites or pathogens of plant-animal (i.e. animal pathogen, endophyte, and plant pathogen). Moreover, metal(loid)s combined with physicochemical properties jointly mediated the fungal taxonomic and functional responses to different metal(loid) contamination levels. Overall, this study not only broadens the understanding of taxonomic and functional repertoires of fungal communities under different metal(loid) contaminated conditions, but also highlights the crucial contributions of specific fungi to bioremediation and management in varying metal(loid)-polluted environments.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Ying Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Yifan He
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|