1
|
Pischiutta F, Sammali E, Parolini O, Carswell HVO, Zanier ER. Placenta-Derived Cells for Acute Brain Injury. Cell Transplant 2019; 27:151-167. [PMID: 29562781 PMCID: PMC6434489 DOI: 10.1177/0963689717732992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute brain injury resulting from ischemic/hemorrhagic or traumatic damage is one of the leading causes of mortality and disability worldwide and is a significant burden to society. Neuroprotective options to counteract brain damage are very limited in stroke and traumatic brain injury (TBI). Given the multifaceted nature of acute brain injury and damage progression, several therapeutic targets may need to be addressed simultaneously to interfere with the evolution of the injury and improve the patient’s outcome. Stem cells are ideal candidates since they act on various mechanisms of protection and repair, improving structural and functional outcomes after experimental stroke or TBI. Stem cells isolated from placenta offer advantages due to their early embryonic origin, ease of procurement, and ethical acceptance. We analyzed the evidence for the beneficial effects of placenta-derived stem cells in acute brain injury, with the focus on experimental studies of TBI and stroke, the engineering strategies pursued to foster cell potential, and characterization of the bioactive molecules secreted by placental cells, known as their secretome, as an alternative cell-free strategy. Results from the clinical application of placenta-derived stem cells for acute brain injury and ongoing clinical trials are summarily discussed.
Collapse
Affiliation(s)
- Francesca Pischiutta
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Eliana Sammali
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.,2 Department of Cerebrovascular Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ornella Parolini
- 3 Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,4 Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Hilary V O Carswell
- 5 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, United Kingdom
| | - Elisa R Zanier
- 1 Department of Neuroscience, Laboratory of Acute Brain Injury and Therapeutic Strategies, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
2
|
Sironi F, Vallarola A, Violatto MB, Talamini L, Freschi M, De Gioia R, Capelli C, Agostini A, Moscatelli D, Tortarolo M, Bigini P, Introna M, Bendotti C. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice. Stem Cell Res 2017; 25:166-178. [PMID: 29154076 DOI: 10.1016/j.scr.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/02/2017] [Accepted: 11/04/2017] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression.
Collapse
Affiliation(s)
- Francesca Sironi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Antonio Vallarola
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martina Bruna Violatto
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Talamini
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mattia Freschi
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Roberta De Gioia
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Capelli
- USS Center of Cellular Therapy"G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Azzurra Agostini
- Department of Chemistry, Material and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy
| | - Davide Moscatelli
- Department of Chemistry, Material and Chemical Engineering "G. Natta", Politecnico di Milano, Milano, Italy
| | - Massimo Tortarolo
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martino Introna
- USS Center of Cellular Therapy"G. Lanzani", ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Bendotti
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy.
| |
Collapse
|
4
|
Sammali E, Alia C, Vegliante G, Colombo V, Giordano N, Pischiutta F, Boncoraglio GB, Barilani M, Lazzari L, Caleo M, De Simoni MG, Gaipa G, Citerio G, Zanier ER. Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Sci Rep 2017; 7:6962. [PMID: 28761170 PMCID: PMC5537246 DOI: 10.1038/s41598-017-07274-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes functional recovery after stroke in animal models, but the mechanisms underlying these effects remain incompletely understood. We tested the efficacy of Good Manufacturing Practices (GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are efficacious and if this efficacy is associated with cortical circuit reorganization using neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, indicating an enhanced plastic potential of the perilesional cortex. These results show that hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, the downregulation of “plasticity brakes” such as PNN suggests that hBM-MSC treatment stimulates plasticity and formation of new connections in the perilesional cortex.
Collapse
Affiliation(s)
- Eliana Sammali
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy.,Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milano, Italy
| | - Claudia Alia
- Neuroscience Institute, CNR, Pisa, Italy.,Scuola Normale Superiore, Pisa, Italy
| | - Gloria Vegliante
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Valentina Colombo
- Laboratory for Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Monza, Italy.,Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Nadia Giordano
- Neuroscience Institute, CNR, Pisa, Italy.,Scuola Normale Superiore, Pisa, Italy
| | - Francesca Pischiutta
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Giorgio B Boncoraglio
- Department of Cerebrovascular Diseases, Fondazione IRCCS - Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mario Barilani
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | - Lorenza Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milano, Italy
| | | | - Maria-Grazia De Simoni
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy
| | - Giuseppe Gaipa
- Laboratory for Cell and Gene Therapy "Stefano Verri", ASST-Monza, San Gerardo Hospital, Monza, Italy.,Tettamanti Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.,Neurointensive Care, ASST-Monza, San Gerardo Hospital, Monza, Italy
| | - Elisa R Zanier
- Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa,19, 20156, Milano, Italy.
| |
Collapse
|