1
|
Liu W, Lu Y, Liu J, Yu Y, Yang H. Bridging the gap: investigating the role of phosphorylation at the serine 129 site of α-synuclein in VAPB-PTPIP51 interactions. Acta Neuropathol Commun 2025; 13:40. [PMID: 39994794 PMCID: PMC11849190 DOI: 10.1186/s40478-025-01949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Parkinson's Disease (PD) is characterized by the aggregation and accumulation of α-synuclein (α-syn), along with abnormally high levels of α-syn phosphorylation at the serine 129 site (pSer 129 α-syn, p-α-syn). However, the mechanisms underlying the extensive phosphorylation at the serine 129 site in the pathogenesis of PD, as well as the role of p-α-syn in the process, remain unclear. Furthermore, though α-syn could bind to VAPB and loosen Endoplasmic Reticulum (ER)-mitochondria associations by disrupting VAPB-PTPIP51 tethers, whether and how the phosphorylation of α-syn at the serine 129 site regulates VAPB-PTPIP51 interactions, remains unclear. Herein, Co-Immunoprecipitation and Mass Spectrometry (CO-IP/MS) studies were preformed to identify and compare the Protein-Protein Interactions (PPIs) of phosphorylated and total α-syn in the midbrains of Thy1-SNCA transgenic mice. We further performed CO-IP and Molecular Dynamics (MD) simulation assays to confirm the influence of α-syn phosphorylation on the aforementioned interactions. Additionally, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to annotate the functional features of the common interacting proteins of p-α-syn and VAPB. The potential downstream proteins were further verified via CO-IP. According to the CO-IP and MD results, phosphorylation at the serine 129 site of α-syn increased VAPB-PTPIP51 interactions, and α-syn interacted directly with PTPIP51. Furthermore, functional and pathway enrichment analyses revealed that the common interacting proteins of p-α-syn and VAPB were significantly involved in protein binding, metal ion binding, structural constituent of the cytoskeleton, the intermediate filament cytoskeleton, and microtubule organization processes. Moreover, our findings confirmed the interactions of potential downstream target proteins (CLTC, CAMK2A, ATP1A3, and TUBB4B) with p-α-syn and VAPB. These findings collectively elucidate the structural underpinnings of serine 129 phosphorylation regulates the interaction between α-syn and both VAPB and PTPIP51. We hope that these findings will provide valuable insights into the role and regulatory mechanisms of serine 129 phosphorylation in the pathogenesis of pertinent diseases.
Collapse
Affiliation(s)
- Weijin Liu
- China Rehabilitation Science Institute, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yongquan Lu
- Chongqing Key Laboratory of Emergency Medical, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Hypoxia Conditioning Translational Laboratory of Clinical Medicine, Capital Medical University, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Yan Yu
- China Rehabilitation Science Institute, Beijing, People's Republic of China.
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China.
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China.
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China.
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Lan HJ, Ran J, Wang WX, Zhang L, Wu NN, Zhao YT, Huang MJ, Ni M, Liu F, Cheng N, Nakata PA, Pan J, Whitham SA, Baker BJ, Liu JZ. Clathrin light chains negatively regulate plant immunity by hijacking the autophagy pathway. PLANT COMMUNICATIONS 2024; 5:100937. [PMID: 38693694 PMCID: PMC11369776 DOI: 10.1016/j.xplc.2024.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
The crosstalk between clathrin-mediated endocytosis (CME) and the autophagy pathway has been reported in mammals; however, the interconnection of CME with autophagy has not been established in plants. Here, we report that the Arabidopsis CLATHRIN LIGHT CHAIN (CLC) subunit 2 and 3 double mutant, clc2-1 clc3-1, phenocopies Arabidopsis AUTOPHAGY-RELATED GENE (ATG) mutants in both autoimmunity and nutrient sensitivity. Accordingly, the autophagy pathway is significantly compromised in the clc2-1 clc3-1 mutant. Interestingly, multiple assays demonstrate that CLC2 directly interacts with ATG8h/ATG8i in a domain-specific manner. As expected, both GFP-ATG8h/GFP-ATG8i and CLC2-GFP are subjected to autophagic degradation, and degradation of GFP-ATG8h is significantly reduced in the clc2-1 clc3-1 mutant. Notably, simultaneous knockout of ATG8h and ATG8i by CRISPR-Cas9 results in enhanced resistance against Golovinomyces cichoracearum, supporting the functional relevance of the CLC2-ATG8h/8i interactions. In conclusion, our results reveal a link between the function of CLCs and the autophagy pathway in Arabidopsis.
Collapse
Affiliation(s)
- Hu-Jiao Lan
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Jie Ran
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Wen-Xu Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Lei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ni-Ni Wu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Ya-Ting Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min-Jun Huang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Min Ni
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Ninghui Cheng
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul A Nakata
- U.S. Department of Agriculture-Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianwei Pan
- College of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Barbara J Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, CA 94706, USA
| | - Jian-Zhong Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua 321004, China; Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
3
|
Bai X, Xiong J, Li L, Yu C, Sun C. Suppression of hypoxia-induced CAV1 autophagic degradation enhances nanoalbumin-paclitaxel transcytosis and improves therapeutic activity in pancreatic cancer. Eur J Pharmacol 2024; 969:176431. [PMID: 38395374 DOI: 10.1016/j.ejphar.2024.176431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoalbumin-paclitaxel (nab-paclitaxel) is a standard chemotherapy for pancreatic cancer but has shown limited efficacy. However, the mechanism through which circulating nab-paclitaxel passes through the tumour vascular endothelium has not been determined. In our study, a new nonradioactive and highly sensitive method for analysing nab-paclitaxel transcytosis was established. Based on these methods, we found that hypoxia significantly enhanced the autophagic degradation of CAV1 and therefore attenuated caveolae-mediated nab-paclitaxel transcytosis across endothelial cells (ECs). In a proof-of-concept experiment, higher levels of CAV1, accompanied by lower levels of LC3B, were observed in the vascular endothelium of pancreatic cancer tissues collected from patients who showed a good response to nab-paclitaxel compared with those from patients who showed a poor response to nab-paclitaxel. Furthermore, both in vivo and in vitro studies confirmed that suppressing the autophagic degradation of CAV1 via EC-specific ATG5 knockdown or hydroxychloroquine sulfate (HCQ) treatment significantly enhanced nab-paclitaxel translocation across the endothelial barrier into pancreatic cancer cells and amplified the inhibitory effect of nab-paclitaxel on pancreatic tumour growth. The stimulation of CAV1 expression by EC-specific overexpression of exogenous CAV1 or administration of gemcitabine hydrochloride (GE) had the same effect. These results demonstrated that suppressing CAV1 autophagic degradation is a novel translatable strategy for enhancing nab-paclitaxel chemotherapeutic activity in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiangli Bai
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China; Department of Laboratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430077, Wuhan, Hubei, China
| | - Jia Xiong
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, 518020, Shenzhen, Guangdong, China
| | - Lin Li
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Chao Yu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China
| | - Chengyi Sun
- School of Basic Medicine, Guizhou Medical University, 5500025, Guiyang, Guizhou, China; Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Leighton SE, Wong RS, Lucaciu SA, Hauser A, Johnston D, Stathopulos PB, Bai D, Penuela S, Laird DW. Cx31.1 can selectively intermix with co-expressed connexins to facilitate its assembly into gap junctions. J Cell Sci 2024; 137:jcs261631. [PMID: 38533727 PMCID: PMC11058089 DOI: 10.1242/jcs.261631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Connexins are channel-forming proteins that function to facilitate gap junctional intercellular communication. Here, we use dual cell voltage clamp and dye transfer studies to corroborate past findings showing that Cx31.1 (encoded by GJB5) is defective in gap junction channel formation, illustrating that Cx31.1 alone does not form functional gap junction channels in connexin-deficient mammalian cells. Rather Cx31.1 transiently localizes to the secretory pathway with a subpopulation reaching the cell surface, which is rarely seen in puncta reminiscent of gap junctions. Intracellular retained Cx31.1 was subject to degradation as Cx31.1 accumulated in the presence of proteasomal inhibition, had a faster turnover when Cx43 was present and ultimately reached lysosomes. Although intracellularly retained Cx31.1 was found to interact with Cx43, this interaction did not rescue its delivery to the cell surface. Conversely, the co-expression of Cx31 dramatically rescued the assembly of Cx31.1 into gap junctions where gap junction-mediated dye transfer was enhanced. Collectively, our results indicate that the localization and functional status of Cx31.1 is altered through selective interplay with co-expressed connexins, perhaps suggesting Cx31.1 is a key regulator of intercellular signaling in keratinocytes.
Collapse
Affiliation(s)
- Stephanie E. Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Robert S. Wong
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Sergiu A. Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Danielle Johnston
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Donglin Bai
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Western's Bone and Joint Institute, The Dr. Sandy Kirkley Centre for Musculoskeletal Research, University Hospital, London, ON N6A 5B9, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
5
|
Lucaciu SA, Leighton SE, Hauser A, Yee R, Laird DW. Diversity in connexin biology. J Biol Chem 2023; 299:105263. [PMID: 37734551 PMCID: PMC10598745 DOI: 10.1016/j.jbc.2023.105263] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Over 35 years ago the cell biology community was introduced to connexins as the subunit employed to assemble semicrystalline clusters of intercellular channels that had been well described morphologically as gap junctions. The decade that followed would see knowledge of the unexpectedly large 21-member human connexin family grow to reflect unique and overlapping expression patterns in all organ systems. While connexin biology initially focused on their role in constructing highly regulated intercellular channels, this was destined to change as discoveries revealed that connexin hemichannels at the cell surface had novel roles in many cell types, especially when considering connexin pathologies. Acceptance of connexins as having bifunctional channel properties was initially met with some resistance, which has given way in recent years to the premise that connexins have multifunctional properties. Depending on the connexin isoform and cell of origin, connexins have wide-ranging half-lives that vary from a couple of hours to the life expectancy of the cell. Diversity in connexin channel characteristics and molecular properties were further revealed by X-ray crystallography and single-particle cryo-EM. New avenues have seen connexins or connexin fragments playing roles in cell adhesion, tunneling nanotubes, extracellular vesicles, mitochondrial membranes, transcription regulation, and in other emerging cellular functions. These discoveries were largely linked to Cx43, which is prominent in most human organs. Here, we will review the evolution of knowledge on connexin expression in human adults and more recent evidence linking connexins to a highly diverse array of cellular functions.
Collapse
Affiliation(s)
- Sergiu A Lucaciu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephanie E Leighton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Alexandra Hauser
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Ryan Yee
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
6
|
Fisher CG, Falk MM. Endocytosis and Endocytic Motifs across the Connexin Gene Family. Int J Mol Sci 2023; 24:12851. [PMID: 37629031 PMCID: PMC10454166 DOI: 10.3390/ijms241612851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Proteins fated to be internalized by clathrin-mediated endocytosis require an endocytic motif, where AP-2 or another adaptor protein can bind and recruit clathrin. Tyrosine and di-leucine-based sorting signals are such canonical motifs. Connexin 43 (Cx43) has three canonical tyrosine-based endocytic motifs, two of which have been previously shown to recruit clathrin and mediate its endocytosis. In addition, di-leucine-based motifs have been characterized in the Cx32 C-terminal domain and shown to mediate its endocytosis. Here, we examined the amino acid sequences of all 21 human connexins to identify endocytic motifs across the connexin gene family. We find that although there is limited conservation of endocytic motifs between connexins, 14 of the 21 human connexins contain one or more canonical tyrosine or di-leucine-based endocytic motif in their C-terminal or intracellular loop domain. Three connexins contain non-canonical (modified) di-leucine motifs. However, four connexins (Cx25, Cx26, Cx31, and Cx40.1) do not harbor any recognizable endocytic motif. Interestingly, live cell time-lapse imaging of different GFP-tagged connexins that either contain or do not contain recognizable endocytic motifs readily undergo endocytosis, forming clearly identifiable annular gap junctions when expressed in HeLa cells. How connexins without defined endocytic motifs are endocytosed is currently not known. Our results demonstrate that an array of endocytic motifs exists in the connexin gene family. Further analysis will establish whether the sites we identified in this in silico analysis are legitimate endocytic motifs.
Collapse
Affiliation(s)
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| |
Collapse
|
7
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
8
|
Fan LX, Tao L, Lai YC, Cai SY, Zhao ZY, Yang F, Su RY, Wang Q. Cx32 promotes autophagy and produces resistance to SN‑induced apoptosis via activation of AMPK signalling in cervical cancer. Int J Oncol 2022; 60:10. [PMID: 34970699 DOI: 10.3892/ijo.2021.5300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 11/06/2022] Open
Abstract
The roles of gap junctions (GJs) and its components, connexins, in the autophagy of cervical cancer cells have been rarely investigated. Our previous study demonstrated that connexin 32 (Cx32) exerted an anti‑apoptotic effect on cervical cancer. However, as an important regulator of apoptosis, whether the autophagy is involved in the function of Cx32 on cervical cancer cells is not well defined. The present study aimed to investigate the role of Cx32 on autophagy and apoptosis inhibition in cervical cancer cells. The expression levels of Cx32 and the autophagy‑associated protein LC3‑Ⅱ in paracancerous cervical tissues (n=30) and cervical cancer (n=50) tissues were determined via western blotting. In total, 45 cervical cancer specimens were used to evaluate the clinical relevance of Cx32 and LC3‑Ⅱ. It was found that both Cx32 and LC3‑Ⅱ were upregulated in cervical cancer tissues compared with those in paracancerous cervical tissues. The effect of Cx32 on autophagy was examined by detecting the change of LC3‑Ⅱ using western blotting, transfection with enhanced green fluorescent protein‑LC3 plasmid and transmission electron microscopy analysis. Overexpression of Cx32 significantly enhanced autophagy in HeLa‑Cx32 cells, whereas knockdown of Cx32 suppressed autophagy in C‑33A cells. The flow cytometry results demonstrated that Cx32 inhibited the apoptosis of cervical cancer cells by promoting autophagy. Moreover, Cx32 triggered autophagy via the activation of the AMP‑activated protein kinase (AMPK) signalling, regardless of the presence or absence of GJs. Collectively, it was identified that Cx32 exerted its anti‑apoptotic effect by activating autophagy via the AMPK pathway in cervical cancer, which demonstrates a novel mechanism for Cx32 in human cervical cancer progression.
Collapse
Affiliation(s)
- Li-Xia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yong-Chang Lai
- Department of Urology, The Eighth Affiliated Hospital, Sun Yat‑Sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Shao-Yi Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zi-Yu Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Feng Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ri-Ya Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
9
|
Luo KJ, Chen CX, Yang JP, Huang YC, Cardenas ER, Jiang JX. Connexins in Lung Cancer and Brain Metastasis. Front Oncol 2020; 10:599383. [PMID: 33425756 PMCID: PMC7786366 DOI: 10.3389/fonc.2020.599383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/11/2020] [Indexed: 01/20/2023] Open
Abstract
Connexins (Cxs) are involved in the brain metastasis of lung cancer cells. Thus, it is necessary to determine whether gap junction-forming Cxs are involved in the communication between lung cancer cells and the host cells, such as endothelial cells, forming the brain-blood-barrier, and cells in the central nervous system. Data from multiple studies support that Cxs function as tumor suppressors during lung cancer occurrence. However, recent evidence suggests that during metastasis to the brain, cancer cells establish communication with the host. This review discusses junctional or non-junctional hemichannel studies in lung cancer development and brain metastasis, highlighting important unanswered questions and controversies.
Collapse
Affiliation(s)
- Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Jia-Peng Yang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Yun-Chao Huang
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University/Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
- Joint International Research Laboratory of Regional Tumor in High Altitude Area, Kunming, China
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
10
|
Nugent L, Ofori-Frimpong B, Martin PE, Green CR, Wright CS. Cx31.1 expression is modulated in HaCaT cells exposed to UV-induced damage and scrape-wounding. J Cell Physiol 2020; 236:911-920. [PMID: 32592185 DOI: 10.1002/jcp.29901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
Abstract
Connexin31.1 (Cx31.1) is a gap junction protein associated with apoptosis. In the skin, apoptosis is modulated by diabetes. A HaCaT skin model investigated whether normal (NGI) and high glucose and insulin (HGI; diabetic) conditions altered Cx31.1 expression, and if these were apoptosis linked. Cx31.1 was found in HaCaT and HeLa Ohio cells, with HaCaT Cx31.1 protein increased in HGI conditions, and around apoptotic cells. HeLa Cx31.1 channels were noncommunicative. Post scrape-wounding, Cx31.1 increased at wound edges. Caspase 3/7 in scrape-wounds media (containing cells) elevated in HGI. UV exposure raised Cx31.1, and caspase 3/7, in NGI and HGI. UV reduced cell viability in NGI cells, although not significantly in HGI. Cx31.1 is modulated during HaCaT cell wound closure, and associated with 'diabetic' conditions. Cx31.1 expression matched apoptosis levels, higher in HGI cultures. Cx31.1 is noncommunicating, modulated after wounding, linked to apoptosis, and may be associated with tissue turn-over around diabetic wounds.
Collapse
Affiliation(s)
- Louise Nugent
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Boatemaa Ofori-Frimpong
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Patricia E Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Colin R Green
- Department of Opthamology, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Catherine S Wright
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
11
|
Aasen T, Sansano I, Montero MÁ, Romagosa C, Temprana-Salvador J, Martínez-Marti A, Moliné T, Hernández-Losa J, Ramón y Cajal S. Insight into the Role and Regulation of Gap Junction Genes in Lung Cancer and Identification of Nuclear Cx43 as a Putative Biomarker of Poor Prognosis. Cancers (Basel) 2019; 11:cancers11030320. [PMID: 30845770 PMCID: PMC6468764 DOI: 10.3390/cancers11030320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022] Open
Abstract
Direct intercellular communication, mediated by gap junctions formed by the connexin transmembrane protein family, is frequently dysregulated in cancer. Connexins have been described as tumour suppressors, but emerging evidence suggests that they can also act as tumour promoters. This feature is connexin- and tissue-specific and may be mediated by complex signalling pathways through gap junctions or hemichannels or by completely junction-independent events. Lung cancer is the number one cancer in terms of mortality worldwide, and novel biomarkers and therapeutic targets are urgently needed. Our objective was to gain a better understanding of connexins in this setting. We used several in silico tools to analyse TCGA data in order to compare connexin mRNA expression between healthy lung tissue and lung tumours and correlated these results with gene methylation patterns. Using Kaplan-Meier plotter tools, we analysed a microarray dataset and an RNA-seq dataset of non-small cell lung tumours in order to correlate connexin expression with patient prognosis. We found that connexin mRNA expression is frequently either upregulated or downregulated in lung tumours. This correlated with both good and poor prognosis (overall survival) in a clear connexin isoform-dependent manner. These associations were strongly influenced by the histological subtype (adenocarcinoma versus squamous cell carcinoma). We present an overview of all connexins but particularly focus on four isoforms implicated in lung cancer: Cx26, Cx30.3, Cx32 and Cx43. We further analysed the protein expression and localization of Cx43 in a series of 73 human lung tumours. We identified a subset of tumours that exhibited a unique strong nuclear Cx43 expression pattern that predicted worse overall survival (p = 0.014). Upon sub-stratification, the prognostic value remained highly significant in the adenocarcinoma subtype (p = 0.002) but not in the squamous carcinoma subtype (p = 0.578). This finding highlights the importance of analysis of connexin expression at the protein level, particularly the subcellular localization. Elucidation of the underlying pathways regulating Cx43 localization may provide for novel therapeutic opportunities.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Spain.
| | - Irene Sansano
- Pathology Department, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| | | | - Cleofé Romagosa
- Pathology Department, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| | | | | | - Teresa Moliné
- Pathology Department, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| | | | - Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Spain.
- Pathology Department, Vall d'Hebron University Hospital, Barcelona 08035, Spain.
| |
Collapse
|
12
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
13
|
Aasen T, Johnstone S, Vidal-Brime L, Lynn KS, Koval M. Connexins: Synthesis, Post-Translational Modifications, and Trafficking in Health and Disease. Int J Mol Sci 2018; 19:ijms19051296. [PMID: 29701678 PMCID: PMC5983588 DOI: 10.3390/ijms19051296] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 02/06/2023] Open
Abstract
Connexins are tetraspan transmembrane proteins that form gap junctions and facilitate direct intercellular communication, a critical feature for the development, function, and homeostasis of tissues and organs. In addition, a growing number of gap junction-independent functions are being ascribed to these proteins. The connexin gene family is under extensive regulation at the transcriptional and post-transcriptional level, and undergoes numerous modifications at the protein level, including phosphorylation, which ultimately affects their trafficking, stability, and function. Here, we summarize these key regulatory events, with emphasis on how these affect connexin multifunctionality in health and disease.
Collapse
Affiliation(s)
- Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - Scott Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, P.O. Box 801394, Charlottesville, VI 22908, USA.
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TT, UK.
| | - Laia Vidal-Brime
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| | - K Sabrina Lynn
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Gehne N, Lamik A, Lehmann M, Haseloff RF, Andjelkovic AV, Blasig IE. Cross-over endocytosis of claudins is mediated by interactions via their extracellular loops. PLoS One 2017; 12:e0182106. [PMID: 28813441 PMCID: PMC5557494 DOI: 10.1371/journal.pone.0182106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Claudins (Cldns) are transmembrane tight junction (TJ) proteins that paracellularly seal endo- and epithelial barriers by their interactions within the TJs. However, the mechanisms allowing TJ remodeling while maintaining barrier integrity are largely unknown. Cldns and occludin are heterophilically and homophilically cross-over endocytosed into neighboring cells in large, double membrane vesicles. Super-resolution microscopy confirmed the presence of Cldns in these vesicles and revealed a distinct separation of Cldns derived from opposing cells within cross-over endocytosed vesicles. Colocalization of cross-over endocytosed Cldn with the autophagosome markers as well as inhibition of autophagosome biogenesis verified involvement of the autophagosomal pathway. Accordingly, cross-over endocytosed Cldns underwent lysosomal degradation as indicated by lysosome markers. Cross-over endocytosis of Cldn5 depended on clathrin and caveolin pathways but not on dynamin. Cross-over endocytosis also depended on Cldn-Cldn-interactions. Amino acid substitutions in the second extracellular loop of Cldn5 (F147A, Q156E) caused impaired cis- and trans-interaction, as well as diminished cross-over endocytosis. Moreover, F147A exhibited an increased mobility in the membrane, while Q156E was not as mobile but enhanced the paracellular permeability. In conclusion, the endocytosis of TJ proteins depends on their ability to interact strongly with each other in cis and trans, and the mobility of Cldns in the membrane is not necessarily an indicator of barrier permeability. TJ-remodeling via cross-over endocytosis represents a general mechanism for the degradation of transmembrane proteins in cell-cell contacts and directly links junctional membrane turnover to autophagy.
Collapse
Affiliation(s)
- Nora Gehne
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Agathe Lamik
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Reiner F. Haseloff
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Ingolf E. Blasig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- * E-mail:
| |
Collapse
|
15
|
Cheng L, Yang Q, Li C, Dai L, Yang Y, Wang Q, Ding Y, Zhang J, Liu L, Zhang S, Fan P, Hu X, Xiang R, Yu D, Wei Y, Deng H. DDA1, a novel oncogene, promotes lung cancer progression through regulation of cell cycle. J Cell Mol Med 2017; 21:1532-1544. [PMID: 28211159 PMCID: PMC5542901 DOI: 10.1111/jcmm.13084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is globally widespread and associated with high morbidity and mortality. DDA1 (DET1 and DDB1 associated 1) was first discovered and registered in the GenBank database by our colleagues. DDA1, an evolutionarily conserved gene, might have significant functions. Recent reports have demonstrated that DDA1 is linked to the ubiquitin–proteasome pathway and facilitates the degradation of target proteins. However, the function of DDA1 in lung cancer was previously unknown. This study aimed to investigate whether DDA1 contributes to tumorigenesis and progression of lung cancer. We found that the expression of DDA1 in normal lung cells and tissue was significantly lower than that in lung cancer and was associated with poor prognosis. DDA1 overexpression promoted proliferation of lung tumour cells and facilitated cell cycle progression in vitro and subcutaneous xenograft tumour progression in vivo. Mechanistically, this was associated with the regulation of S phase and cyclins including cyclin D1/D3/E1. These results indicate that DDA1 promotes lung cancer progression, potentially through promoting cyclins and cell cycle progression. Therefore, DDA1 may be a potential novel target for lung cancer treatment, and a biomarker for tumour prognosis.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianmei Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Can Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Dai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingnan Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Ding
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junfeng Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Fan
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Hu
- Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Xiang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Nighot P, Ma T. Role of autophagy in the regulation of epithelial cell junctions. Tissue Barriers 2016; 4:e1171284. [PMID: 27583189 DOI: 10.1080/21688370.2016.1171284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell survival mechanism by which bulk cytoplasmic material, including soluble macromolecules and organelles, is targeted for lysosomal degradation. The role of autophagy in diverse cellular processes such as metabolic stress, neurodegeneration, cancer, aging, immunity, and inflammatory diseases is being increasingly recognized. Epithelial cell junctions play an integral role in the cell homeostasis via physical binding, regulating paracellular pathways, integrating extracellular cues into intracellular signaling, and cell-cell communication. Recent data indicates that cell junction composition is very dynamic. The junctional protein complexes are actively regulated in response to various intra- and extra-cellular clues by intracellular trafficking and degradation pathways. This review discusses the recent and emerging information on how autophagy regulates various epithelial cell junctions. The knowledge of autophagy regulation of epithelial junctions will provide further rationale for targeting autophagy in a wide variety of human disease conditions.
Collapse
Affiliation(s)
- Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine , Albuquerque, NM, USA
| | - Thomas Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA; Veterans Affairs Medical Center, Albuquerque, NM, USA
| |
Collapse
|
17
|
Autophagy regulates resistance of non-small cell lung cancer cells to paclitaxel. Tumour Biol 2016; 37:10539-44. [PMID: 26852748 DOI: 10.1007/s13277-016-4929-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022] Open
Abstract
Paclitaxel is a chemotherapeutic drug that is effective for treating non-small cell lung cancer (NSCLC). However, some NSCLCs are not sensitive to paclitaxel treatment with undetermined underlying molecular mechanisms. In this study, we found that paclitaxel dose-dependently activated Beclin-1 in 2 NSCLC cell lines, A549 and Calu-3. Inhibition of autophagy significantly increased the paclitaxel-induced NSCLC cell death in a cell counting kit-8 (CCK-8) assay. Moreover, microRNA (miR)-216b levels were significantly downregulated in paclitaxel-treated NSCLC cells. Bioinformatics study showed that miR-216b targeted the 3'-UTR of Beclin-1 mRNA to inhibit its translation, which was confirmed by luciferase reporter assay. Together, these data suggest that paclitaxel may decrease miR-216b levels in NSCLC cells, which subsequently upregulates Beclin-1 to increase NSCLC cell autophagy to antagonize paclitaxel-induced cell death. Strategies that increase miR-216b levels or inhibit cell autophagy may improve the outcome of paclitaxel treatment in NSCLC therapy.
Collapse
|