1
|
Holland AM, Jehoul R, Vranken J, Wohl SG, Boesmans W. MicroRNA regulation of enteric nervous system development and disease. Trends Neurosci 2025; 48:268-282. [PMID: 40089421 PMCID: PMC11981837 DOI: 10.1016/j.tins.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/17/2025]
Abstract
The enteric nervous system (ENS), an elaborate network of neurons and glia woven through the gastrointestinal tract, is integral for digestive physiology and broader human health. Commensurate with its importance, ENS dysfunction is linked to a range of debilitating gastrointestinal disorders. MicroRNAs (miRNAs), with their pleiotropic roles in post-transcriptional gene regulation, serve as key developmental effectors within the ENS. Herein, we review the regulatory dynamics of miRNAs in ENS ontogeny, showcasing specific miRNAs implicated in both congenital and acquired enteric neuropathies, such as Hirschsprung's disease (HSCR), achalasia, intestinal neuronal dysplasia (IND), chronic intestinal pseudo-obstruction (CIPO), and slow transit constipation (STC). By delineating miRNA-mediated mechanisms in these diseases, we underscore their importance for ENS homeostasis and highlight their potential as therapeutic targets.
Collapse
Affiliation(s)
- Amy Marie Holland
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jorunn Vranken
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Stefanie Gabriele Wohl
- Department of Biological and Vision Sciences, College of Optometry, The State University of New York, New York, NY, USA
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Yang Y, Hou X, Wang C, Chen Q, Lu Y, Yu D, Wu K. The roles of non-coding RNAs in Hirschsprung's disease. Noncoding RNA Res 2024; 9:704-714. [PMID: 38577013 PMCID: PMC10990754 DOI: 10.1016/j.ncrna.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 04/06/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a congenital disorder characterized by the absence of ganglion cells in the colon, leading to various intestinal complications. The etiology of HSCR stems from complex genetic and environmental interactions, of which the intricate roles of non-coding RNAs (ncRNAs) are a key area of research. However, the roles of ncRNAs in the pathogenesis of HSCR have not been fully elucidated. In order to understand the variety of symptoms caused by HSCR and develop new therapeutic approaches, it is essential to understand the underlying biological genetic basis of HSCR. This review presents a comprehensive overview of the current understanding regarding the involvement of ncRNAs in HSCR, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, it provides a summary of the molecular mechanisms through which ncRNAs regulate the expression of genes related to the proliferation, migration, and differentiation of intestinal neural crest cells, thereby contributing to the advancement of HSCR research.
Collapse
Affiliation(s)
| | | | - Chen Wang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Qinming Chen
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yi Lu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Daiyue Yu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| |
Collapse
|
3
|
Javadi M, Sazegar H, Doosti A. Genome editing approaches with CRISPR/Cas9: the association of NOX4 expression in breast cancer patients and effectiveness evaluation of different strategies of CRISPR/Cas9 to knockout Nox4 in cancer cells. BMC Cancer 2023; 23:1155. [PMID: 38012557 PMCID: PMC10683234 DOI: 10.1186/s12885-023-11183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/16/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The increasing prevalence of cancer detection necessitated practical strategies to deliver highly accurate, beneficial, and dependable processed information together with experimental results. We deleted the cancer biomarker NOX4 using three novel genetic knockout (KO) methods. Homology-directed repair (HDR), Dual allele HITI (Du-HITI) and CRISPR-excision were utilized in this study. METHODS The predictive value of the NOX4 expression profile was assessed using a combined hazard ratio (HR) with a 95% confidence interval (CI). With a 95% confidence interval, a pooled odd ratio (OR) was used to calculate the relationship between NOX4 expression patterns and cancer metastasis. There were 1060 tumor patients in all sixteen research that made up this meta-analysis. To stop the NOX4 from being transcribed, we employed three different CRISPR/Cas9-mediated knockdown methods. The expression of RNA was assessed using RT-PCR. We employed the CCK-8 assay, colony formation assays, and the invasion transwell test for our experiments measuring cell proliferation and invasion. Using a sphere-formation test, the stemness was determined. Luciferase reporter tests were carried out to verify molecular adhesion. Utilizing RT-qPCR, MTT, and a colony formation assay, the functional effects of NOX4 genetic mutation in CRISPR-excision, CRISPR-HDR, and CRISPR du-HITI knockdown cell lines of breast cancer were verified. RESULTS There were 1060 malignant tumors in the 16 studies that made up this meta-analysis. In the meta-analysis, higher NOX4 expression was linked to both a shorter overall survival rate (HR = 1.93, 95% CI 1.49-2.49, P < 0.001) and a higher percentage of lymph node metastases (OR = 3.22, 95% CI 2.18-4.29, P < 0.001). In breast carcinoma cells, it was discovered that NOX4 was overexpressed, and this increase was linked to a poor prognosis. The gain and loss-of-function assays showed enhanced NOX4 breast carcinoma cell proliferation, sphere-forming capacity, and tumor development. To activate transcription, the transcriptional factor E2F1 also attaches to the promoter region of the Nanog gene. The treatment group (NOX4 ablation) had substantially more significant levels of proapoptotic gene expression than the control group (P < 0.01). Additionally, compared to control cells, mutant cells expressed fewer antiapoptotic genes (P < 0.001). The du-HITI technique incorporated a reporter and a transcription termination marker into the two target alleles. Both donor vector preparation and cell selection were substantially simpler using this approach than with "CRISPR HDR" or "CRISPR excision." Furthermore, single-cell knockouts for both genotypes were created when this method was applied in the initial transfection experiment. CONCLUSIONS The NOX4 Knockout cell lines generated in this research may be used for additional analytical studies to reveal the entire spectrum of NOX4 activities. The du-HITI method described in this study was easy to employ and could produce homozygous individuals who were knockout for a specific protein of interest.
Collapse
Affiliation(s)
- Marzieh Javadi
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hossein Sazegar
- Department of Biology, Faculty of Science, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
4
|
Azadbakht N, Doosti A, Jami MS. CRISPR/Cas9-mediated LINC00511 knockout strategies, increased apoptosis of breast cancer cells via suppressing antiapoptotic genes. Biol Proced Online 2022; 24:8. [PMID: 35790898 PMCID: PMC9254607 DOI: 10.1186/s12575-022-00171-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background The growing detection of long noncoding RNAs (lncRNAs) required the application of functional approaches in order to provide absolutely precise, conducive, and reliable processed information along with effective consequences. We utilized genetic knockout (KO) techniques to ablate the Long Intergenic Noncoding RNA 00,511 gene in several humans who suffered from breast cancer cells and at the end we analyzed and examined the results. Results The predictive relevance of LINC00511 expression pattern was measured by using a pooled hazard ratio (HR) with a 95% confidence interval (CI). The link among LINC00511 expression profiles and cancer metastasis was measured by using a pooled odds ratio (OR) with a 95% confidence interval. This meta- analysis was composed of fifteen studies which contained a total of 1040 tumor patients. We used three distinct CRISPR/Cas9-mediated knockdown techniques to prevent the LINC00511 lncRNA from being transcribed. RT-PCR was used to measure lncRNA and RNA expression. We used CCK-8, colony formation tests, and the invasion transwell test to measure cell proliferation and invasion. The stemness was measured by using a sphere-formation test. To validate molecular attachment, luciferase reporter assays were performed. The functional impacts of LINC00511 gene deletion in knockdown breast cancer cell lines were confirmed by using RT-qPCR, MTT, and a colony formation test. This meta-analysis was composed of 15 trials which contained a total of 1040 malignant tumors. Greater LINC00511 expression was ascribed to a lower overall survival (HR = 1.93, 95% CI 1.49–2.49, < P 0.001) and to an increased proportion of lymph node metastasis (OR = 3.07, 95% CI 2.23–4.23, P < 0.001) in the meta‐analysis. It was found that the role of LINC00511 was overexpressed in breast cancer samples, and this overexpression was ascribed to a poor prognosis. The gain and loss-of-function tests demonstrated findings such as LINC00511 increased breast cancer cell proliferation, sphere-forming ability, and tumor growth. Additionally, the transcription factor E2F1 binds to the Nanog gene's promoter site to induce transcription. P57, P21, Prkca, MDM4, Map2k6, and FADD gene expression in the treatment group (LINC00511 deletion) was significantly higher than in the control group (P < 0.01). In addition, knockout cells had lower expression of BCL2 and surviving genes than control cells P < 0.001). In each of the two target alleles, the du-HITI approach introduced a reporter and a transcription termination signal. This strategy's donor vector preparation was significantly easier than "CRISPR HDR," and cell selection was likewise much easier than "CRISPR excision." Furthermore, when this approach was used in the initial transfection attempt, single-cell knockouts for both alleles were generated. Conclusions The methods employed and described in this work could be extended to the production of LINC00511 knockout cell lines and, in theory, to the deletion of other lncRNAs to study their function. Supplementary Information The online version contains supplementary material available at 10.1186/s12575-022-00171-1.
Collapse
|
5
|
Lu G, Li Y, Ma Y, Lu J, Chen Y, Jiang Q, Qin Q, Zhao L, Huang Q, Luo Z, Huang S, Wei Z. Long noncoding RNA LINC00511 contributes to breast cancer tumourigenesis and stemness by inducing the miR-185-3p/E2F1/Nanog axis. J Exp Clin Cancer Res 2018; 37:289. [PMID: 30482236 PMCID: PMC6260744 DOI: 10.1186/s13046-018-0945-6] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Emerging evidence have illustrated the vital role of long noncoding RNAs (lncRNAs) long intergenic non-protein coding RNA 00511 (LINC00511) on the human cancer progression and tumorigenesis. However, the role of LINC00511 in breast cancer tumourigenesis is still unknown. This research puts emphasis on the function of LINC00511 on the breast cancer tumourigenesis and stemness, and investigates the in-depth mechanism. METHODS The lncRNA and RNA expression were measured using RT-PCR. Protein levels were measured using western blotting analysis. CCK-8, colony formation assays and transwell assay were performed to evaluate the cell proliferation ability and invasion. Sphere-formation assay was also performed for the stemness. Bioinformatic analysis, chromatin immunoprecipitation (ChIP) and luciferase reporter assays were carried to confirm the molecular binding. RESULTS LINC00511 was measured to be highly expressed in the breast cancer specimens and the high-expression was correlated with the poor prognosis. Functionally, the gain and loss-of-functional experiments revealed that LINC00511 promoted the proliferation, sphere-formation ability, stem factors (Oct4, Nanog, SOX2) expression and tumor growth in breast cancer cells. Mechanically, LINC00511 functioned as competing endogenous RNA (ceRNA) for miR-185-3p to positively recover E2F1 protein. Furthermore, transcription factor E2F1 bind with the promoter region of Nanog gene to promote it transcription. CONCLUSION In conclusion, our data concludes that LINC00511/miR-185-3p/E2F1/Nanog axis facilitates the breast cancer stemness and tumorigenesis, providing a vital insight for them.
Collapse
Affiliation(s)
- Guanming Lu
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yueyong Li
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yanfei Ma
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Jinlan Lu
- Department of Dental, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Yongcheng Chen
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiulan Jiang
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qiang Qin
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Lifeng Zhao
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Qianfang Huang
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Zhizhai Luo
- Department of Mammary and Thyroid Gland Surgery, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| | - Shiqing Huang
- The First Affiliated Hospital of Jinan university, Huangpu Road, No. 613, Guangzhou, 510630 Guangdong China
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
- Department of Tumor, Youjiang Medical College Affiliated Hospital, Zhongshan Second Road, No. 18, Baise, 533000 Guangxi China
| | - Zhongheng Wei
- Department of Oncology, Youjiang Medical College Affiliated Hospital, Baise, 533000 Guangxi China
| |
Collapse
|