1
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
2
|
Pati A, Das BK, Panda AK. Elevated toll-like receptor 9 is associated with disease severity and kidney involvement in systemic lupus erythematosus. Hum Immunol 2024; 85:111104. [PMID: 39255560 DOI: 10.1016/j.humimm.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) is associated with the activation of both innate and adaptive immune system. Infection is a significant environmental factor that is responsible for the development of SLE. Toll-like receptors (TLRs) are responsible for recognizing pathogens, and the expression of TLRs has been found to differ in SLE patients. Additionally, various infections have been reported to influence TLR expression. This study aimed to explore the relationship between TLRs and the onset, severity, and symptoms of SLE in the eastern Indian population. METHODS The study included 70 SLE patients and a control group matched for age and sex. RT-PCR was used to evaluate mRNA expression of TLRs 2, 4, 7, and 9. Statistical analyses were performed using GraphPad Prism software v.10.2.3. RESULTS Patients with SLE expressed significantly higher levels of TLR2 (p < 0.0001) and TLR9 (p = 0.012) than healthy controls. In lupus nephritis, TLR9 expression was higher than in SLE patients without kidney involvement (p = 0.037). Furthermore, a significant relationship was found between TLR9 expression and systemic lupus erythematosus disease activity index (SLEDAI) scores (p < 0.0001, Spearman's r = 0.47), implying the potential role of TLRs in SLE development. However, mRNA expression of TLR4 and TLR7 was not associated with SLE, clinical indices, or disease severity. CONCLUSIONS TLR9 is associated with SLE pathogenesis and clinical severity, making it a promising molecule for targeted therapy in SLE management.
Collapse
Affiliation(s)
- Abhijit Pati
- ImmGen EvSys Laboratory, Department of Biotechnology, Berhampur University, Odisha 767007, India
| | - Bidyut K Das
- Department of Clinical Immunology and Rheumatology, SCB Medical College Cuttack, Odisha 753007, India
| | - Aditya K Panda
- ImmGen EvSys Laboratory, Department of Biotechnology, Berhampur University, Odisha 767007, India; Centre of Excellence on Bioprospecting of "Ethnopharmaceuticals of Southern Odisha" (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur, Odisha 760007, India.
| |
Collapse
|
3
|
Methacrylic Acid-Based Regenerative Biomaterials: Explorations into the MAAgic. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Akesolo O, Buey B, Beltrán-Visiedo M, Giraldos D, Marzo I, Latorre E. Toll-like receptors: new targets for multiple myeloma treatment? Biochem Pharmacol 2022; 199:114992. [DOI: 10.1016/j.bcp.2022.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 02/08/2023]
|
5
|
Ghosh R, Dey R, Sawoo R, Bishayi B. Neutralization of IL-17 and treatment with IL-2 protects septic arthritis by regulating free radical production and antioxidant enzymes in Th17 and Tregs: An immunomodulatory TLR2 versus TNFR response. Cell Immunol 2021; 370:104441. [PMID: 34628221 DOI: 10.1016/j.cellimm.2021.104441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Septic arthritis is a destructive joint disease caused by Staphylococcus aureus. Synovial inflammation involved Th17 proliferation and down regulation of Treg population, thus resolution of inflammation targeting IL-17 may be important to control arthritis. Endogenous inhibition of IL-17 to regulate arthritic inflammation correlating with Th17/Treg cells TLR2 and TNFRs are not done. The role of SOD, CAT and GRx in relation to ROS production during arthritis along with expression of TLR2, TNFR1/TNFR2 in Th17/Treg cells of mice treated with IL-17A Ab/ IL-2 were studied. Increased ROS, reduced antioxidant enzyme activity was found in Th17 cells of SA infected mice whereas Treg cells of IL-17A Ab/ IL-2 treated group showed opposite effects. Neutralization of IL-17 after arthritis cause decreased TNFR1 and increased TNFR2 expression in Treg cells. Thus, neutralization of IL-17 or IL-2 treatment regulates septic arthritis by enhancing anti-inflammatory properties of Treg via antioxidant balance and modulating TLR2/TNFR response.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Ritasha Sawoo
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
6
|
Lin SY, Wang YY, Chang CY, Wu CC, Chen WY, Liao SL, Chen CJ. TNF-α Receptor Inhibitor Alleviates Metabolic and Inflammatory Changes in a Rat Model of Ischemic Stroke. Antioxidants (Basel) 2021; 10:851. [PMID: 34073455 PMCID: PMC8228519 DOI: 10.3390/antiox10060851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022] Open
Abstract
Hyperglycemia and inflammation, with their augmented interplay, are involved in cases of stroke with poor outcomes. Interrupting this vicious cycle thus has the potential to prevent stroke disease progression. Tumor necrosis factor-α (TNF-α) is an emerging molecule, which has inflammatory and metabolic roles. Studies have shown that TNF-α receptor inhibitor R-7050 possesses neuroprotective, antihyperglycemic, and anti-inflammatory effects. Using a rat model of permanent cerebral ischemia, pretreatment with R-7050 offered protection against poststroke neurological deficits, brain infarction, edema, oxidative stress, and caspase 3 activation. In the injured cortical tissues, R-7050 reversed the activation of TNF receptor-I (TNFRI), NF-κB, and interleukin-6 (IL-6), as well as the reduction of zonula occludens-1 (ZO-1). In the in vitro study on bEnd.3 endothelial cells, R-7050 reduced the decline of ZO-1 levels after TNF-α-exposure. R-7050 also reduced the metabolic alterations occurring after ischemic stroke, such as hyperglycemia and increased plasma corticosterone, free fatty acids, C reactive protein, and fibroblast growth factor-15 concentrations. In the gastrocnemius muscles of rats with stroke, R-7050 improved activated TNFRI/NF-κB, oxidative stress, and IL-6 pathways, as well as impaired insulin signaling. Overall, our findings highlight a feasible way to combat stroke disease based on an anti-TNF therapy that involves anti-inflammatory and metabolic mechanisms.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung-Hsing University, Taichung City 402, Taiwan;
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
7
|
von Linstow CU, Hindkjær SM, Nielsen PV, Degn M, Lambertsen KL, Finsen B, Clausen BH. Bone Marrow-Derived IL-1Ra Increases TNF Levels Poststroke. Cells 2021; 10:956. [PMID: 33924148 PMCID: PMC8074385 DOI: 10.3390/cells10040956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor (TNF) and interleukin-1 receptor antagonist (IL-1Ra) are key players in stroke, a disease in which cell-based therapies have shown great potential. Having shown an infarct-reducing effect of bone marrow (BM) cells, especially cells with high IL-1Ra expression, we here investigated the effect of BM cells on TNF and other stroke-related mediators in mice after transient middle cerebral artery occlusion (tMCAo) and in vitro using adult microglial cultures. We analyzed stroke-related genes and inflammatory mediators using qPCR stroke Tier panels, electrochemiluminescence, or enzyme-linked immunosorbent assays. We found a significant correlation and cellular colocalization between microglial-derived TNF and IL-1Ra, though IL-1Ra production was TNF independent. BM treatment significantly increased TNF, interleukin (IL)-10, and IL-4 levels, while C-X-C motif ligand 1 (CXCL1), IL-12p70, and Toll-like receptor 2 (TLR2) decreased, suggesting that BM treatment favors an anti-inflammatory environment. Hierarchical clustering identified Tnf and IL-1rn within the same gene cluster, and subsequent STRING analysis identified TLR2 as a shared receptor. Although IL-1Ra producing BM cells specifically modulated TNF levels, this was TLR2 independent. These results demonstrate BM cells as modulators of poststroke inflammation with beneficial effects on poststroke outcomes and place TNF and IL-1Ra as key players of the defense response after tMCAo.
Collapse
Affiliation(s)
- Christian Ulrich von Linstow
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
| | - Sofie Mozart Hindkjær
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
| | - Pernille Vinther Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
| | - Matilda Degn
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
- Department of Neurology, Odense University Hospital, 5000 Odense, Denmark
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; (S.M.H.); (P.V.N.); (K.L.L.); (B.F.)
- BRIDGE—Brain Research—Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
8
|
Zou X, Zhang D, Song Y, Liu S, Long Q, Yao L, Li W, Duan Z, Wu D, Liu L. HRG switches TNFR1-mediated cell survival to apoptosis in Hepatocellular Carcinoma. Theranostics 2020; 10:10434-10447. [PMID: 32929358 PMCID: PMC7482824 DOI: 10.7150/thno.47286] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Tumor necrosis factor receptor 1 (TNFR1) signaling plays a pleiotropic role in the development of hepatocellular carcinoma (HCC). The formation of TNFR1-complex I supports cell survival while TNFR1-complex II leads to apoptosis, and the underlying mechanisms of the transformation of these TNFR1 complexes in HCC remain poorly defined. Methods: The interaction protein of TNFR1 was identified by GST pulldown assay, immunoprecipitation and mass spectrometry. In vitro and in vivo assay were performed to explore the biological features and mechanisms underlying the regulation of TNFR1 signals by histidine-rich glycoprotein (HRG). Data from the public databases and HCC samples were utilized to analyze the expression and clinical relevance of HRG. Results: HRG directly interacted with TNFR1 and stabilized TNFR1 protein by decreasing the Lys(K)-48 ubiquitination mediated-degradation. The formation of TNFR1-complex II was prompted by HRG overexpression via upregulating Lys(K)-63 ubiquitination of TNFR1. Besides, overexpression of HRG suppressed expression of pro-survival genes by impairing the activation of NF-κB signaling in the presence of TNFR1. Moreover, downregulation of HRG was a result of feedback inhibition of NF-κB activation in HCC. In line with the pro-apoptotic switch of TNFR1 signaling after HRG induction, overexpression of HRG inhibited cell proliferation and increased apoptosis in HCC. Conclusions: Our findings illustrate a crucial role for HRG in suppressing HCC via inclining TNFR1 to a pro-apoptotic cellular phenotype. Restoring HRG expression in HCC tissues might be a promising pharmacological approach to blocking tumor progression by shifting cellular fate from cell survival to apoptosis.
Collapse
Affiliation(s)
- Xuejing Zou
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dongyan Zhang
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yang Song
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Long
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Liheng Yao
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenwen Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhijiao Duan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehua Wu
- State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Kawahara T, Hanzawa N, Sugiyama M. Effect of Lactobacillus strains on thymus and chemokine expression in keratinocytes and development of atopic dermatitis-like symptoms. Benef Microbes 2018; 9:643-652. [PMID: 29798706 DOI: 10.3920/bm2017.0162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lactobacillus strains, a major group of lactic acid bacteria, are representative food microorganisms that have many potential beneficial effects via their interactions with immune and intestinal epithelial cells. However, little is known about the effect of Lactobacillus strains on atopic dermatitis via keratinocytes, which comprise the physical barrier of the skin. In this study, we report that Lactobacillus strains have a significant suppressive effect on tumour necrosis factor (TNF)-α-induced expression and production of thymus and activation-regulated chemokine (TARC), a T helper 2 cell chemokine responsible for atopic dermatitis, in human keratinocytes. An RNA interference study showed that the effect of Lactobacillus reuteri strain Japan Collection of Microorganisms (JCM) 1112, the most suppressive strain, depended on the presence of Toll-like receptor 2 and the induction of A20 (also known as TNF-α-induced protein 3) and cylindromatosis in HaCaT cells. Topical application of a water-soluble extract of homogenised JCM 1112 cells significantly suppressed the development of house dust mite-induced atopic skin lesions and TARC expression at the lesion sites in NC/Nga mice. Our study provides new insights into the use of Lactobacillus strains as suppressive agents against keratinocyte-involved atopic inflammation of the skin.
Collapse
Affiliation(s)
- T Kawahara
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan.,2 Department of Interdisciplinary Genome Sciences and Cell Metabolism, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research (IBS-ICCER) Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - N Hanzawa
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| | - M Sugiyama
- 1 Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
10
|
Chuang TY, Cheng AJ, Chen IT, Lan TY, Huang IH, Shiau CW, Hsu CL, Liu YW, Chang ZF, Tseng PH, Kuo JC. Suppression of LPS-induced inflammatory responses by the hydroxyl groups of dexamethasone. Oncotarget 2018; 8:49735-49748. [PMID: 28537905 PMCID: PMC5564803 DOI: 10.18632/oncotarget.17683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/15/2017] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is a central process that is activated during pathogenic infection in order to maintain physiological homeostasis. It is well known that dexamethasone (Dex), a synthetic glucocorticoid, is a potent immunosuppressant that inhibits the cytokine production induced by bacterial lipopolysaccharides (LPS). Nevertheless, the extent to which the functional groups of Dex control the excessive activation of inflammatory reactions remains unknown. Furthermore, importantly, the role of Dex in the innate immune response remains unclear. Here we explore the mechanism of LPS-induced TNF-α secretion and reveal p38 MAPK signaling as a target of Dex that is involved in control of tumor necrosis factor-α (TNF-α)-converting enzyme (TACE) activity; that later mediates the shedding of TNF-α that allows its secretion. We further demonstrate that the 11-hydroxyl and 21-hydroxyl groups of Dex are the main groups that are involved in reducing LPS-induced TNF-α secretion by activated macrophages. Blockage of the hydroxyl groups of Dex inhibits immunosuppressant effect of Dex during LPS-induced TNF-α secretion and mouse mortality. Our findings demonstrate Dex signaling is involved in the control of innate immunity.
Collapse
Affiliation(s)
- Ting-Yun Chuang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - An-Jie Cheng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Ting Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Tien-Yun Lan
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - I-Hsuan Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Ping-Hui Tseng
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan.,Biophotonics & Molecular Imaging Research Center, National Yang-Ming University, Taipei 11221, Taiwan.,Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
11
|
Hojo K, Tamai R, Kobayashi-Sakamoto M, Kiyoura Y. Etidronate down-regulates Toll-like receptor (TLR) 2 ligand-induced proinflammatory cytokine production by inhibiting NF-κB activation. Pharmacol Rep 2017; 69:773-778. [PMID: 28587938 DOI: 10.1016/j.pharep.2017.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/14/2017] [Accepted: 03/15/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Etidronate is a non-nitrogen-containing bisphosphonate (non-NBP) used for anti-bone resorptive therapy as well as having inhibitory effects on atherosclerotic plaques. The present study examined the effects of etidronate on the production of proinflammatory cytokines and chemokines by the macrophage-like cell line, J774.1, incubated with Pam3Cys-Ser-(Lys)4 (Pam3CSK4, a Toll-like receptor (TLR) 2 agonist) and lipid A (a TLR4 agonist). METHODS J774.1 cells and human monocytic THP-1 cells were pretreated with or without etidronate for 5min, and then incubated with or without Pam3CSK4 or lipid A for 24h. Levels of secreted interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Cytotoxicity was determined by LDH activity in the supernatants. We also examined the effects of etidronate on the activation of nuclear factor-κB (NF-κB) and p38 mitogen-activated protein kinase (MAPK) in J774.1 cells by ELISA and Western blotting. RESULTS Treatment of J774.1 cells with etidronate down-regulated TLR2 ligand-induced production of IL-6, TNF-α, MCP-1, and MIP-1α. Etidronate also inhibited Pam3CSK4-induced MCP-1 and TNF-α production by THP-1 cells. However, etidronate did not induce cytotoxicity and reduced lipid A-induced cytotoxicity in J774.1 cells. In addition, this agent did not down-regulate TLR4 ligand-induced proinflammatory cytokine production. Furthermore, etidronate inhibited the translocation of NF-κB but not p38 MAPK in J774.1 cells stimulated with Pam3CSK4 or lipid A. CONCLUSION Etidronate likely inhibits proinflammatory cytokine production in J774.1 cells by suppressing NF-κB activation in the TLR2 and not the TLR4 pathway.
Collapse
Affiliation(s)
- Kentaro Hojo
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Riyoko Tamai
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| | - Michiyo Kobayashi-Sakamoto
- Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yusuke Kiyoura
- Department of Infectious Diseases, Ohu University Graduate School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan; Department of Oral Medical Science, Ohu University School of Dentistry, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| |
Collapse
|
12
|
Abstract
Hemorrhagic shock resulting from blood loss directs the majority of the blood to the vital organs, dramatically reducing blood flow to the intestines and resulting in damage and inflammation. The excessive intestinal inflammatory response includes pro-inflammatory cytokines and complement activation, although the mechanism is not clear. Toll-like receptors play a vital role in the innate immune response and toll-like receptor 2 (TLR2) is required for intestinal ischemia/reperfusion-induced injury. We hypothesized that TLR2 plays an integral role in the intestinal inflammatory response after hemorrhage and subjected C57Bl/6 wild-type and Tlr2(-/-) mice to atraumatic loss of ∼30% total blood volume. Two hours after blood removal, the intestinal injury and inflammation were assessed. We demonstrate that compared with wild-type control mice, Tlr2(-/-) mice sustain less intestinal damage and inflammation. Importantly, TLR2 regulated eicosanoid and complement activation and IL-12 and TNFα secretions, indicating interactions between TLR2 and complement in response to significant blood loss.
Collapse
|
13
|
Bollino D, Colunga A, Li B, Aurelian L. ΔPK oncolytic activity includes modulation of the tumour cell milieu. J Gen Virol 2015; 97:496-508. [PMID: 26602205 DOI: 10.1099/jgv.0.000353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a unique cancer therapeutic that encompasses tumour cell lysis through both virus replication and programmed cell death (PCD) pathways. Nonetheless, clinical efficacy is relatively modest, likely related to the immunosuppressive tumour milieu. Our studies use the herpes simplex virus type 2 (HSV-2)-based oncolytic virus ΔPK that has documented anti-tumour activity associated with virus replication, PCD and cancer stem cell lysis. They are designed to examine whether ΔPK-mediated oncolysis includes the ability to reverse the immunosuppressive tumour microenvironment by altering the balance of cytokines directly secreted by the melanoma cells and to define its mechanism. Here, we show that melanoma cells secreted the immunosuppressive cytokine IL-10, and that secretion was inhibited by ΔPK through virus replication and c-Jun N-terminal kinase/c-Jun activation. ΔPK-induced IL-10 inhibition upregulated surface expression of MHC class I chain-related protein A, the ligand for the activating NKG2D receptor expressed on NK- and cytotoxic T-cells. Concomitantly, ΔPK also upregulated the secretion of inflammatory cytokines TNF-α, granulocyte macrophage colony-stimulating factor and IL-1β through autophagy-mediated activation of Toll-like receptor 2 pathways and pyroptosis, and it inhibited the expression of the negative immune checkpoint regulator cytotoxic T-lymphocyte antigen 4. Pharmacologic inhibition of these processes significantly reduces the oncolytic activity of ΔPK.
Collapse
Affiliation(s)
- Dominique Bollino
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric Colunga
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Baiquan Li
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Laure Aurelian
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|