1
|
Xie LD, Kong XM, Shen JX, Wang TL, Ma J, Zhang YF, Chen XP. Novel compound heterozygous mutations in the hemojuvelin gene in a juvenile hemochromatosis patient: A case report. World J Clin Cases 2024; 12:3961-3970. [PMID: 38994316 PMCID: PMC11235419 DOI: 10.12998/wjcc.v12.i19.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Juvenile hemochromatosis (JH) is an early-onset, rare autosomal recessive disorder of iron overload observed worldwide that leads to damage in multiple organs. Pathogenic mutations in the hemojuvelin (HJV) gene are the major cause of JH. CASE SUMMARY A 34-year-old male Chinese patient presented with liver fibrosis, diabetes, hypogonadotropic hypogonadism, hypophysis hypothyroidism, and skin hyperpigmentation. Biochemical test revealed a markedly elevated serum ferritin level of 4329 μg/L and a transferrin saturation rate of 95.4%. Targeted exome sequencing and Sanger sequencing revealed that the proband had a novel mutation c.863G>A (p.R288Q) in the HJV gene which was transmitted from his father, and two known mutations, c.18G>C (p.Q6H) and c.962_963delGCinsAA (p.C321*) in cis, which were inherited from his mother. The p.R288W mutation was previously reported to be pathogenic for hemochromatosis, which strongly supported the pathogenicity of p.R288Q reported for the first time in this case. After 72 wk of intensive phlebotomy therapy, the patient achieved a reduction in serum ferritin to 160.5 μg/L. The patient's clinical symptoms demonstrated a notable improvement. CONCLUSION This study highlights the importance of screening for hemochromatosis in patients with diabetes and hypogonadotropic hypogonadism. It also suggests that long-term active phlebotomy could efficiently improve the prognosis in severe JH.
Collapse
Affiliation(s)
- Ling-Ding Xie
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiao-Mu Kong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing-Xia Shen
- Department of Tumor Radiotherapy and Chemotherapy, Qian’an People’s Hospital, Qian’an 064400, Hebei Province, China
| | - Tai-Ling Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Ma
- Department of Endocrinology, Aksu First People's Hospital, Aksu Region 843000, Xinjiang Uygur Autonomous Region, China
| | - Yun-Fen Zhang
- Department of Metabolic Diseases, Qian’an Traditional Chinese Medical Hospital, Qian’an 064400, Hebei Province, China
| | - Xiao-Ping Chen
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
2
|
Kadam S, Khaitan M, Banerjee P, Mandhare A. Ferroportin-inhibitor salt: patent evaluation WO2018192973. Expert Opin Ther Pat 2021; 31:585-595. [PMID: 33975503 DOI: 10.1080/13543776.2021.1928075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Iron is a crucial element necessary for blood formation in the body and its normal growth. However, irregular metabolism of iron due to absence of an elimination mechanism may deposit excess iron in the organs (iron overload) leading to metabolic disorders. Interactions between the iron regulatory peptide hormone, hepcidin and the iron exporter ferroportin plays major role in regulating the iron metabolism. Mutations in the ferroportin encoding genes, and dysregulation of hepsidin production often results in iron overload resulting in conditions like hemochromatosis, β-thalassemia, and sickle cell anemia. Until today, there is no efficacious treatment available for managing iron overload targeting ferroportin inhibition via oral administration. AREAS COVERED Novel salts of substituted benzoimidazole compounds useful for the prophylaxis and/or treatment of iron overload are claimed. These compounds act as hepcidin mimetic and inhibit the ferroportin thereby preventing iron overload. The claimed actives are useful in the treatment of disease conditions such as neurodegenerative and cardiac diseases triggered by iron overload. Preclinical studies of these salts on mouse model are also discussed. EXPERT OPINION Prevention and/or treatment of iron overload is critical. The claimed compounds are the first oral drug candidate to treat iron overload and reach the pre-clinical development stage.
Collapse
Affiliation(s)
- Snehal Kadam
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Megha Khaitan
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Paromita Banerjee
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| | - Anita Mandhare
- CSIR Unit for Research and Development of Information Products (CSIR-URDIP), Pune Maharashtra, India
| |
Collapse
|
3
|
The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood 2021; 136:989-1001. [PMID: 32384154 DOI: 10.1182/blood.2020005222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/19/2020] [Indexed: 01/22/2023] Open
Abstract
Matriptase-2 (MT2), encoded by TMPRSS6, is a membrane-anchored serine protease that plays a key role in suppressing hepatic hepcidin expression. MT2 is synthesized as a zymogen and undergoes autocleavage for activation. Previous studies suggest that MT2 suppresses hepcidin by cleaving hemojuvelin and other components of the bone morphogenetic protein-signaling pathway. However, the underlying mechanism is still debatable. Here we dissected the contributions of the nonproteolytic and proteolytic activities of Mt2 by taking advantage of Mt2 mutants and Tmprss6-/- mice. Studies of the protease-dead full-length Mt2 (Mt2S762A) and the truncated Mt2 that lacks the catalytic domain (Mt2mask) indicate that the catalytic domain, but not its proteolytic activity, was required for Mt2 to suppress hepcidin expression. This process was likely accomplished by the binding of Mt2 ectodomain to Hjv and Hfe. We found that Mt2 specifically cleaved the key components of the hepcidin-induction pathway, including Hjv, Alk3, ActRIIA, and Hfe, when overexpressed in hepatoma cells. Nevertheless, studies of a murine iron-refractory iron-deficiency anemia-causing mutant (Mt2I286F) in the complement protein subcomponents C1r/C1s, urchin embryonic growth factor, and bone morphogenetic protein 1 domain indicate that Mt2I286F can be activated, but it exhibited a largely compromised ability to suppress hepcidin expression. Coimmunoprecipitation analysis revealed that Mt2I286F, but not Mt2S762A, had reduced interactions with Hjv, ActRIIA, and Hfe. In addition, increased expression of a serine protease inhibitor, the hepatocyte growth factor activator inhibitor-2, in the liver failed to alter hepcidin. Together, these observations support the idea that the substrate interaction with Mt2 plays a determinant role and suggest that the proteolytic activity is not an appropriate target to modulate the function of MT2 for clinical applications.
Collapse
|
4
|
Shibabaw T, Teferi B, Molla MD, Ayelign B. Inflammation Mediated Hepcidin-Ferroportin Pathway and Its Therapeutic Window in Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2020; 12:165-180. [PMID: 33116818 PMCID: PMC7585830 DOI: 10.2147/bctt.s276404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Experimental and clinical data strongly support that iron is an essential element which plays a big role in cancer biology. Thus, hepcidin (Hp) and ferroportin (Fpn) are molecules that regulate and maintain the metabolism of iron. A peptide hormone hepcidin limits recycled and stored iron fluxes in macrophage and hepatic hepatocyte, respectively, to the blood stream by promoting degradation of the only iron exporter, Fpn, in the target cells. Moreover, the inflammatory microenvironment of breast cancer and altered hepcidin/ferroportin pathway is intimately linked. Breast cancer exhibits an iron seeking phenotype that is accomplished by tumor-associated macrophage (TAM). Because macrophages contribute to breast cancer growth and progression, this review will discuss TAM with an emphasis on describing how TAM (M2Ф phenotypic) interacts with their surrounding microenvironment and results in dysregulated Hp/Fpn and pathologic accumulation of iron as a hallmark of its malignant condition. Moreover, the underlying stroma or tumor microenvironment releases significant inflammatory cytokines like IL-6 and bone morphogenetic proteins like BMP-2 and 6 leading in aberrant Hp/Fpn pathways in breast cancer. Inflammation is primarily associated with the high intracellular iron levels, deregulated hepcidin/ferroportin pathway, and its upstream signaling in breast cancer. Subsequently, scholars have been reported that reducing iron level and manipulating the signaling molecules involved in iron metabolism can be used as a promising strategy of tumor chemotherapy. Here, we review the key molecular aspects of iron metabolism and its regulatory mechanisms of the hepcidin/ferroportin pathways and its current therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
5
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
6
|
Kawaguchi T, Ikuta K, Tatsumi Y, Toki Y, Hayashi H, Tonan T, Ohtake T, Hoshino S, Naito M, Kato K, Okumura T, Torimura T. Identification of heterozygous p.Y150C and p.V274M mutations in the HJV gene in a Japanese patient with a mild phenotype of juvenile hemochromatosis: A case report. Hepatol Res 2020; 50:144-150. [PMID: 31472034 DOI: 10.1111/hepr.13423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 12/08/2022]
Abstract
Juvenile hemochromatosis (JH) is known as a progressive iron-storage disease, and causes severe organ impairments, including cardiomyopathy and liver cirrhosis. However, JH is a rare genetic disorder, and information for genetic mutations and phenotypes is limited. Here, we report a case of JH with heterozygous p.Y150C and p.V274M mutations in the HJV gene. A 39-year-old Japanese man was referred to Kurume University Hospital, Kurume, Japan, for fatigue and liver injury, which first appeared at the age of 25 years. There was no history of alcohol abuse and medication, and viral hepatitis, autoimmune liver diseases, and Wilson's disease were absent. However, transferrin saturation, serum ferritin, and fasting serum hepcidin levels were 98.4%, 6421 ng/mL, and 7.4 ng/mL, respectively. Furthermore, a marked reduction in signal intensity of the liver in T1/T2-weighted magnetic resonance images was seen and the R2* maps showed hepatic iron overload. Family history of hemochromatosis and severe organ impairment, such as cardiac dysfunction and diabetes mellitus, were negative. In addition, the HFE and HAMP genes did not show any mutation. However, we identified novel heterozygous p.Y150C and p.V274M mutations in the HJV gene in the patient. The p.Y150C and p.V274M mutations were seen in his mother and father, respectively. After phlebotomy, fatigue disappeared and serum transaminase levels were normalized. Furthermore, R2* maps showed a reduction of hepatic iron concentration. We first demonstrated heterozygous p.Y150C and p.V274M mutations in the HJV gene of patients with a mild JH phenotype. Thus, genetic testing should be considered even in patients with a mild phenotype of hemochromatosis.
Collapse
Affiliation(s)
- Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Katsuya Ikuta
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Tatsumi
- Laboratory of Medicine, Aichi-Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Yasumichi Toki
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hisao Hayashi
- Laboratory of Medicine, Aichi-Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Tatsuyuki Tonan
- Department of Radiology, Kurume University School of Medicine, Kurume, Japan
| | - Takaaki Ohtake
- Department of Gastroenterology, International University of Health and Welfare Hospital, Nasushiobara, Japan
| | | | | | - Koichi Kato
- Laboratory of Medicine, Aichi-Gakuin University, School of Pharmacy, Nagoya, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
7
|
Béliveau F, Tarkar A, Dion SP, Désilets A, Ghinet MG, Boudreault PL, St-Georges C, Marsault É, Paone D, Collins J, Macphee CH, Campobasso N, Groy A, Cottom J, Ouellette M, Pope AJ, Leduc R. Discovery and Development of TMPRSS6 Inhibitors Modulating Hepcidin Levels in Human Hepatocytes. Cell Chem Biol 2019; 26:1559-1572.e9. [DOI: 10.1016/j.chembiol.2019.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
|
8
|
Kong X, Xie L, Zhu H, Song L, Xing X, Yang W, Chen X. Genotypic and phenotypic spectra of hemojuvelin mutations in primary hemochromatosis patients: a systematic review. Orphanet J Rare Dis 2019; 14:171. [PMID: 31286966 PMCID: PMC6615163 DOI: 10.1186/s13023-019-1097-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
Hereditary hemochromatosis (HH) is a genetic disorder that causes excess absorption of iron and can lead to a variety of complications including liver cirrhosis, arthritis, abnormal skin pigmentation, cardiomyopathy, hypogonadism, and diabetes. Hemojuvelin (HJV) is the causative gene of a rare subtype of HH worldwide. This study aims to systematically review the genotypic and phenotypic spectra of HJV-HH in multiple ethnicities, and to explore the genotype-phenotype correlations. A comprehensive search of PubMed database was conducted. Data were extracted from 57 peer-reviewed original articles including 132 cases with HJV-HH of multiple ethnicities, involving 117 biallelic cases and 15 heterozygotes. Among the biallelic cases, male and female probands of Caucasian ancestry were equally affected, whereas males were more often affected among East Asians (P=1.72×10-2). Hepatic iron deposition and hypogonadism were the most frequently reported complications. Hypogonadism and arthropathy were more prevalent in Caucasians than in East Asians (P=9.30×10-3, 1.69×10-2). Among the recurrent mutations, G320V (45 unrelated cases) and L101P (7 unrelated cases) were detected most frequently and restricted to Caucasians. [Q6H; C321*] was predominant in Chinese patients (6 unrelated cases). I281T (Chinese and Greek), A310G (Brazilian and African American), and R385* (Italian and North African) were reported across different ethnicities. In genotype-phenotype correlation analyses, 91.30% of homozygotes with exon 2-3 mutations developed early-onset HH compared to 66.00% of those with exon 4 mutations (P=2.40×10-2). Hypogonadism occurred more frequently in homozygotes with missense mutations (72.55%) than in those with nonsense mutations (35.71%; P=2.43×10-2). Liver biopsy was accepted by more probands with frame-shift or missense mutations (85.71% and 60.78%, respectively) than by those with nonsense mutations (28.57%; P=2.37×10-2, 3.93×10-2). The present review suggests that patients' ethnicity, geographical region, and genetic predisposition should be considered in the diagnosis, prognosis and management of HJV-HH.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| | - Lingding Xie
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| | - Haiqing Zhu
- Department of Endocrinology and Metabolism, China Meitan General Hospital, No. 29 Xibahe Nanli, Chaoyang District, Beijing, 100029 China
| | - Lulu Song
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| | - Xiaoyan Xing
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| | - Xiaoping Chen
- Department of Endocrinology, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029 China
| |
Collapse
|
9
|
Kong X, Dong X, Yang S, Qian J, Yang J, Jiang Q, Li X, Wang B, Yan D, Lu S, Zhu L, Li G, Li M, Yi S, Deng M, Sun L, Zhou X, Mao H, Gou X. Natural selection on TMPRSS6 associated with the blunted erythropoiesis and improved blood viscosity in Tibetan pigs. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:11-22. [PMID: 30885835 DOI: 10.1016/j.cbpb.2019.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023]
Abstract
Tibetan pigs, indigenous to Tibetan plateau, are well adapted to hypoxia. So far, there have been not any definitively described genes and functional sites responsible for hypoxia adaptation for the Tibetan pig. The whole genome-wide association studies in human suggested that genetic variations in TMPRSS6 was associated with hemoglobin concentration (HGB) and red cell counts (RBC). Here we conducted resequencing of the nearly entire genomic region (40.1 kb) of the candidate gene TMPRSS6 in 40 domestic pigs and 40 wild boars along continuous altitudes and identified 708 SNPs, in addition to an indel (CGTG/----) in the intron 10. We conduct the CGTG indel in 838 domestic pigs, both the CGTG deletion frequency and the pairwise r2 linkage disequilibrium showed an increase with elevated altitudes, suggesting that TMPRSS6 has been under Darwinian positive selection. As the conserved core sequence of hypoxia-response elements (HREs), the deletion of CGTG in Tibetan pigs decreased the expression levels of TMPRSS6 mRNA and protein in the liver revealed by real-time quantitative PCR and western blot, respectively. We compared domestic pigs and Tibetan pigs living continuous altitudes, found that the blood-related traits with the increase of altitude, however, the HGB did not increase with the elevation in Tibetan pigs. Genotype association analysis results dissected a genetic effect on reducing HGB by 13.25 g/L in Gongbo'gyamda Tibetan pigs, decreasing mean corpuscular volume (MCV) by 4.79 fl in Diqing Tibetan pigs. In conclusion, the CGTG deletion of TMPRSS6 resulted in lower HGB and smaller MCV, which could reflect a blunting erythropoiesis and improving blood viscosity as well as erythrocyte deformability. It remains to be determined whether a blunting of erythropoiesis for TMPRSS6 or others genetic effects are the physiological adaptations among Tibetan pigs.
Collapse
Affiliation(s)
- Xiaoyan Kong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shuli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinhua Qian
- Department of Animal Science, Yuxi Agriculture Vocational-Technical College, Yuxi, Yunnan, China
| | - Jianfa Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Xingrun Li
- Department of Animal Science, Dali Vocational and Technical College of Agriculture and Forestry, Dali, Yunnan, China
| | - Bo Wang
- Research Experimental Center, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Li Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gen Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Minjuan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shengnan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Mingyue Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Liyuan Sun
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiaoxia Zhou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Huaming Mao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Xiao Gou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Mao P, Wortham AM, Enns CA, Zhang AS. The catalytic, stem, and transmembrane portions of matriptase-2 are required for suppressing the expression of the iron-regulatory hormone hepcidin. J Biol Chem 2018; 294:2060-2073. [PMID: 30559294 DOI: 10.1074/jbc.ra118.006468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Matriptase-2 (MT2) is a type-II transmembrane, trypsin-like serine protease that is predominantly expressed in the liver. It is a key suppressor for the expression of hepatic hepcidin, an iron-regulatory hormone that is induced via the bone morphogenetic protein signaling pathway. A current model predicts that MT2 suppresses hepcidin expression by cleaving multiple components of the induction pathway. MT2 is synthesized as a zymogen that undergoes autocleavage for activation and shedding. However, the biologically active form of MT2 and, importantly, the contributions of different MT2 domains to its function are largely unknown. Here we examined the activities of truncated MT2 that were generated by site-directed mutagenesis or Gibson assembly master mix, and found that the stem region of MT2 determines the specificity and efficacy for substrate cleavage. The transmembrane domain allowed MT2 activation after reaching the plasma membrane, and the cytoplasmic domain facilitated these processes. Further in vivo rescue studies indicated that the entire extracellular and transmembrane domains of MT2 are required to correct the low-hemoglobin, low-serum iron, and high-hepcidin status in MT2 -/- mice. Unlike in cell lines, no autocleavage of MT2 was detected in vivo in the liver, implying that MT2 may also function independently of its proteolytic activity. In conjunction with our previous studies implicating the cytoplasmic domain as an intracellular iron sensor, these observations reveal the importance of each MT2 domain for MT2-mediated substrate cleavage and for its biological function.
Collapse
Affiliation(s)
- Peizhong Mao
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
11
|
Hamdi-Rozé H, Ben Ali Z, Ropert M, Detivaud L, Aggoune S, Simon D, Pelletier G, Deugnier Y, David V, Bardou-Jacquet E. Variable expressivity of HJV related hemochromatosis: "Juvenile" hemochromatosis? Blood Cells Mol Dis 2018; 74:30-33. [PMID: 30389309 DOI: 10.1016/j.bcmd.2018.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
Abstract
Juvenile hemochromatosis is a rare autosomal recessive disease due to variants in the Hemojuvelin (HJV) gene. Although biological features mimic HFE hemochromatosis, clinical presentation is worst with massive iron overload diagnosed during childhood. Our study describes clinical features and results of genetic testing for a group of patients initially referred for a hepcidino-deficiency syndrome and for whom HJV hemochromatosis was finally diagnosed. 662 patients with iron overload and high serum transferrin saturation were tested, and five genes (HFE, HJV, HAMP, TFR2, SLC40A1) were sequenced. Among our cohort, ten unrelated patients were diagnosed with HJV hemochromatosis. Genetic testing revealed five previously published and five undescribed variants: p.Arg41Pro, p.His180Arg, p.Lys299Glu, p.Cys361Arg and p.Ala384Val. Surprisingly, this study revealed a late age of onset in some patients, contrasting with the commonly accepted definition of "juvenile" hemochromatosis. Five of our patients were 30 years old or older, including two very late discoveries. Biological features and severity of iron overload were similar in younger and older patients. Our study brings new insight on HJV hemochromatosis showing that mild phenotype and late onset are possible. Genetic testing for HJV variants should thus be performed for all patients displaying a non-p.Cys282Tyr homozygous HFE hemochromatosis with hepcidin deficiency phenotype.
Collapse
Affiliation(s)
- Houda Hamdi-Rozé
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France; Univ Rennes, CHU Rennes, CNRS, IGDR, UMR 6290, Molecular Genetics Department, F-35000 Rennes, France.
| | - Zeineb Ben Ali
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France; Univ Rennes, CHU Rennes, INSERM, Liver Disease Department, F-35000 Rennes, France
| | - Martine Ropert
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France; Univ Rennes, CHU Rennes, INSERM, Biochemistry Department, F-35000 Rennes, France
| | - Lénaïck Detivaud
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France
| | - Samira Aggoune
- EPH Belfort, Pediatric Department, El Harrach, Alger 16000, Algeria
| | - Dominique Simon
- Hopital Universitaire Robert-Debré, Endocrinology and Pediatric Diabetology, Paris 75019, France
| | - Gilles Pelletier
- Hopital Bicêtre, Hepatogastroenterology, Le Kremlin-Bicêtre 94275, France
| | - Yves Deugnier
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France; Univ Rennes, CHU Rennes, INSERM, Liver Disease Department, F-35000 Rennes, France
| | - Véronique David
- Univ Rennes, CHU Rennes, CNRS, IGDR, UMR 6290, Molecular Genetics Department, F-35000 Rennes, France
| | - Edouard Bardou-Jacquet
- Univ Rennes, CHU Rennes, INSERM, French Reference Center for Hemochromatosis and Iron Metabolism Disease, F-35000 Rennes, France; Univ Rennes, CHU Rennes, INSERM, Liver Disease Department, F-35000 Rennes, France
| |
Collapse
|
12
|
Functional diversity of TMPRSS6 isoforms and variants expressed in hepatocellular carcinoma cell lines. Sci Rep 2018; 8:12562. [PMID: 30135444 PMCID: PMC6105633 DOI: 10.1038/s41598-018-30618-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023] Open
Abstract
TMPRSS6, also known as matriptase-2, is a type II transmembrane serine protease that plays a major role in iron homeostasis by acting as a negative regulator of hepcidin production through cleavage of the BMP co-receptor haemojuvelin. Iron-refractory iron deficiency anaemia (IRIDA), an iron metabolism disorder, is associated with mutations in the TMPRSS6 gene. By analysing RNA-seq data encoding TMPRSS6 isoforms and other proteins involved in hepcidin production, we uncovered significant differences in expression levels between hepatocellular carcinoma (HCC) cell lines and normal human liver samples. Most notably, TMPRSS6 and HAMP expression was found to be much lower in HepG2 and Huh7 cells when compared to human liver samples. Furthermore, we characterized the common TMPRSS6 polymorphism V736A identified in Hep3B cells, the V795I mutation found in HepG2 cells, also associated with IRIDA, and the G603R substitution recently detected in two IRIDA patients. While variant V736A is as active as wild-type TMPRSS6, mutants V795I and G603R displayed significantly reduced proteolytic activity. Our results provide important information about commonly used liver cell models and shed light on the impact of two TMPRSS6 mutations associated with IRIDA.
Collapse
|
13
|
Dion SP, Béliveau F, Désilets A, Ghinet MG, Leduc R. Transcriptome analysis reveals TMPRSS6 isoforms with distinct functionalities. J Cell Mol Med 2018; 22:2498-2509. [PMID: 29441715 PMCID: PMC5867103 DOI: 10.1111/jcmm.13562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022] Open
Abstract
TMPRSS6 (matriptase-2) is a type II transmembrane serine protease involved in iron homoeostasis. At the cell surface of hepatocytes, TMPRSS6 cleaves haemojuvelin (HJV) and regulates the BMP/SMAD signalling pathway leading to production of hepcidin, a key regulator of iron absorption. Although four TMPRSS6 human isoforms and three mice Tmprss6 isoforms are annotated in databases (Ensembl and RefSeq), their relative expression or activity has not been studied. Analyses of RNA-seq data and RT-PCR from human tissues reveal that TMPRSS6 isoform 1 (TMPRSS6-1) and 3 are mostly expressed in human testis while TMPRSS6-2 and TMPRSS6-4 are the main transcripts expressed in human liver, testis and pituitary. Furthermore, we confirm the existence and analyse the relative expression of three annotated mice Tmprss6 isoforms. Using heterologous expression in HEK293 and Hep3B cells, we show that all human TMPRSS6 isoforms reach the cell surface but only TMPRSS6-1 undergoes internalization. Moreover, truncated TMPRSS6-3 or catalytically altered TMPRSS6-4 interact with HJV and prevent its cleavage by TMPRSS6-2, suggesting their potential role as dominant negative isoforms. Taken together, our results highlight the importance of understanding the precise function of each TMPRSS6 isoforms both in human and in mouse.
Collapse
Affiliation(s)
- Sébastien P. Dion
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - François Béliveau
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Antoine Désilets
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Mariana Gabriela Ghinet
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| | - Richard Leduc
- Department of Pharmacology‐PhysiologyFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
- Institut de Pharmacologie de SherbrookeFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQCCanada
| |
Collapse
|
14
|
Frýdlová J, Rychtarčíková Z, Gurieva I, Vokurka M, Truksa J, Krijt J. Effect of erythropoietin administration on proteins participating in iron homeostasis in Tmprss6-mutated mask mice. PLoS One 2017; 12:e0186844. [PMID: 29073189 PMCID: PMC5658091 DOI: 10.1371/journal.pone.0186844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
Collapse
Affiliation(s)
- Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Laboratory of Tumour Resistance, Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Vestec, Czech Republic
- * E-mail: (JT); (JK)
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
- * E-mail: (JT); (JK)
| |
Collapse
|
15
|
Wahedi M, Wortham AM, Kleven MD, Zhao N, Jue S, Enns CA, Zhang AS. Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway. J Biol Chem 2017; 292:18354-18371. [PMID: 28924039 DOI: 10.1074/jbc.m117.801795] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
Systemic iron homeostasis is maintained by regulation of iron absorption in the duodenum, iron recycling from erythrocytes, and iron mobilization from the liver and is controlled by the hepatic hormone hepcidin. Hepcidin expression is induced via the bone morphogenetic protein (BMP) signaling pathway that preferentially uses two type I (ALK2 and ALK3) and two type II (ActRIIA and BMPR2) BMP receptors. Hemojuvelin (HJV), HFE, and transferrin receptor-2 (TfR2) facilitate this process presumably by forming a plasma membrane complex with BMP receptors. Matriptase-2 (MT2) is a protease and key suppressor of hepatic hepcidin expression and cleaves HJV. Previous studies have therefore suggested that MT2 exerts its inhibitory effect by inactivating HJV. Here, we report that MT2 suppresses hepcidin expression independently of HJV. In Hjv-/- mice, increased expression of exogenous MT2 in the liver significantly reduced hepcidin expression similarly as observed in wild-type mice. Exogenous MT2 could fully correct abnormally high hepcidin expression and iron deficiency in MT2-/- mice. In contrast to MT2, increased Hjv expression caused no significant changes in wild-type mice, suggesting that Hjv is not a limiting factor for hepcidin expression. Further studies revealed that MT2 cleaves ALK2, ALK3, ActRIIA, Bmpr2, Hfe, and, to a lesser extent, Hjv and Tfr2. MT2-mediated Tfr2 cleavage was also observed in HepG2 cells endogenously expressing MT2 and TfR2. Moreover, iron-loaded transferrin blocked MT2-mediated Tfr2 cleavage, providing further insights into the mechanism of Tfr2's regulation by transferrin. Together, these observations indicate that MT2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway.
Collapse
Affiliation(s)
- Mastura Wahedi
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Aaron M Wortham
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Mark D Kleven
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Ningning Zhao
- the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shall Jue
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Caroline A Enns
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| | - An-Sheng Zhang
- From the Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
16
|
Vyoral D, Jiri Petrak. Therapeutic potential of hepcidin − the master regulator of iron metabolism. Pharmacol Res 2017; 115:242-254. [DOI: 10.1016/j.phrs.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
|
17
|
Guo W, Schmidt PJ, Fleming MD, Bhasin S. Effects of Testosterone on Erythropoiesis in a Female Mouse Model of Anemia of Inflammation. Endocrinology 2016; 157:2937-46. [PMID: 27074351 PMCID: PMC4929557 DOI: 10.1210/en.2016-1150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The anemia of inflammation is a common problem in inflammatory and autoimmune diseases. We characterized a mouse model of anemia of chronic inflammation induced by repeated injections of low doses of heat-killed Brucella abortus (HKBA), and determined the effects of T administration on erythropoiesis in this model. Female C57BL/6NCrl mice were injected weekly with HKBA for 10 wk. Weekly injections of T or vehicle oil were started 4 wk later. Control mice were injected with saline and vehicle oil in parallel. HKBA-injected mice had significantly lower hemoglobin, hematocrit, mean corpuscular volume, reticulocyte hemoglobin, transferrin saturation (TSAT), and tissue nonheme iron in liver and spleen, enlarged spleen, and up-regulated hepatic expression of inflammatory markers, serum amyloid A1, and TNFα, but down-regulated IL-6, bone morphogenic protein 6, and hepcidin compared with saline controls. HKBA also reduced serum hepcidin and increased serum erythropoietin. Bone marrow erythroid precursors were substantially reduced in HKBA-injected mice. Cotreatment with T increased the percentage of late-stage erythroid precursors in the bone marrow relative to HKBA-injected and saline controls and reversed HKBA-induced suppression of hemoglobin and hematocrit. T also normalized serum erythropoietin, TSAT, and reticulocyte hemoglobin without correcting the expression of the hepatic inflammation markers. Conclusions are that low-dose HKBA induces moderate anemia characterized by chronic inflammation, decreased iron stores, and suppression of erythroid precursors in the bone marrow. T administration reverses HKBA-induced anemia by stimulating erythropoiesis, which is associated with a shift toward accelerated maturation of erythroid precursors in the bone marrow.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center (W.G., S.B.), and Department of Pathology (P.J.S., M.D.F.), Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Paul J Schmidt
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center (W.G., S.B.), and Department of Pathology (P.J.S., M.D.F.), Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Mark D Fleming
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center (W.G., S.B.), and Department of Pathology (P.J.S., M.D.F.), Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center (W.G., S.B.), and Department of Pathology (P.J.S., M.D.F.), Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
18
|
Häußler D, Mangold M, Furtmann N, Braune A, Blaut M, Bajorath J, Stirnberg M, Gütschow M. Phosphono Bisbenzguanidines as Irreversible Dipeptidomimetic Inhibitors and Activity-Based Probes of Matriptase-2. Chemistry 2016; 22:8525-35. [DOI: 10.1002/chem.201600206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Daniela Häußler
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Martin Mangold
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Norbert Furtmann
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT; LIMES Program Unit Chemical Biology and Medicinal Chemistry; University of Bonn; Dahlmannstrasse 2 53113 Bonn Germany
| | - Marit Stirnberg
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Michael Gütschow
- Pharmaceutical Institute; Pharmaceutical Chemistry I; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
19
|
Beckmann AM, Maurer E, Lülsdorff V, Wilms A, Furtmann N, Bajorath J, Gütschow M, Stirnberg M. En Route to New Therapeutic Options for Iron Overload Diseases: Matriptase-2 as a Target for Kunitz-Type Inhibitors. Chembiochem 2016; 17:595-604. [PMID: 26762582 DOI: 10.1002/cbic.201500651] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 02/04/2023]
Abstract
The cell-surface serine protease matriptase-2 is a critical stimulator of iron absorption by negatively regulating hepcidin, the key hormone of iron homeostasis. Thus, it has attracted much attention as a target in primary and secondary iron overload diseases. Here, we have characterised Kunitz-type inhibitors hepatocyte growth factor activator inhibitor 1 (HAI-1) and HAI-2 as powerful, slow-binding matriptase-2 inhibitors. The binding modes of the matriptase-2-HAI complexes were suggested by molecular modelling. Different assays, including cell-free and cell-based measurements of matriptase-2 activity, determination of inhibition constants and evaluation of matriptase-2 inhibition by analysis of downstream effects in human liver cells, demonstrated that matriptase-2 is an excellent target for Kunitz inhibitors. In particular, HAI-2 is considered a promising scaffold for the design of potent and selective matriptase-2 inhibitors.
Collapse
Affiliation(s)
| | - Eva Maurer
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Verena Lülsdorff
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Annika Wilms
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Norbert Furtmann
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.,Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, 53113, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, University of Bonn, Dahlmannstrasse 2, 53113, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Marit Stirnberg
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
20
|
3,1-Benzothiazines, 1,4-Benzodioxines and 1,4-Benzoxazines as Inhibitors of Matriptase-2: Outcome of a Focused Screening Approach. Pharmaceuticals (Basel) 2016; 9:ph9010002. [PMID: 26771619 PMCID: PMC4812366 DOI: 10.3390/ph9010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 12/30/2022] Open
Abstract
The liver enzyme matriptase-2 is a multi-domain, transmembrane serine protease with an extracellular, C-terminal catalytic domain. Synthetic low-molecular weight inhibitors of matriptase-2 have potential as therapeutics to treat iron overload syndromes, in particular in patients with β-thalassemia. A sub-library of 64 compounds was screened for matriptase-2 inhibition and several active compounds were identified. (S)-Ethyl 2-(benzyl(3-((4-carbamidoylphenoxy)methyl)-2,3-dihydrobenzo[b][1,4]dioxin-6-yl)amino)-2-oxoacetate ((S)-12) showed an IC50 value of less than 10 µM. Structure-activity relationships were discussed and proposals to design new matriptase-2 inhibitors were made.
Collapse
|