1
|
Medvedev RY, Afolabi SO, Turner DGP, Glukhov AV. Mechanisms of stretch-induced electro-anatomical remodeling and atrial arrhythmogenesis. J Mol Cell Cardiol 2024; 193:11-24. [PMID: 38797242 PMCID: PMC11260238 DOI: 10.1016/j.yjmcc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Atrial fibrillation (AF) is the most common cardiac rhythm disorder, often occurring in the setting of atrial distension and elevated myocardialstretch. While various mechano-electrochemical signal transduction pathways have been linked to AF development and progression, the underlying molecular mechanisms remain poorly understood, hampering AF therapies. In this review, we describe different aspects of stretch-induced electro-anatomical remodeling as seen in animal models and in patients with AF. Specifically, we focus on cellular and molecular mechanisms that are responsible for mechano-electrochemical signal transduction and the development of ectopic beats triggering AF from pulmonary veins, the most common source of paroxysmal AF. Furthermore, we describe structural changes caused by stretch occurring before and shortly after the onset of AF as well as during AF progression, contributing to longstanding forms of AF. We also propose mechanical stretch as a new dimension to the concept "AF begets AF", in addition to underlying diseases. Finally, we discuss the mechanisms of these electro-anatomical alterations in a search for potential therapeutic strategies and the development of novel antiarrhythmic drugs targeted at the components of mechano-electrochemical signal transduction not only in cardiac myocytes, but also in cardiac non-myocyte cells.
Collapse
Affiliation(s)
- Roman Y Medvedev
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Saheed O Afolabi
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Pharmacology and Therapeutics, University of Ilorin, Ilorin, Nigeria
| | - Daniel G P Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
2
|
Automatic Activity Arising in Cardiac Muscle Sleeves of the Pulmonary Vein. Biomolecules 2021; 12:biom12010023. [PMID: 35053171 PMCID: PMC8773798 DOI: 10.3390/biom12010023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ectopic activity in the pulmonary vein cardiac muscle sleeves can both induce and maintain human atrial fibrillation. A central issue in any study of the pulmonary veins is their difference from the left atrial cardiac muscle. Here, we attempt to summarize the physiological phenomena underlying the occurrence of ectopic electrical activity in animal pulmonary veins. We emphasize that the activation of multiple signaling pathways influencing not only myocyte electrophysiology but also the means of excitation–contraction coupling may be required for the initiation of triggered or automatic activity. We also gather information regarding not only the large-scale structure of cardiac muscle sleeves but also recent studies suggesting that cellular heterogeneity may contribute to the generation of arrythmogenic phenomena and to the distinction between pulmonary vein and left atrial heart muscle.
Collapse
|
3
|
Nakashima T, Nagase M, Shibahara T, Ono D, Yamada T, Tanabe G, Suzuki K, Yamaura M, Ido T, Takahashi S, Aoyama T. Another mechanism of atrial fibrillation initiation? J Cardiovasc Electrophysiol 2021; 32:1979-1981. [PMID: 34031934 DOI: 10.1111/jce.15110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Takashi Nakashima
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | - Masaru Nagase
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Taro Shibahara
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Daiju Ono
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Takehiro Yamada
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Gen Tanabe
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Keita Suzuki
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Makoto Yamaura
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takahisa Ido
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | | | - Takuma Aoyama
- Department of Cardiology, Kizawa Memorial Hospital, Minokamo, Japan.,Department of Molecular Pathophysiology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan.,Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Kuzmin VS, Ivanova AD, Potekhina VM, Samoilova DV, Ushenin KS, Shvetsova AA, Petrov AM. The susceptibility of the rat pulmonary and caval vein myocardium to the catecholamine-induced ectopy changes oppositely in postnatal development. J Physiol 2021; 599:2803-2821. [PMID: 33823063 DOI: 10.1113/jp280485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis. The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation. Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins. Predisposition of PV cardiac tissue to proarrhythmycity develops during ontogenesis in time correlation with the establishment of sympathetic innervation of the tissue. The electrophysiological properties of caval vein cardiac tissue shift from a pacemaker-like phenotype to atrial phenotype in accompaniment with sympathetic nerve growth and adrenergic receptor expression changes. ABSTRACT The thoracic vein myocardium is considered as a main source for atrial fibrillation initiation due to its high susceptibility to ectopic activity. The mechanism by which and when pulmonary (PV) and superior vena cava (SVC) became proarrhythmic during postnatal ontogenesis is still unknown. In this study, we traced postnatal changes of electrophysiology in a correlation with the sympathetic innervation and adrenergic receptor distribution to reveal developmental differences in proarrhythmicity occurrence in PV and SVC myocardium. A standard microelectrode technique was used to assess the changes in ability to maintain resting membrane potential (RMP), generate spontaneous action potentials (SAP) and adrenergically induced ectopy in multicellular SVC and PV preparations of rats of different postnatal ages. Immunofluorescence imaging was used to trace postnatal changes in sympathetic innervation, β1- and α1A-adrenergic receptor (AR) distribution. We revealed that the ability to generate SAP and susceptibility to adrenergic stimulation changes during postnatal ontogenesis in an opposite manner in PV and SVC myocardium. While SAP occurrence decreases with age in SVC myocardium, it significantly increases in PV cardiac tissue. PV myocardium starts to demonstrate RMP instability and proarrhythmic activity from the 14th day of postnatal life which correlates with the appearance of the sympathetic innervation of the thoracic veins. In addition, postnatal attenuation of SVC myocardium automaticity occurs concomitantly with sympathetic innervation establishment and increase in β1-ARs, but not α1A-AR levels. Our results support the contention that SVC and PV myocardium electrophysiology change during postnatal development, resulting in higher PV proarrhythmicity in adults.
Collapse
Affiliation(s)
- Vlad S Kuzmin
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia.,Pirogov Russian National Research Medical University (RNRMU), Ostrovitjanova 1, Moscow, 117997, Russia.,Laboratory of Cardiac Electrophysiology, National Medical Research Cardiological Complex (NMRCC), Institute of Experimental Cardiology, Moscow, Russia
| | - Alexandra D Ivanova
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Viktoria M Potekhina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Daria V Samoilova
- N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | | | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, Leninskie gory 1, building 12, Moscow, 119991, Russia
| | - Alexey M Petrov
- Institute of Neuroscience, Kazan State Medial University, Butlerova st. 49, Kazan, 420012, Russia.,Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center 'Kazan Scientific Center of RAS', P. O. Box 30, Lobachevsky Str., 2/31, Kazan, 420111, Russia
| |
Collapse
|
5
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
6
|
Egorov YV, Rosenshtraukh LV, Glukhov AV. Arrhythmogenic Interaction Between Sympathetic Tone and Mechanical Stretch in Rat Pulmonary Vein Myocardium. Front Physiol 2020; 11:237. [PMID: 32273849 PMCID: PMC7113560 DOI: 10.3389/fphys.2020.00237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Rapid firing from pulmonary veins (PVs) frequently initiates atrial fibrillation, which is a common comorbidity associated with hypertension, heart failure, and valvular disease, i.e., conditions that pathologically increase cardiomyocyte stretch. Autonomic tone plays a crucial role in PV arrhythmogenesis, while its interplay with myocardium stretch remains uncertain. Two-microelectrode technique was used to characterize electrophysiological response of Wistar rat PV to adrenaline at baseline and under mild (150 mg of applied weight that corresponds to a pulmonary venous pressure of 1 mmHg) and moderate (10 g, ∼26 mmHg) stretch. Low concentrations of adrenaline (25–100 nmol/L) depolarized the resting membrane potential selectively within distal PV (by 26 ± 2 mV at baseline, by 18 ± 1 mV at 150 mg, P < 0.001, and by 5.9 ± 1.1 mV at 10 g, P < 0.01) suppressing action potential amplitude and resulting in intra-PV conduction dissociation and rare episodes of spontaneous activity (arrhythmia index of 0.4 ± 0.2, NS vs. no activity at baseline). In contrast, 1–10 μmol/L of adrenaline recovered intra-PV propagation. While mild stretch did not affect PV electrophysiology at baseline, moderate stretch depolarized the resting potential within distal PV (-56 ± 2 mV vs. -82 ± 1 mV at baseline, P < 0.01), facilitated the triggering of rapid PV firing by adrenaline (arrhythmia index: 4.4 ± 0.2 vs. 1.3 ± 0.4 in unstretched, P < 0.001, and 1.7 ± 0.8 in mildly stretched preparations, P < 0.005, at 10 μmol/L adrenaline) and induced frequent episodes of potentially arrhythmogenic atrial “echo” extra beats. Our findings demonstrate complex interactions between the sympathetic tone and mechanical stretch in the development of arrhythmogenic activity within PVs that may impact an increased atrial fibrillation vulnerability in patients with elevated blood pressure.
Collapse
Affiliation(s)
- Yuriy V Egorov
- Laboratory of Heart Electrophysiology, Russian Cardiology Research Centre, Institute of Experimental Cardiology, Moscow, Russia
| | - Leonid V Rosenshtraukh
- Laboratory of Heart Electrophysiology, Russian Cardiology Research Centre, Institute of Experimental Cardiology, Moscow, Russia
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Bredeloux P, Findlay I, Pasqualin C, Hocini M, Bernus O, Maupoil V. Selective inhibition of electrical conduction within the pulmonary veins by α1-adrenergic receptors activation in the Rat. Sci Rep 2020; 10:5390. [PMID: 32214185 PMCID: PMC7096464 DOI: 10.1038/s41598-020-62349-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Pulmonary veins (PV) are involved in the pathophysiology of paroxysmal atrial fibrillation. In the rat, left atrium (LA) and PV cardiomyocytes have different reactions to α1-adrenergic receptor activation. In freely beating atria-PV preparations, we found that electrical field potential (EFP) originated from the sino-atrial node propagated through the LA and the PV. The α1-adrenergic receptor agonist cirazoline induced a progressive loss of EFP conduction in the PV whereas it was maintained in the LA. This could be reproduced in preparations electrically paced at 5 Hz in LA. During pacing at 10 Hz in the PV where high firing rate ectopic foci can occur, cirazoline stopped EFP conduction from the PV to the LA, which allowed the sino-atrial node to resume its pace-making function. Loss of conduction in the PV was associated with depolarization of the diastolic membrane potential of PV cardiomyocytes. Adenosine, which reversed the cirazoline-induced depolarization of the diastolic membrane potential of PV cardiomyocytes, restored full over-shooting action potentials and EFP conduction in the PV. In conclusion, selective activation of α1-adrenergic receptors results in the abolition of electrical conduction within the PV. These results highlight a potentially novel pharmacological approach to treat paroxysmal atrial fibrillation by targeting directly the PV myocardium.
Collapse
Affiliation(s)
- Pierre Bredeloux
- EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France.
| | - Ian Findlay
- EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France
| | - Côme Pasqualin
- EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France
| | - Mélèze Hocini
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France.,Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.,Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France
| | - Véronique Maupoil
- EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France
| |
Collapse
|
8
|
Potekhina VM, Averina OA, Razumov AA, Kuzmin VS, Rozenshtraukh LV. The local repolarization heterogeneity in the murine pulmonary veins myocardium contributes to the spatial distribution of the adrenergically induced ectopic foci. J Physiol Sci 2019; 69:1041-1055. [PMID: 31724110 PMCID: PMC10717041 DOI: 10.1007/s12576-019-00724-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
An atrial tachyarrhythmias is predominantly triggered by a proarrhythmic activity originate from the pulmonary veins (PV) myocardial sleeves; sympathetic or adrenergic stimulation facilitates PV proarrhythmia. In the present study the electrophysiological inhomogeneity, spatiotemporal characteristics of the adrenergically induced ectopic firing and sympathetic nerves distribution have been investigated in a murine PV myocardium to clarify mechanisms of adrenergic PV ectopy. Electrically paced murine PV demonstrate atrial-like pattern of conduction and atrial-like action potentials (AP) with longest duration in the mouth of PV. The application of norepinephrine (NE), agonists of α- and β-adrenergic receptors (ARs) or intracardiac nerves stimulation induced spontaneous AP in a form of periodical bursts or continuous firing. NE- or ARs agonists-induced SAP originated from unifocal ectopic foci with predominant localization in the region surrounding PV mouth, but not in the distal portions of a murine PV myocardium. A higher level of catecholamine content and catecholamine fiber network density was revealed in the PV myocardial sleeves relative to LA appendage. However, no significant local variation of catecholamine content and fiber density was observed in the murine PV. In conclusion, PV mouth region appear to be a most susceptible to adrenergic proarrhythmia in mice. Intrinsic spatial heterogeneity of AP duration can be considered as a factor influencing localization of the ectopic foci in PV.
Collapse
Affiliation(s)
- V M Potekhina
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234, Moscow, Russia.
| | - O A Averina
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| | - A A Razumov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
| | - V S Kuzmin
- Department of Human and Animal Physiology, Biological Faculty, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234, Moscow, Russia
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - L V Rozenshtraukh
- Institute of Experimental Cardiology, National Medicine Research Cardiological Complex, Moscow, Russia
| |
Collapse
|
9
|
Egorov YV, Lang D, Tyan L, Turner D, Lim E, Piro ZD, Hernandez JJ, Lodin R, Wang R, Schmuck EG, Raval AN, Ralphe CJ, Kamp TJ, Rosenshtraukh LV, Glukhov AV. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis. J Am Heart Assoc 2019; 8:e012748. [PMID: 31597508 PMCID: PMC6818041 DOI: 10.1161/jaha.119.012748] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Atrial fibrillation often occurs in the setting of hypertension and associated atrial dilation with pathologically increased cardiomyocyte stretch. In the setting of atrial dilation, mechanoelectric feedback has been linked to the development of ectopic beats that trigger paroxysmal atrial fibrillation mainly originating from pulmonary veins (PVs). However, the precise mechanisms remain poorly understood. Methods and Results We identify mechanosensitive, swelling‐activated chloride ion channels (ICl,swell) as a crucial component of the caveolar mechanosensitive complex in rat and human cardiomyocytes. In vitro optical mapping of rat PV, single rat PV, and human cardiomyocyte patch clamp studies showed that stretch‐induced activation of ICl,swell leads to membrane depolarization and decreased action potential amplitude, which trigger conduction discontinuities and both ectopic and reentrant activities within the PV. Reverse transcription quantitative polymerase chain reaction, immunofluorescence, and coimmunoprecipitation studies showed that ICl,swell likely consists of at least 2 components produced by mechanosensitive ClC‐3 (chloride channel‐3) and SWELL1 (also known as LRRC8A [leucine rich repeat containing protein 8A]) chloride channels, which form a macromolecular complex with caveolar scaffolding protein Cav3 (caveolin 3). Downregulation of Cav3 protein expression and disruption of caveolae structures during chronic hypertension in spontaneously hypertensive rats facilitates activation of ICl,swell and increases PV sensitivity to stretch 10‐ to 50‐fold, promoting the development of atrial fibrillation. Conclusions Our findings identify caveolae‐mediated activation of mechanosensitive ICl,swell as a critical cause of PV ectopic beats that can initiate atrial arrhythmias including atrial fibrillation. This mechanism is exacerbated in the setting of chronically elevated blood pressures.
Collapse
Affiliation(s)
- Yuriy V. Egorov
- Laboratory of Heart ElectrophysiologyCardiology Research CentreMoscowRussian Federation
| | - Di Lang
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Leonid Tyan
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Daniel Turner
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Evi Lim
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Zachary D. Piro
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Jonathan J. Hernandez
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
- Department of PediatricsPediatric CardiologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Rylie Lodin
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Rose Wang
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Eric G. Schmuck
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Amish N. Raval
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Carter J. Ralphe
- Department of PediatricsPediatric CardiologyUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | - Timothy J. Kamp
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| | | | - Alexey V. Glukhov
- Department of MedicineCardiovascular MedicineUniversity of Wisconsin‐Madison School of Medicine and Public HealthMadisonWI
| |
Collapse
|
10
|
Henry AD, MacQuaide N, Burton FL, Rankin AC, Rowan EG, Drummond RM. Spontaneous Ca 2+ transients in rat pulmonary vein cardiomyocytes are increased in frequency and become more synchronous following electrical stimulation. Cell Calcium 2018; 76:36-47. [PMID: 30253263 DOI: 10.1016/j.ceca.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 08/09/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
Abstract
The pulmonary veins have an external sleeve of cardiomyocytes that are a widely recognised source of ectopic electrical activity that can lead to atrial fibrillation. Although the mechanisms behind this activity are currently unknown, changes in intracellular calcium (Ca2+) signalling are purported to play a role. Therefore, the intracellular Ca2+ concentration was monitored in the pulmonary vein using fluo-4 and epifluorescence microscopy. Electrical field stimulation evoked a synchronous rise in Ca2+ in neighbouring cardiomyocytes; asynchronous spontaneous Ca2+ transients between electrical stimuli were also present. Immediately following termination of electrical field stimulation at 3 Hz or greater, the frequency of the spontaneous Ca2+ transients was increased from 0.45 ± 0.06 Hz under basal conditions to between 0.59 ± 0.05 and 0.65 ± 0.06 Hz (P < 0.001). Increasing the extracellular Ca2+ concentration enhanced this effect, with the frequency of spontaneous Ca2+ transients increasing from 0.45 ± 0.05 Hz to between 0.75 ± 0.06 and 0.94 ± 0.09 Hz after electrical stimulation at 3 to 9 Hz (P < 0.001), and this was accompanied by a significant increase in the velocity of Ca2+ transients that manifested as waves. Moreover, in the presence of high extracellular Ca2+, the spontaneous Ca2+ transients occurred more synchronously in the initial few seconds following electrical stimulation. The ryanodine receptors, which are the source of spontaneous Ca2+ transients in pulmonary vein cardiomyocytes, were found to be arranged in a striated pattern in the cell interior, as well as along the periphery of cell. Furthermore, labelling the sarcolemma with di-4-ANEPPS showed that over 90% of pulmonary vein cardiomyocytes possessed T-tubules. These findings demonstrate that the frequency of spontaneous Ca2+ transients in the rat pulmonary vein are increased following higher rates of electrical stimulation and increasing the extracellular Ca2+ concentration.
Collapse
Affiliation(s)
- Alasdair D Henry
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - N MacQuaide
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - F L Burton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - A C Rankin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - E G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - R M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
11
|
Ivanova AD, Kuzmin VS. Electrophysiological characteristics of the rat azygos vein under electrical pacing and adrenergic stimulation. J Physiol Sci 2018; 68:617-628. [PMID: 28929393 PMCID: PMC10717306 DOI: 10.1007/s12576-017-0569-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/12/2017] [Indexed: 02/04/2023]
Abstract
Rodent thoracic veins are characterized by an extended myocardial coating. In the present study, the electrical activity in the cardiac tissue of the rat azygos vein (AZV) was investigated for the first time. The atrial-like action potentials (AP) and atrial-like conduction of the excitation were observed in the rat AZV under continuous electrical pacing. Termination of electrical pacing resulted in spontaneous positive shift of resting membrane potential (RMP) in AZV. Boradrenaline induced biphasic effects on RMP in all quiescent AZV preparations but only in 25% preparations-bursts of spontaneous AP, which were suppressed by both α- and β-adrenoreceptor antagonists. Phenylephrine induced additional depolarization of RMP in quiescent AZV preparations, while isoproterenol caused hyperpolarization. In conclusion, bioelectrical properties of the rat AZV resemble those of atrial myocardium under continuous electrical pacing; however, depolarized RMP and NA-induced spontaneous AP characterize AZV as a tissue prone to rare automaticity.
Collapse
Affiliation(s)
| | - Vlad S Kuzmin
- Biological Department, Moscow State University, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
12
|
|
13
|
Ivanova AD, Kuzmin VS, Rosenshtraukh LV. β-Adrenergic stimulation induces pro-arrhythmic activity in the caval vein myocardial tissue. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 476:183-187. [PMID: 29101618 DOI: 10.1134/s0012496617050027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 11/23/2022]
Abstract
Electrical activity of the right superior vena cava (SVC) is considered as a source of the atrial fibrillation. We have shown that bioelectrical properties of the SVC myocardium differ from those of the working atrial myocardium. Electrically evoked action potential duration in SVC is significantly shorter, the resting membrane potential in both stimulated and quiescent SVC preparations is significantly more positive than in atria. Activation of β-adrenoreceptors in SVC myocardium leads to a series of action potentials, and this process depends on protein kinase A. Probably, β-adrenergic stimulation enhances SVC arrhythmogenesis in vivo.
Collapse
Affiliation(s)
- A D Ivanova
- Department of Human and Animal Physiology, Biological Faculty, Moscow State University, Moscow, Russia.
| | - V S Kuzmin
- Department of Human and Animal Physiology, Biological Faculty, Moscow State University, Moscow, Russia.,Pirogov National Research Medical University, Ministry of Health, Moscow, Russia
| | - L V Rosenshtraukh
- Institute of Experimental Cardiology, Russian Cardiology Research Center, Ministry of Health, Moscow, Russia
| |
Collapse
|
14
|
Jiang RH, Hu GS, Liu Q, Sheng X, Sun YX, Yu LU, Zhang P, Zhang ZW, Chen SQ, Ye Y, Zhu J, Fu GS, Jiang CY. Impact of Anatomically Guided Ganglionated Plexus Ablation on Electrical Firing from Isolated Pulmonary Veins. Pacing Clin Electrophysiol 2016; 39:1351-1358. [PMID: 27723101 DOI: 10.1111/pace.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The mechanisms underlying atrial fibrillation (AF) initiation and pulmonary vein isolation (PVI) effectiveness remain unclear. Ganglionated plexus (GPs) have been implicated in AF initiation and maintenance. In this study, we evaluated the impact of GP ablation in patients with pulmonary vein (PV) firing after PVI. METHODS Patients with drug-refractory paroxysmal AF undergoing radiofrequency catheter ablation therapy with PVI were screened. Among 840 cases over a 3.75-year period, 12 cases were identified with persistent PV firing (left = 4 and right = 8) after PVI was achieved and left atrial sinus rhythm restored. Adjacent GP ablation was performed anatomically and followed if necessary by additional PV ablation. RESULTS In eight patients, PV firing was terminated during GP ablation outside of the circumferential ablation line. In one patient, additional PV ablation resulted in cessation of PV firing and in the remaining three patients, firing could not be terminated by GP ablation or additional PVI. CONCLUSION GP ablation outside of wide antral circumferential line frequently results in the cessation of rapid firing from electrically isolated PVs. These observations suggest that interactions between left atrium and PV beyond electrical conduction warrant consideration in AF mechanisms.
Collapse
Affiliation(s)
- Ru-Hong Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gen-Sheng Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology, The First People's Hospital of Wuhu City, Anhui, China
| | - Qiang Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Sheng
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ya-Xun Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - L U Yu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pei Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zu-Wen Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi-Quan Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Ye
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen-Yang Jiang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Holmes AP, Yu TY, Tull S, Syeda F, Kuhlmann SM, O’Brien SM, Patel P, Brain KL, Pavlovic D, Brown NA, Fabritz L, Kirchhof P. A Regional Reduction in Ito and IKACh in the Murine Posterior Left Atrial Myocardium Is Associated with Action Potential Prolongation and Increased Ectopic Activity. PLoS One 2016; 11:e0154077. [PMID: 27149380 PMCID: PMC4858288 DOI: 10.1371/journal.pone.0154077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/10/2016] [Indexed: 11/22/2022] Open
Abstract
Background The left atrial posterior wall (LAPW) is potentially an important area for the development and maintenance of atrial fibrillation. We assessed whether there are regional electrical differences throughout the murine left atrial myocardium that could underlie regional differences in arrhythmia susceptibility. Methods We used high-resolution optical mapping and sharp microelectrode recordings to quantify regional differences in electrical activation and repolarisation within the intact, superfused murine left atrium and quantified regional ion channel mRNA expression by Taqman Low Density Array. We also performed selected cellular electrophysiology experiments to validate regional differences in ion channel function. Results Spontaneous ectopic activity was observed during sustained 1Hz pacing in 10/19 intact LA and this was abolished following resection of LAPW (0/19 resected LA, P<0.001). The source of the ectopic activity was the LAPW myocardium, distinct from the pulmonary vein sleeve and LAA, determined by optical mapping. Overall, LAPW action potentials (APs) were ca. 40% longer than the LAA and this region displayed more APD heterogeneity. mRNA expression of Kcna4, Kcnj3 and Kcnj5 was lower in the LAPW myocardium than in the LAA. Cardiomyocytes isolated from the LAPW had decreased Ito and a reduced IKACh current density at both positive and negative test potentials. Conclusions The murine LAPW myocardium has a different electrical phenotype and ion channel mRNA expression profile compared with other regions of the LA, and this is associated with increased ectopic activity. If similar regional electrical differences are present in the human LA, then the LAPW may be a potential future target for treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Andrew P. Holmes
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Ting Y. Yu
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
- Physical Sciences of Imaging in the Biomedical Sciences, School of Chemistry, College of Engineering Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samantha Tull
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Fahima Syeda
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Stefan M. Kuhlmann
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Sian-Marie O’Brien
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Pushpa Patel
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Keith L. Brain
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Davor Pavlovic
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
| | - Nigel A. Brown
- St George’s, University of London, London, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiovascular Medicine, Hospital of the University of Münster, Münster, Germany
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- * E-mail:
| | - Paulus Kirchhof
- Institute of Cardiovascular Science, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiovascular Medicine, Hospital of the University of Münster, Münster, Germany
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| |
Collapse
|
16
|
Lu YY, Cheng CC, Chen YC, Lin YK, Chen SA, Chen YJ. Electrolyte disturbances differentially regulate sinoatrial node and pulmonary vein electrical activity: A contribution to hypokalemia- or hyponatremia-induced atrial fibrillation. Heart Rhythm 2015; 13:781-8. [PMID: 26654920 DOI: 10.1016/j.hrthm.2015.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hypokalemia and hyponatremia increase the occurrence of atrial fibrillation. Sinoatrial nodes (SANs) and pulmonary veins (PVs) play a critical role in the pathophysiology of atrial fibrillation. OBJECTIVE The purpose of this study was to evaluate whether electrolyte disturbances with low concentrations of potassium ([K(+)]) or sodium ([Na(+)]) modulate SAN and PV electrical activity and arrhythmogenesis, and to investigate potential underlying mechanisms. METHODS Conventional microelectrodes were used to record electrical activity in rabbit SAN and PV tissue preparations before and after perfusion with different low [K(+)] or [Na(+)], interacting with the Na(+)-Ca(2+) exchanger inhibitor KB-R7943 (10 μΜ). RESULTS Low [K(+)] (3.5, 3, 2.5, and 2 mM) decreased beating rates in PV cardiomyocytes with genesis of delayed afterdepolarizations (DADs), burst firing, and increased diastolic tension. Low [K(+)] (3.5, 3, 2.5, and 2 mM) also decreased SAN beating rates, with genesis of DADs. Low [Na(+)] increased PV diastolic tension, DADs, and burst firing, which was attenuated in the co-superfusion with low [K(+)] (2 mM). In contrast, low [Na(+)] had little effect on SAN electrical activities. KB-R7943 (10 μΜ) reduced the occurrences of low [K(+)] (2 mM)- or low [Na(+)] (110 mM)-induced DAD and burst firing in both PVs and SANs. CONCLUSION Low [K(+)] and low [Na(+)] differentially modulate SAN and PV electrical properties. Low [K(+)]- or low [Na(+)]-induced slowing of SAN beating rate and genesis of PV burst firing may contribute to the high occurrence of atrial fibrillation during hypokalemia or hyponatremia.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan; School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | | | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Ann Chen
- National Yang-Ming University, School of Medicine; Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|