1
|
Sen'kova AV, Bishani A, Savin IA, Zenkova MA, Chernolovskaya EL. Effect of immunostimulatory RNA on the fibrosis development in Bleomycin- or LPS-induced mouse models. Biochimie 2025; 229:9-18. [PMID: 39362399 DOI: 10.1016/j.biochi.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Previously, we described a 19-base pair double-stranded RNA with 3'-trinucleotide overhangs, acting as immunostimulatory RNA (isRNA). This molecule demonstrated notable antiproliferative effects on cancer cells, inhibited tumor growth, and elicited immunostimulatory and antiviral responses by inducing cytokine and interferon production. Within this study, we compared the efficiency of lung fibrosis development, initiated in mice by BLM or LPS using different schemes of induction. Then we compared the effect of isRNA used in a preventive or therapeutic regimen on the development of fibrosis in selected BLM- and LPS-induced mouse models and showed that isRNA can be used in pathological conditions accompanied by the development of inflammation and the risk of fibrosis formation, without adverse side effects. Prophylactic regimen of isRNA application is beneficial for prevention of the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Aleksandra V Sen'kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Ali Bishani
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia; Faculty of Natural Sciences, Novosibirsk State University, Pirogova Str., 1, 630090, Novosibirsk, Russia
| | - Innokenty A Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Acad. Lavrentiev Ave. 8, 630090, Novosibirsk, Russia.
| |
Collapse
|
2
|
Li K, Liu X, Lu R, Zhao P, Tian Y, Li J. Bleomycin pollution and lung health: The therapeutic potential of peimine in bleomycin-induced pulmonary fibrosis by inhibiting glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117451. [PMID: 39626488 DOI: 10.1016/j.ecoenv.2024.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
The increasing use of anticancer drugs has led to the emergence of environmental contaminants such as bleomycin (BLM), which poses significant threats to both aquatic ecosystems and human health. Bleomycin, known for its DNA-damaging properties, is extensively used in oncology. Its resistance to biodegradation, along with the limitations of conventional wastewater treatment processes, facilitates environmental accumulation from various sources, highlighting the need for effective management and treatment strategies to mitigate ecological and health risks. This study investigates the link between BLM pollution and pulmonary fibrosis, a progressive lung disease characterized by tissue scarring and loss of function. We demonstrate that BLM induces pulmonary fibrosis in mice and enhances glycolysis and fibroblast activation. Our findings also indicate that peimine, a natural compound derived from Fritillaria, suppresses fibroblast activation and ameliorates pulmonary fibrosis by inhibiting glycolysis through the PI3K/Akt/PFKFB3 signaling pathway. Taken together, this study underscores the environmental and health risks associated with the accumulation of cytostatic drugs like BLM and highlights the therapeutic potential of natural compounds such as peimine. Our results contribute to the development of novel strategies for the prevention and treatment of pulmonary fibrosis and call for better management practices to mitigate the environmental impact of cytostatic drugs.
Collapse
Affiliation(s)
- Kangchen Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xuefang Liu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Ruilong Lu
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Peng Zhao
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Yange Tian
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Jiansheng Li
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-constructed by Henan Province & Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450000, China; Department of Respiratory Diseases, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| |
Collapse
|
3
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
4
|
Xu C, Hou L, Zhao J, Wang Y, Jiang F, Jiang Q, Zhu Z, Tian L. Exosomal let-7i-5p from three-dimensional cultured human umbilical cord mesenchymal stem cells inhibits fibroblast activation in silicosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113302. [PMID: 35189518 DOI: 10.1016/j.ecoenv.2022.113302] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Silicosis of pulmonary fibrosis (PF) is related to long-term excessive inhalation of silica. The activation of fibroblasts into myofibroblasts is the main terminal effect leading to lung fibrosis, which is of great significance to the study of the occurrence and development of silicosis fibrosis and its prevention and treatment. Exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) are considered to be a potential therapy of silica-induced PF, however, their exact mechanism remains unknown. Therefore, this study aims to explore whether hucMSC-Exos affect the activation of fibroblasts to alleviate PF. In this study, a three-dimensional (3D) method was applied to culture hucMSCs and MRC-5 cells (human embryonic lung fibroblasts), and exosomes were isolated from serum-free media, identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blotting analysis. Then, the study used an animal model of silica-induced PF to observe the effects of hucMSC-Exos and MRC-5-Exos on activation of fibroblasts. In addition, the activation of fibroblasts was analyzed by Western blotting analysis, wound healing, and migration assay with the treatment of hucMSC-Exos and MRC-5-Exos in NIH-3T3 cells (mouse embryonic fibroblasts). Furthermore, differential expression of microRNAs (DE miRNAs) was measured between hucMSCs-Exos and MRC-5-Exos by high throughput sequence. HucMSC-Exos inhibited the activation of fibroblasts in mice and NIH-3T3 cells. Let-7i-5p was significantly up-regulated in hucMSCs-Exos compared to MRC-5-Exos, which was related to silica-induced PF. Let-7i-5p of hucMSCs-Exos was responsible for the activation of fibroblasts by targeting TGFBR1. Meanwhile, Smad3 was also an important role in the activation of fibroblasts. The study demonstrates that hucMSCs-Exos act as a mediator that transfers let-7i-5p to inhibit the activation of fibroblasts, which alleviates PF through the TGFBR1/Smad3 signaling pathway. The mechanism has potential value for the treatment of silica-induced PF.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Hou
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuyang Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Anticoagulation Prior to COVID-19 Infection Has No Impact on 6 Months Mortality: A Propensity Score-Matched Cohort Study. J Clin Med 2022; 11:jcm11020352. [PMID: 35054046 PMCID: PMC8781160 DOI: 10.3390/jcm11020352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) shows high incidence of thromboembolic events in humans. In the present study, we aimed to evaluate if anticoagulation prior to COVID-19 infection may impact clinical profile, as well as mortality rate among patients hospitalized with COVID-19. The study was based on retrospective analysis of medical records of patients with laboratory confirmed SARS-CoV-2 infection. After propensity score matching (PSM), a group of 236 patients receiving any anticoagulant treatment prior to COVID-19 infection (AT group) was compared to 236 patients without previous anticoagulation (no AT group). In 180 days, the observation we noted comparable mortality rate in AT and no AT groups (38.5% vs. 41.1%, p = 0.51). Similarly, we did not observe any statistically significant differences in admission in the intensive care unit (14.1% vs. 9.6%, p = 0.20), intubation and mechanical ventilation (15.0% vs. 11.6%, p = 0.38), catecholamines usage (14.3% vs. 13.8%, p = 0.86), and bleeding rate (6.3% vs. 8.9%, p = 0.37) in both groups. Our results suggest that antithrombotic treatment prior to COVID-19 infection is unlikely to be protective for morbidity and mortality in patients hospitalized with COVID-19.
Collapse
|
6
|
Janssen R, Visser MPJ, Dofferhoff ASM, Vermeer C, Janssens W, Walk J. Vitamin K metabolism as the potential missing link between lung damage and thromboembolism in Coronavirus disease 2019. Br J Nutr 2021; 126:191-198. [PMID: 33023681 PMCID: PMC7578635 DOI: 10.1017/s0007114520003979] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/23/2020] [Indexed: 12/20/2022]
Abstract
Coronavirus disease 2019 (Covid-19), caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, exerts far-reaching effects on public health and socio-economic welfare. The majority of infected individuals have mild to moderate symptoms, but a significant proportion develops respiratory failure due to pneumonia. Thrombosis is another frequent manifestation of Covid-19 that contributes to poor outcomes. Vitamin K plays a crucial role in the activation of both pro- and anticlotting factors in the liver and the activation of extrahepatically synthesised protein S which seems to be important in local thrombosis prevention. However, the role of vitamin K extends beyond coagulation. Matrix Gla protein (MGP) is a vitamin K-dependent inhibitor of soft tissue calcification and elastic fibre degradation. Severe extrahepatic vitamin K insufficiency was recently demonstrated in Covid-19 patients, with high inactive MGP levels correlating with elastic fibre degradation rates. This suggests that insufficient vitamin K-dependent MGP activation leaves elastic fibres unprotected against SARS-CoV-2-induced proteolysis. In contrast to MGP, Covid-19 patients have normal levels of activated factor II, in line with previous observations that vitamin K is preferentially transported to the liver for activation of procoagulant factors. We therefore expect that vitamin K-dependent endothelial protein S activation is also compromised, which would be compatible with enhanced thrombogenicity. Taking these data together, we propose a mechanism of pneumonia-induced vitamin K depletion, leading to a decrease in activated MGP and protein S, aggravating pulmonary damage and coagulopathy, respectively. Intervention trials should be conducted to assess whether vitamin K administration plays a role in the prevention and treatment of severe Covid-19.
Collapse
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, 6532 SZNijmegen, The Netherlands
| | - Margot P. J. Visser
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, 6532 SZNijmegen, The Netherlands
| | - Anton S. M. Dofferhoff
- Department of Internal Medicine, Canisius-Wilhelmina Hospital, 6532 SZNijmegen, The Netherlands
| | - Cees Vermeer
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ERMaastricht, The Netherlands
| | - Wim Janssens
- Department of Respiratory Diseases, University Hospitals Leuven, 3000Leuven, Belgium
| | - Jona Walk
- Department of Internal Medicine, Canisius-Wilhelmina Hospital, 6532 SZNijmegen, The Netherlands
| |
Collapse
|
7
|
Ménager P, Brière O, Gautier J, Riou J, Sacco G, Brangier A, Annweiler C, on behalf of the GERIA-COVID study group. Regular Use of VKA Prior to COVID-19 Associated with Lower 7-Day Survival in Hospitalized Frail Elderly COVID-19 Patients: The GERIA-COVID Cohort Study. Nutrients 2020; 13:nu13010039. [PMID: 33374341 PMCID: PMC7824717 DOI: 10.3390/nu13010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Background. Vitamin K concentrations are inversely associated with the clinical severity of COVID-19. The objective of this cohort study was to determine whether the regular use of vitamin K antagonist (VKA) prior to COVID-19 was associated with short-term mortality in frail older adults hospitalized for COVID-19. Methods. Eighty-two patients consecutively hospitalized for COVID-19 in a geriatric acute care unit were included. The association of the regular use of VKA prior to COVID-19 with survival after 7 days of COVID-19 was examined using a propensity-score-weighted Cox proportional-hazards model accounting for age, sex, severe undernutrition, diabetes mellitus, hypertension, prior myocardial infarction, congestive heart failure, prior stroke and/or transient ischemic attack, CHA2DS2-VASc score, HAS-BLED score, and eGFR. Results. Among 82 patients (mean ± SD age 88.8 ± 4.5 years; 48% women), 73 survived COVID-19 at day 7 while 9 died. There was no between-group difference at baseline, despite a trend for more frequent use of VKA in those who did not survive on day 7 (33.3% versus 8.2%, p = 0.056). While considering “using no VKA” as the reference (hazard ratio (HR) = 1), the HR for 7-day mortality in those regularly using VKA was 5.68 [95% CI: 1.17; 27.53]. Consistently, COVID-19 patients using VKA on a regular basis had shorter survival times than the others (p = 0.031). Conclusions. Regular use of VKA was associated with increased mortality at day 7 in hospitalized frail elderly patients with COVID-19.
Collapse
Affiliation(s)
- Pierre Ménager
- Department of Geriatric Medicine, Le Mans Hospital, F-72037 Le Mans, France;
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
| | - Olivier Brière
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
| | - Jennifer Gautier
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
| | - Jérémie Riou
- INSERM, MINT, 1066, University of Angers, F-49000 Angers, France;
- Delegation to Clinical Research and Innovation, Angers University Hospital, F-49933 Angers, France
| | - Guillaume Sacco
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
| | - Antoine Brangier
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
| | - Cédric Annweiler
- Department of Geriatric Medicine, Le Mans Hospital, F-72037 Le Mans, France;
- Department of Geriatric Medicine and Memory Clinic, Research Center on Autonomy and Longevity, University Hospital, F-49933 Angers, France; (O.B.); (J.G.); (G.S.); (A.B.)
- UPRES EA 4638, University of Angers, F-49000 Angers, France
- Gérontopôle Autonomie Longévité des Pays de la Loire, F-44000 Nantes, France
- Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5K8, Canada
- Correspondence: ; Tel.: +33-2-4135-4725; Fax: +33-2-4135-4894
| | | |
Collapse
|
8
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Spek CA, Duitman J. Idiopathic pulmonary fibrosis: do scientists focus on publishing rather than on clinical relevance? Eur Respir J 2020; 55:55/6/2000811. [DOI: 10.1183/13993003.00811-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 11/05/2022]
|
10
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
11
|
JanWillem D, Lin C, Moog S, Jaillet M, Castier Y, Cazes A, Borensztajn KS, Crestani B, Spek CA. CCAAT/enhancer binding protein delta (C/EBPδ) deficiency does not affect bleomycin-induced pulmonary fibrosis. J Clin Transl Res 2018; 3:358-365. [PMID: 30873483 PMCID: PMC6412614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a devastating fibrotic diffuse parenchymal lung disorder that remains refractory to pharmacological therapies. Therefore, novel treatments are urgently required. CCAAT/enhancer binding protein delta (C/EBPδ) is a transcription factor that mediates critical cellular functions in pathophysiology and which was recently suggested to be a key regulatory component in IPF. The purpose of this study was to prove or refute the importance of C/EBPδ in pulmonary fibrosis. METHODS Pulmonary fibrosis was induced by intranasal instillation of bleomycin into wild-type and C/EBPδ deficient mice. At different time intervals after bleomycin instillation, fibrosis was assessed by hydroxyproline analysis, histochemistry and q-PCR for fibrotic marker expression. RESULTS C/EBPδ deficient mice developed pulmonary fibrosis to a similar degree as wildtype mice as evident from similar Ashcroft scores, hydroxyproline levels and expression levels of collagen, fibronectin and α-smooth muscle actin at both 14 and 21 days after bleomycin instillation. The resolution of fibrosis, assessed at 48 days after bleomycin instillation, was also similar in wildtype and C/EBPδ deficient mice. In line with the lack of effect of C/EBPδ on fibrosis progression/resolution, macrophage recruitment and/or differentiation were also not different in wildtype or C/EBPδ deficient mice. CONCLUSIONS Overall, C/EBPδ does not seem to affect bleomycin-induced experimental pulmonary fibrosis and we challenge the importance of C/EBPδ in pulmonary fibrosis. RELEVANCE FOR PATIENTS This study shows that the transcription factor C/EBPδ does not play a major role in the development of pulmonary fibrosis. Pharmacological targeting of C/EBPδ is therefore not likely to have a beneficial effect for patients suffering from pulmonary fibrosis.
Collapse
Affiliation(s)
- Duitman JanWillem
- 1 INSERM UMR1152, Medical School Xavier Bichat, Paris,
France,2 Université Paris Diderot, Sorbonne Paris Cité,
Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and
Remodeling) and LabEx Inflamex, Paris, France,Inserm UMR1152, Medical School Xavier Bichat, Paris, France
| | - Cong Lin
- 3 Center for Experimental and Molecular Medicine, Academic Medical
Center, Amsterdam, the Netherlands
| | - Sophie Moog
- 1 INSERM UMR1152, Medical School Xavier Bichat, Paris,
France,2 Université Paris Diderot, Sorbonne Paris Cité,
Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and
Remodeling) and LabEx Inflamex, Paris, France
| | - Madeleine Jaillet
- 1 INSERM UMR1152, Medical School Xavier Bichat, Paris,
France,2 Université Paris Diderot, Sorbonne Paris Cité,
Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and
Remodeling) and LabEx Inflamex, Paris, France
| | - Yves Castier
- 4 Assistance Publique-Hôpitaux de Paris (APHP),
Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Aurélie Cazes
- 4 Assistance Publique-Hôpitaux de Paris (APHP),
Hôpital Bichat, Service de Pneumologie A, Paris, France
| | | | - Bruno Crestani
- 1 INSERM UMR1152, Medical School Xavier Bichat, Paris,
France,2 Université Paris Diderot, Sorbonne Paris Cité,
Département Hospitalo-universitaire FIRE (Fibrosis, Inflammation and
Remodeling) and LabEx Inflamex, Paris, France,4 Assistance Publique-Hôpitaux de Paris (APHP),
Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - C. Arnold Spek
- 3 Center for Experimental and Molecular Medicine, Academic Medical
Center, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Lin C, Borensztajn K, Spek CA. Targeting coagulation factor receptors - protease-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost 2017; 15:597-607. [PMID: 28079978 DOI: 10.1111/jth.13623] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with a 5-year mortality rate of > 50% and unknown etiology. Treatment options remain limited and, currently, only two drugs are available, i.e. nintedanib and pirfenidone. However, both of these antifibrotic agents only slow down the progression of the disease, and do not remarkably prolong the survival of IPF patients. Hence, the discovery of new therapeutic targets for IPF is crucial. Studies exploring the mechanisms that are involved in IPF have identified several possible targets for therapeutic interventions. Among these, blood coagulation factor receptors, i.e. protease-activated receptors (PARs), are key candidates, as these receptors mediate the cellular effects of coagulation factors and play central roles in influencing inflammatory and fibrotic responses. In this review, we will focus on the controversial role of the coagulation cascade in the pathogenesis of IPF. In the light of novel data, we will attempt to reconciliate the apparently conflicting data and discuss the possibility of pharmacologic targeting of PARs for the treatment of fibroproliferative diseases.
Collapse
Affiliation(s)
- C Lin
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - K Borensztajn
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
- Inserm UMR1152, Medical School Xavier Bichat, Paris, France
- Département Hospitalo-universtaire FIRE (Fibrosis, Inflammation and Remodeling) and LabEx Inflamex, Paris, France
| | - C A Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|