1
|
Kim D, Collins JD, White JA, Hanneman K, Lee DC, Patel AR, Hu P, Litt H, Weinsaft JW, Davids R, Mukai K, Ng MY, Luetkens JA, Roguin A, Rochitte CE, Woodard PK, Manisty C, Zareba KM, Mont L, Bogun F, Ennis DB, Nazarian S, Webster G, Stojanovska J. SCMR expert consensus statement for cardiovascular magnetic resonance of patients with a cardiac implantable electronic device. J Cardiovasc Magn Reson 2024; 26:100995. [PMID: 38219955 PMCID: PMC11211236 DOI: 10.1016/j.jocmr.2024.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | | | - James A White
- Departments of Cardiac Sciences and Diagnostic Imaging, Cummings School of Medicine, University of Calgary, Calgary, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, Toronto General Hospital and Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
| | - Daniel C Lee
- Department of Medicine (Division of Cardiology), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amit R Patel
- Cardiovascular Division, University of Virginia, Charlottesville, VA, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Harold Litt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan W Weinsaft
- Department of Medicine (Division of Cardiology), Weill Cornell Medicine, New York, NY, USA
| | - Rachel Davids
- SHS AM NAM USA DI MR COLLAB ADV-APPS, Siemens Medical Solutions USA, Inc., Chicago, Il, USA
| | - Kanae Mukai
- Salinas Valley Memorial Healthcare System, Ryan Ranch Center for Advanced Diagnostic Imaging, Monterey, CA, USA
| | - Ming-Yen Ng
- Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, the Hong Kong Special Administrative Region of China
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Ariel Roguin
- Department of Cardiology, Hillel Yaffe Medical Center, Hadera and Faculty of Medicine. Technion - Israel Institute of Technology, Israel
| | - Carlos E Rochitte
- Heart Institute, InCor, University of São Paulo Medical School, São Paulo, SP, Brazil
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK
| | - Karolina M Zareba
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, University of Barcelona, Catalonia, Spain
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Saman Nazarian
- Section of Cardiac Electrophysiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Webster
- Department of Pediatrics (Cardiology), Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Jadranka Stojanovska
- Department of Radiology, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
2
|
Gakenheimer-Smith L, Ou Z, Kuang J, Moore JP, Burrows A, Kovach J, Dechert B, Beach CM, Ayers M, Tan RB, Mostafavifar M, Mah DY, Conner TM, Turpin S, Avasarala K, Shah MJ, Webster G, Posey J, Etheridge SP, Binka E, Niu M, Asaki SY, Lambert LM, Pilcher TA. Multicenter retrospective evaluation of magnetic resonance imaging in pediatric and congenital heart disease patients with cardiac implantable electronic devices. Heart Rhythm 2023; 20:1752-1758. [PMID: 37648183 DOI: 10.1016/j.hrthm.2023.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Guidelines addressing magnetic resonance imaging (MRI) in patients with cardiac implantable electronic devices (CIEDs) provide algorithms for imaging pediatric and congenital heart disease (CHD) patients. Guideline acceptance varies by institution. Guidelines also do not support routine MRI scans in patients with epicardial or abandoned leads, common in pediatric and CHD patients. OBJECTIVE The purpose of this study was to determine the incidence of MRI-related complications in pediatric and CHD patients with CIEDs, including epicardial and/or abandoned leads. METHODS A multicenter retrospective review included patients with CIEDs who underwent any MRI between 2007 and 2022 at congenital cardiac centers. The primary outcome was any patient adverse event or clinically significant CIED change after MRI, defined as pacing lead capture threshold increase >0.5 V with output change, P- or R- wave amplitude decrease >50% with sensitivity change, or impedance change >50%. RESULTS Across 14 institutions, 314 patients (median age 18.8 [1.3; 31.4] years) underwent 389 MRIs. There were 288 pacemakers (74%) and 87 implantable cardioverter-defibrillators (22%); 52% contained epicardial leads, and 14 (4%) were abandoned leads only. Symptoms or CIED changes occurred in 4.9% of MRI scans (6.1% of patients). On 9 occasions (2%), warmth or pain occurred. Pacing capture threshold or lead impedance changes occurred in 1.4% and 2.0% of CIEDs post-MRI and at follow-up. CONCLUSION Our data provide evidence that MRIs can be performed in pediatric and CHD patients with CIEDs, including non-MRI-conditional CIEDs and epicardial and/or abandoned leads, with rare minor symptoms or CIED changes but no other complications.
Collapse
Affiliation(s)
- Lindsey Gakenheimer-Smith
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah.
| | - Zhining Ou
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jinqiu Kuang
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Jeremy P Moore
- Division of Cardiology, Department of Pediatrics, UCLA Medical Center, Los Angeles, California
| | - Austin Burrows
- Division of Cardiology, Department of Pediatrics, UCLA Medical Center, Los Angeles, California
| | - Joshua Kovach
- Department of Pediatrics, Division of Pediatric Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brynn Dechert
- Division of Pediatric Cardiology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Mark Ayers
- Division of Pediatric Cardiology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reina Bianca Tan
- Division of Pediatric Cardiology, Department of Pediatrics, NYU Grossman School of Medicine, New York, New York
| | | | - Douglas Y Mah
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tracy Marrs Conner
- Division of Pediatric Cardiology, Washington University in St. Louis, St. Louis, Missouri
| | - Susan Turpin
- UCSF Benioff Children's Hospital, Oakland, California
| | | | - Maully J Shah
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory Webster
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois
| | - Jessica Posey
- Children's Healthcare of Atlanta Cardiology, Atlanta, Georgia
| | - Susan P Etheridge
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Edem Binka
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Mary Niu
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - S Yukiko Asaki
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Linda M Lambert
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Thomas A Pilcher
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|