1
|
Sazhenova EA, Vasilyeva OY, Fonova EA, Kankanam Pathiranage MB, Sambyalova AY, Khramova EE, Rychkova LV, Vasilyev SA, Lebedev IN. Genetic variants of the DLK1, KISS1R, MKRN3 genes in girls with precocious puberty. Vavilovskii Zhurnal Genet Selektsii 2025; 29:301-309. [PMID: 40264804 PMCID: PMC12011626 DOI: 10.18699/vjgb-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 04/24/2025] Open
Abstract
Precocious puberty (PP, E30.1, Е22.8, Е30.9 according to ICD 10, MIM 176400, 615346) in children is a disorder in which secondary sexual characteristics appear earlier than the age norm. The timing of puberty is regulated by a complex interaction of genetic and epigenetic factors, as well as environmental and nutritional factors. This study aimed to search for pathogenic, likely pathogenic variants or variants of uncertain significance (VUS) in the KISS1, GPR54, DLK1, and MKRN3 genes in patients with the clinical picture of PP and normal karyotype by massive parallel sequencing. All identified genetic variants were confirmed by Sanger sequencing. The pathogenicity of identified genetic variants and the functional significance of the protein synthesized by them were analyzed according to recommendations for interpretation of NGS analysis results using online algorithms for pathogenicity prediction (Variant Effect Predictor, Franklin, Varsome, and PolyPhen2). Clinically significant genetic variants were detected in the heterozygous state in the KISS1R, DLK1, and MKRN3 genes in 5 of 52 probands (9.6 %) with PP, including 3 of 33 (9.1 %) in the group with central PP and 2 of 19 (10.5 %) in the group with gonadotropin-independent PP. Two children with gonadotropin-independent PP had VUS in the KISS1R gene (c.191T>C, p.Ile64Thr and c.233A>G, p.Asn78Ser), one of which was inherited from the father and the second, from the mother. The remaining patients with central PP had likely pathogenic genetic variants: DLK1:c.373delC(p.Gln125fs) de novo and DLK1:c.480delT(p.Gly161Alafs*49) of paternal origin. The third proband had a VUS variant in the MKRN3 gene (c.1487A>G, p.His496Arg), inherited from the father. All identified genetic variants were described for the first time in PP. Thus, in the present study, genetic variants in the KISS1R, DLK1, and MKRN3 genes in girls with PP were characterized.
Collapse
Affiliation(s)
- E A Sazhenova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - O Yu Vasilyeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - E A Fonova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | | | - A Yu Sambyalova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - E E Khramova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - L V Rychkova
- Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
2
|
Lattanzi R, Miele R. Genetic Polymorphisms of Prokineticins and Prokineticin Receptors Associated with Human Disease. Life (Basel) 2024; 14:1254. [PMID: 39459554 PMCID: PMC11509077 DOI: 10.3390/life14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Prokineticins (PKs) are low molecular weight proteins that exert their effects by binding to two seven-transmembrane G-protein-coupled receptors (prokineticin receptors, PKRs). The prokineticin system is an important player in the development of various diseases. Several polymorphisms that are associated with infertility, neuroendocrine disorders, Hirschsprung's syndrome (HSCR), idiopathic central precocious puberty (CPP) and congenital disorders such as Kallmann syndrome (KS) have been described for both the PKs and PKR genes. The aim of this study is to summarize and describe the impact of PK/PKR polymorphisms on the pathogenesis and outcome of the above diseases, highlighting the PK system as a therapeutic target and diagnostic biomarker in pathological conditions.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
3
|
Karaman V, Karakilic-Ozturan E, Poyrazoglu S, Gelmez MY, Bas F, Darendeliler F, Uyguner ZO. Novel variants ensued genomic imprinting in familial central precocious puberty. J Endocrinol Invest 2024; 47:2041-2052. [PMID: 38367171 PMCID: PMC11266277 DOI: 10.1007/s40618-023-02300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 02/19/2024]
Abstract
INTRODUCTION Central precocious puberty (CPP) is characterized by the early onset of puberty and is associated with the critical processes involved in the pubertal switch. The puberty-related gene pool in the human genome is considerably large though few have been described in CPP. Within those genes, the genomic imprinting features of the MKRN3 and DLK1 genes add additional complexity to the understanding of the pathologic pathways. This study aimed to investigate the molecular etiology in the CPP cohort. METHODS Eighteen familial CPP cases were investigated by Sanger sequencing for five CPP-related genes; DLK1, KISS1, KISS1R, MKRN3, and PROKR2. Segregation analysis was performed in all patients with pathogenic variants. Using an ELISA test, the functional pathogenicity of novel variants was also investigated in conjunction with serum delta-like 1 homolog (DLK1) concentrations. RESULTS In three probands, a known variant in the MKRN3 gene (c.982C>T/p.(Arg328Cys)) and two novel variants in the DLK1 gene (c.357C>G/p.(Tyr119Ter) and c.67+78C>T) were identified. All three were inherited from the paternal allele. The individuals carrying the DLK1 variants had low detectable DLK1 levels in their serum. CONCLUSIONS The frequencies were 5.5% (1/18) for MKRN3 11% (2/18) for DLK1, and none for either KISS1, KISS1R, and PROKR2. Low serum DLK1 levels in affected individuals supported the relationship between here described novel DLK1 gene variants with CPP. Nonsense nature of c.357C>G/p.(Tyr119Ter) and an alteration in the evolutionarily conserved nucleotide c.67+78C>T suggested the disruptive nature of the variant's compatibility with CPP.
Collapse
Affiliation(s)
- V Karaman
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey.
| | - E Karakilic-Ozturan
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - S Poyrazoglu
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - M Y Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - F Bas
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - F Darendeliler
- Department of Pediatric Endocrinology and Diabetes, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Z O Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Millet Cad. Çapa/Fatih, 34096, Istanbul, Turkey
| |
Collapse
|
4
|
Vincenzi M, Kremić A, Jouve A, Lattanzi R, Miele R, Benharouga M, Alfaidy N, Migrenne-Li S, Kanthasamy AG, Porcionatto M, Ferrara N, Tetko IV, Désaubry L, Nebigil CG. Therapeutic Potential of Targeting Prokineticin Receptors in Diseases. Pharmacol Rev 2023; 75:1167-1199. [PMID: 37684054 PMCID: PMC10595023 DOI: 10.1124/pharmrev.122.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 09/10/2023] Open
Abstract
The prokineticins (PKs) were discovered approximately 20 years ago as small peptides inducing gut contractility. Today, they are established as angiogenic, anorectic, and proinflammatory cytokines, chemokines, hormones, and neuropeptides involved in variety of physiologic and pathophysiological pathways. Their altered expression or mutations implicated in several diseases make them a potential biomarker. Their G-protein coupled receptors, PKR1 and PKR2, have divergent roles that can be therapeutic target for treatment of cardiovascular, metabolic, and neural diseases as well as pain and cancer. This article reviews and summarizes our current knowledge of PK family functions from development of heart and brain to regulation of homeostasis in health and diseases. Finally, the review summarizes the established roles of the endogenous peptides, synthetic peptides and the selective ligands of PKR1 and PKR2, and nonpeptide orthostatic and allosteric modulator of the receptors in preclinical disease models. The present review emphasizes the ambiguous aspects and gaps in our knowledge of functions of PKR ligands and elucidates future perspectives for PK research. SIGNIFICANCE STATEMENT: This review provides an in-depth view of the prokineticin family and PK receptors that can be active without their endogenous ligand and exhibits "constitutive" activity in diseases. Their non- peptide ligands display promising effects in several preclinical disease models. PKs can be the diagnostic biomarker of several diseases. A thorough understanding of the role of prokineticin family and their receptor types in health and diseases is critical to develop novel therapeutic strategies with safety concerns.
Collapse
Affiliation(s)
- Martina Vincenzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Amin Kremić
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Appoline Jouve
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Roberta Lattanzi
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Rossella Miele
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Mohamed Benharouga
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Nadia Alfaidy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Stephanie Migrenne-Li
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Anumantha G Kanthasamy
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Marimelia Porcionatto
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Napoleone Ferrara
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Igor V Tetko
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Laurent Désaubry
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| | - Canan G Nebigil
- Regenerative Nanomedicine (UMR 1260), INSERM, University of Strasbourg, Center of Research in Biomedicine of Strasbourg, Strasbourg, France (M.V., A.K., A.J., L.D., C.G.N.); Department of Physiology and Pharmacology (M.V., R.L.), and Department of Biochemical Sciences "Alessandro Rossi Fanelli" (R.M.), Sapienza University of Rome, Rome, Italy; University Grenoble Alpes, INSERM, CEA, Grenoble, France (M.B., N.A.); Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France (S.M.); Department of Physiology and Pharamacology, Center for Neurologic Disease Research, University of Georgia, Athens, Georgia (A.G.K.); Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.P.); Moores Cancer Center, University of California, San Diego, La Jolla, California (N.F.); and Institute of Structural Biology, Helmholtz Munich - German Research Center for Environmental Health (GmbH), Neuherberg, Germany (I.V.T.); and BIGCHEM GmbH, Valerystr. 49, Unterschleissheim, Germany (I.V.T.)
| |
Collapse
|
5
|
Suzuki E, Miyado M, Kuroki Y, Fukami M. Genetic variants of G-protein coupled receptors associated with pubertal disorders. Reprod Med Biol 2023; 22:e12515. [PMID: 37122876 PMCID: PMC10134480 DOI: 10.1002/rmb2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Background The human hypothalamic-pituitary-gonadal (HPG) axis is the regulatory center for pubertal development. This axis involves six G-protein coupled receptors (GPCRs) encoded by KISS1R, TACR3, PROKR2, GNRHR, LHCGR, and FSHR. Methods Previous studies have identified several rare variants of the six GPCR genes in patients with pubertal disorders. In vitro assays and animal studies have provided information on the function of wild-type and variant GPCRs. Main Findings Of the six GPCRs, those encoded by KISS1R and TACR3 are likely to reside at the top of the HPG axis. Several loss-of-function variants in the six genes were shown to cause late/absent puberty. In particular, variants in KISS1R, TACR3, PROKR2, and GNRHR lead to hypogonadotropic hypogonadism in autosomal dominant, recessive, and oligogenic manners. Furthermore, a few gain-of-function variants of KISS1R, PROKR2, and LHCGR have been implicated in precocious puberty. The human HPG axis may contain additional GPCRs. Conclusion The six GPCRs in the HPG axis govern pubertal development through fine-tuning of hormone secretion. Rare sequence variants in these genes jointly account for a certain percentage of genetic causes of pubertal disorders. Still, much remains to be clarified about the molecular network involving the six GPCRs.
Collapse
Affiliation(s)
- Erina Suzuki
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Mami Miyado
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Department of Food and NutritionBeppu UniversityOitaJapan
| | - Yoko Kuroki
- Department of Genome Medicine, National Center for Child Health and DevelopmentTokyoJapan
- Division of Collaborative Research, National Center for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| | - Maki Fukami
- Department of Molecular EndocrinologyNational Research Institute for Child Health and DevelopmentTokyoJapan
- Division of Diversity ResearchNational Research Institute for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
6
|
Martinez-Mayer J, Perez-Millan MI. Phenotypic and genotypic landscape of PROKR2 in neuroendocrine disorders. Front Endocrinol (Lausanne) 2023; 14:1132787. [PMID: 36843573 PMCID: PMC9945519 DOI: 10.3389/fendo.2023.1132787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
Prokineticin receptor 2 (PROKR2) encodes for a G-protein-coupled receptor that can bind PROK1 and PROK2. Mice lacking Prokr2 have been shown to present abnormal olfactory bulb formation as well as defects in GnRH neuron migration. Patients carrying mutations in PROKR2 typically present hypogonadotropic hypogonadism, anosmia/hyposmia or Kallmann Syndrome. More recently variants in PROKR2 have been linked to several other endocrine disorders. In particular, several patients with pituitary disorders have been reported, ranging from mild phenotypes, such as isolated growth hormone deficiency, to more severe ones, such as septo-optic dysplasia. Here we summarize the changing landscape of PROKR2-related disease, the variants reported to date, and discuss their origin, classification and functional assessment.
Collapse
|
7
|
Palumbo S, Cirillo G, Sanchez G, Aiello F, Fachin A, Baldo F, Pellegrin MC, Cassio A, Salerno M, Maghnie M, Faienza MF, Wasniewska M, Fintini D, Giacomozzi C, Ciccone S, Miraglia Del Giudice E, Tornese G, Grandone A. A new DLK1 defect in a family with idiopathic central precocious puberty: elucidation of the male phenotype. J Endocrinol Invest 2022; 46:1233-1240. [PMID: 36577869 DOI: 10.1007/s40618-022-01997-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE We aimed to investigate a cohort of female and male patients with idiopathic central precocious puberty (CPP), negative for Makorin Ring Finger Protein 3 (MKRN3) defect, by molecular screening for Delta-like 1 homolog (DLK1) defects. DLK1 is an imprinted gene, whose mutations have been described as a rare cause of CPP in girls and adult women with precocious menarche, obesity and metabolic derangement. METHODS We enrolled 14 girls with familial CPP and 13 boys with familial or sporadic CPP from multiple academic hospital centers. Gene sequencing of DLK1 gene was performed. Circulating levels of DLK1 were measured and clinical and biochemical characteristics were described in those with DLK1 defects. RESULTS A novel heterozygous mutation in DLK1, c.288_289insC (p.Cys97Leufs*16), was identified in a male proband, his sister and their father. Age at onset of puberty was in line with previous reports in the girl and 8 years in the boy. The father with untreated CPP showed short stature. No metabolic derangement was present in the father except hypercholesterolemia. Undetectable Dlk1 serum levels indicated the complete lack of protein production in the three affected patients. CONCLUSION A DLK1 defect has been identified for the first time in a boy, underscoring the importance of genetic testing in males with idiopathic or sporadic CPP. The short stature reported by his untreated father suggests the need for timely diagnosis and treatment of subjects with DLK1 defects.
Collapse
Affiliation(s)
- S Palumbo
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Cirillo
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Sanchez
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - F Aiello
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - A Fachin
- University of Trieste, Trieste, Italy
| | - F Baldo
- University of Trieste, Trieste, Italy
| | - M C Pellegrin
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - A Cassio
- Pediatric Endocrine Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - M Salerno
- Pediatric Endocrine Unit, Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - M Maghnie
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
| | - M F Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari A. Moro, Bari, Italy
| | - M Wasniewska
- Unit of Paediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Messina, Italy
| | - D Fintini
- Endocrinology Unit, University-Hospital Pediatric Department, Bambino Gesù Children's Hospital, IRCSS, Rome, Italy
| | - C Giacomozzi
- Unit of Pediatrics, Department of Maternal and Child Health, Carlo Poma Hospital, ASST-Mantova, Mantua, Italy
| | - S Ciccone
- Pediatric Unit-"M. Bufalini" Hospital - Cesena, Cesena, Italy
| | - E Miraglia Del Giudice
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy
| | - G Tornese
- Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - A Grandone
- Department of Child, Women, General and Specialized Surgery, University of Campania, "L. Vanvitelli", Vico L. De Crecchio n° 2, 80138, Naples, Italy.
| |
Collapse
|
8
|
Lattanzi R, Miele R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life (Basel) 2022; 12:172. [PMID: 35207461 PMCID: PMC8877203 DOI: 10.3390/life12020172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Prokineticins are a new class of chemokine-like peptides that bind their G protein-coupled receptors, PKR1 and PKR2, and promote chemotaxis and the production of pro-inflammatory cytokines following tissue injury or infection. This review summarizes the major cellular and biochemical mechanisms of prokineticins pathway regulation that, like other chemokines, include: genetic polymorphisms; mRNA splice modulation; expression regulation at transcriptional and post-transcriptional levels; prokineticins interactions with cell-surface glycosaminoglycans; PKRs degradation, localization, post-translational modifications and oligomerization; alternative signaling responses; binding to pharmacological inhibitors. Understanding these mechanisms, which together exert substantial biochemical control and greatly enhance the complexity of the prokineticin-receptor network, leads to novel opportunities for therapeutic intervention. In this way, besides targeting prokineticins or their receptors directly, it could be possible to indirectly influence their activity by modulating their expression and localization or blocking the downstream signaling pathways.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences “A. Rossi Fanelli”, CNR-Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
9
|
Fanis P, Morrou M, Tomazou M, Michailidou K, Spyrou GM, Toumba M, Skordis N, Neocleous V, Phylactou LA. Methylation status of hypothalamic Mkrn3 promoter across puberty. Front Endocrinol (Lausanne) 2022; 13:1075341. [PMID: 36714607 PMCID: PMC9880154 DOI: 10.3389/fendo.2022.1075341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Makorin RING finger protein 3 (MKRN3) is an important factor located on chromosome 15 in the imprinting region associated with Prader-Willi syndrome. Imprinted MKRN3 is expressed in hypothalamic regions essential for the onset of puberty and mutations in the gene have been found in patients with central precocious puberty. The pubertal process is largely controlled by epigenetic mechanisms that include, among other things, DNA methylation at CpG dinucleotides of puberty-related genes. In the present study, we investigated the methylation status of the Mkrn3 promoter in the hypothalamus of the female mouse before, during and after puberty. Initially, we mapped the 32 CpG dinucleotides in the promoter, the 5'UTR and the first 50 nucleotides of the coding region of the Mkrn3 gene. Moreover, we identified a short CpG island region (CpG islet) located within the promoter. Methylation analysis using bisulfite sequencing revealed that CpG dinucleotides were methylated regardless of developmental stage, with the lowest levels of methylation being found within the CpG islet region. In addition, the CpG islet region showed significantly lower methylation levels at the pre-pubertal stage when compared with the pubertal or post-pubertal stage. Finally, in silico analysis of transcription factor binding sites on the Mkrn3 CpG islet identified the recruitment of 29 transcriptional regulators of which 14 were transcriptional repressors. Our findings demonstrate the characterization and differential methylation of the CpG dinucleotides located in the Mkrn3 promoter that could influence the transcriptional activity in pre-pubertal compared to pubertal or post-pubertal period. Further studies are needed to clarify the possible mechanisms and effects of differential methylation of the Mkrn3 promoter.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Child Endocrine Care, Department of Pediatrics, Aretaeio Hospital, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Division of Pediatric Endocrinology, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou,
| |
Collapse
|
10
|
Tajima T. Genetic causes of central precocious puberty. Clin Pediatr Endocrinol 2022; 31:101-109. [PMID: 35928377 PMCID: PMC9297165 DOI: 10.1297/cpe.2022-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/07/2022] [Indexed: 11/12/2022] Open
Abstract
Central precocious puberty (CPP) is a condition in which the
hypothalamus–pituitary–gonadal system is activated earlier than the normal developmental
stage. The etiology includes organic lesions in the brain; however, in the case of
idiopathic diseases, environmental and/or genetic factors are involved in the development
of CPP. A genetic abnormality in KISS1R, that encodes the kisspeptin
receptor, was first reported in 2008 as a cause of idiopathic CPP. Furthermore, genetic
alterations in KISS1, MKRN3, DLK1, and
PROKR2 have been reported in idiopathic and/or familial CPP. Of these,
MKRN3 has the highest frequency of pathological variants associated
with CPP worldwide; but, abnormalities in MKRN3 are rare in patients in
East Asia, including Japan. MKRN3 and DLK1 are maternal
imprinting genes; thus, CPP develops when a pathological variant is inherited from the
father. The mechanism of CPP due to defects in MKRN3 and
DLK1 has not been completely clarified, but it is suggested that both
may negatively control the progression of puberty. CPP due to such a single gene
abnormality is extremely rare, but it is important to understand the mechanisms of puberty
and reproduction. A further development in the genetics of CPP is expected in the
future.
Collapse
Affiliation(s)
- Toshihiro Tajima
- Department of Pediatrics, Jichi Medical University Tochigi Children’ Medical Center, Tochigi, Japan
| |
Collapse
|
11
|
Moise-Silverman J, Silverman LA. A review of the genetics and epigenetics of central precocious puberty. Front Endocrinol (Lausanne) 2022; 13:1029137. [PMID: 36531492 PMCID: PMC9757059 DOI: 10.3389/fendo.2022.1029137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
Gonadotrophin dependent sexual precocity, commonly referred to as central precocious puberty (CPP), results from a premature reactivation of the hypothalamic-pituitary-gonadal (HPG) axis before the normal age of pubertal onset. CPP is historically described as girls who enter puberty before the age of eight, and boys before the age of nine. Females are more likely to be diagnosed with idiopathic CPP; males diagnosed with CPP have a greater likelihood of a defined etiology. These etiologies may include underlying CNS congenital defects, tumors, trauma, or infections as well as environmental, genetic, and epigenetic factors. Recently, genetic variants and mutations which may cause CPP have been identified at both the level of the hypothalamus and the pituitary. Single nucleotide polymorphisms (SNPs), monogenetic mutations, and modifications of the epigenome have been evaluated in relationship to the onset of puberty; these variants are thought to affect the development, structure and function of GnRH neurons which may lead to either precocious, delayed, or absent pubertal reactivation. This review will describe recent advances in the field of the genetic basis of puberty and provide a clinically relevant approach to better understand these varying etiologies of CPP.
Collapse
Affiliation(s)
| | - Lawrence A. Silverman
- Division of Pediatric Endocrinology Goyreb Children’s Hospital – Atlantic Health System, Morristown, NJ, United States
- *Correspondence: Lawrence A. Silverman,
| |
Collapse
|
12
|
Aiello F, Cirillo G, Cassio A, Di Mase R, Tornese G, Umano GR, Miraglia Del Giudice E, Grandone A. Molecular screening of PROKR2 gene in girls with idiopathic central precocious puberty. Ital J Pediatr 2021; 47:5. [PMID: 33413516 PMCID: PMC7792053 DOI: 10.1186/s13052-020-00951-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022] Open
Abstract
Background Prokineticin receptor 2 (PROKR2) loss of function mutations have been described as cause of hypogonadotropic hypogonadism. In 2017, a first case of central precocious puberty (CPP) caused by PROKR2 heterozygous gain of function mutation was described in a 3.5 years-old girl. No other cases have been reported yet. This study performs a molecular screening in girls with early onset CPP (breast budding before 6 years of age) to identify possible alterations in PROKR2. Methods We analysed DNA of 31 girls with idiopathic CPP diagnosed via basal LH levels > 0.3 IU/L or peak-LH > 5 IU/L after stimulation, without any MKRN3 mutations. The Fisher exact test was used to compare polymorphism allele frequency to corresponding ones in genome aggregation database (gnomAD). Results No rare variants were identified. Five polymorphisms were found (rs6076809, rs8116897, rS3746684, rs3746682, rs3746683). All except one (i.e. rs3746682) had a minor allele frequency (MAF) similar to that reported in literature. rs3746682 presented a MAF higher than that described in the gnomAD (0.84 in our cohort vs 0.25 from gnomAD). Conclusions As for other G protein-coupled receptors (i.e. GPR54), mutations in PROKR2 do not seem to be a frequent cause of CPP in girls.
Collapse
Affiliation(s)
- Francesca Aiello
- Department of Child, Woman, General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Child, Woman, General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Raffaella Di Mase
- Pediatric Section-Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppina R Umano
- Department of Child, Woman, General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy
| | | | - Anna Grandone
- Department of Child, Woman, General and Specialized Surgery, University of Campania "L. Vanvitelli", Naples, Italy.
| |
Collapse
|
13
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2021; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
14
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Peripheral Precocious Puberty of Ovarian Origin in a Series of 18 Girls: Exome Study Finds Variants in Genes Responsible for Hypogonadotropic Hypogonadism. Front Pediatr 2021; 9:641397. [PMID: 34055685 PMCID: PMC8149944 DOI: 10.3389/fped.2021.641397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Peripheral precocious puberty of ovarian origin is a very rare condition compared to central form. It may be associated with an isolated ovarian cyst (OC). The causes of OC in otherwise healthy prepubertal girls is currently unknown. Methods: Exome sequencing was performed on a cohort of 18 unrelated girls presenting with prenatal and/or prepubertal OC at pelvic ultrasonography. The presenting symptom was prenatal OC in 5, breast development in 7 (with vaginal bleeding in 3) and isolated vaginal bleeding in 6. All had OC ≥ 10 mm. The girls had no other anomalies. Four patients had a familial history of ovarian anomalies and/or infertility. Results: In 9 girls (50%), candidate or known pathogenic variants were identified in genes associated with syndromic and non-syndromic forms of hypogonadotropic hypogonadism including PNPLA6, SEMA3A, TACR3, PROK2, KDM6A, KMT2D, OFD1, GNRH1, GNRHR, GLI3, INSR, CHD7, CDON, RNF216, PROKR2, GLI3, LEPR. Basal plasma concentrations of gonadotropins were undetectable and did not increase after gonadotropin-releasing hormone test in 3 of them whilst 5 had prepubertal values. The plasma estradiol concentrations were prepubertal in 6 girls, high (576 pmol/L) in one and not evaluated in 2 of them. Conclusions: In the first study reporting exome sequencing in prepubertal OC, half of the patients with OC carry either previously reported pathogenic variants or potentially pathogenic variants in genes known to be associated with isolated or syndromic forms of congenital hypogonadotropic hypogonadism. Functional studies and studies of other cohorts are recommended to establish the causality of these variants.
Collapse
Affiliation(s)
- Raja Brauner
- Hôpital Fondation Adolphe de Rothschild and Université Paris Descartes, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetics Unit, Institut Pasteur, Paris, France
| |
Collapse
|
15
|
Jiao SY, Yang YH, Chen SR. Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Hum Reprod Update 2020; 27:154-189. [PMID: 33118031 DOI: 10.1093/humupd/dmaa034] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Infertility is a major issue in human reproductive health, affecting an estimated 15% of couples worldwide. Infertility can result from disorders of sex development (DSD) or from reproductive endocrine disorders (REDs) with onset in infancy, early childhood or adolescence. Male infertility, accounting for roughly half of all infertility cases, generally manifests as decreased sperm count (azoospermia or oligozoospermia), attenuated sperm motility (asthenozoospermia) or a higher proportion of morphologically abnormal sperm (teratozoospermia). Female infertility can be divided into several classical types, including, but not limited to, oocyte maturation arrest, premature ovarian insufficiency (POI), fertilization failure and early embryonic arrest. An estimated one half of infertility cases have a genetic component; however, most genetic causes of human infertility are currently uncharacterized. The advent of high-throughput sequencing technologies has greatly facilitated the identification of infertility-associated gene mutations in patients over the past 20 years. OBJECTIVE AND RATIONALE This review aims to conduct a narrative review of the genetic causes of human infertility. Loss-of-function mutation discoveries related to human infertility are summarized and further illustrated in tables. Corresponding knockout/mutated animal models of causative genes for infertility are also introduced. SEARCH METHODS A search of the PubMed database was performed to identify relevant studies published in English. The term 'mutation' was combined with a range of search terms related to the core focus of the review: infertility, DSD, REDs, azoospermia or oligozoospermia, asthenozoospermia, multiple morphological abnormalities of the sperm flagella (MMAF), primary ciliary dyskinesia (PCD), acephalic spermatozoa syndrome (ASS), globozoospermia, teratozoospermia, acrosome, oocyte maturation arrest, POI, zona pellucida, fertilization defects and early embryonic arrest. OUTCOMES Our search generated ∼2000 records. Overall, 350 articles were included in the final review. For genetic investigation of human infertility, the traditional candidate gene approach is proceeding slowly, whereas high-throughput sequencing technologies in larger cohorts of individuals is identifying an increasing number of causative genes linked to human infertility. This review provides a wide panel of gene mutations in several typical forms of human infertility, including DSD, REDs, male infertility (oligozoospermia, MMAF, PCD, ASS and globozoospermia) and female infertility (oocyte maturation arrest, POI, fertilization failure and early embryonic arrest). The causative genes, their identified mutations, mutation rate, studied population and their corresponding knockout/mutated mice of non-obstructive azoospermia, MMAF, ASS, globozoospermia, oocyte maturation arrest, POI, fertilization failure and early embryonic arrest are further illustrated by tables. In this review, we suggest that (i) our current knowledge of infertility is largely obtained from knockout mouse models; (ii) larger cohorts of clinical cases with distinct clinical characteristics need to be recruited in future studies; (iii) the whole picture of genetic causes of human infertility relies on both the identification of more mutations for distinct types of infertility and the integration of known mutation information; (iv) knockout/mutated animal models are needed to show whether the phenotypes of genetically altered animals are consistent with findings in human infertile patients carrying a deleterious mutation of the homologous gene; and (v) the molecular mechanisms underlying human infertility caused by pathogenic mutations are largely unclear in most current studies. WILDER IMPLICATIONS It is important to use our current understanding to identify avenues and priorities for future research in the field of genetic causes of infertility as well as to apply mutation knowledge to risk prediction, genetic diagnosis and potential treatment for human infertility.
Collapse
Affiliation(s)
- Shi-Ya Jiao
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, 610041 Chengdu, China
| | - Su-Ren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| |
Collapse
|
16
|
Wiechmann AF, Martin TA, Horb ME. CRISPR/Cas9 mediated mutation of the mtnr1a melatonin receptor gene causes rod photoreceptor degeneration in developing Xenopus tropicalis. Sci Rep 2020; 10:13757. [PMID: 32792587 PMCID: PMC7426423 DOI: 10.1038/s41598-020-70735-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Nighttime surges in melatonin levels activate melatonin receptors, which synchronize cellular activities with the natural light/dark cycle. Melatonin receptors are expressed in several cell types in the retina, including the photon-sensitive rods and cones. Previous studies suggest that long-term photoreceptor survival and retinal health is in part reliant on melatonin orchestration of circadian homeostatic activities. This scenario would accordingly envisage that disruption of melatonin receptor signaling is detrimental to photoreceptor health. Using in vivo CRISPR/Cas9 genomic editing, we discovered that a small deletion mutation of the Mel1a melatonin receptor (mtnr1a) gene causes a loss of rod photoreceptors in retinas of developing Xenopus tropicalis heterozygous, but not homozygous mutant tadpoles. Cones were relatively spared from degeneration, and the rod loss phenotype was not obvious after metamorphosis. Localization of Mel1a receptor protein appeared to be about the same in wild type and mutant retinas, suggesting that the mutant protein is expressed at some level in mutant retinal cells. The severe impact on early rod photoreceptor viability may signify a previously underestimated critical role in circadian influences on long-term retinal health and preservation of sight. These data offer evidence that disturbance of homeostatic, circadian signaling, conveyed through a mutated melatonin receptor, is incompatible with rod photoreceptor survival.
Collapse
Affiliation(s)
- Allan F Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Teryn A Martin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marko E Horb
- Marine Biological laboratory, Woods Hole, MA, USA
| |
Collapse
|
17
|
Lattanzi R, Maftei D, Fullone MR, Miele R. Identification and characterization of Prokineticin receptor 2 splicing variant and its modulation in an animal model of Alzheimer's disease. Neuropeptides 2019; 73:49-56. [PMID: 30553543 DOI: 10.1016/j.npep.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Roberta Lattanzi
- Dipartimento di Fisiologia e Farmacologia "Vittorio Erspamer", Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Daniela Maftei
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Maria Rosaria Fullone
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Rossella Miele
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
18
|
Suzuki E, Shima H, Kagami M, Soneda S, Tanaka T, Yatsuga S, Nishioka J, Oto Y, Kamiya T, Naiki Y, Ogata T, Fujisawa Y, Nakamura A, Kawashima S, Morikawa S, Horikawa R, Sano S, Fukami M. (Epi)genetic defects of MKRN3 are rare in Asian patients with central precocious puberty. Hum Genome Var 2019; 6:7. [PMID: 30675365 PMCID: PMC6341071 DOI: 10.1038/s41439-019-0039-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/29/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
We sequenced MKRN3, the major causative gene of central precocious puberty in Western countries, in 24 Japanese or Chinese patients and examined the DNA methylation and copy-number statuses of this gene in 19 patients. We identified no (epi)genetic defects except for one previously reported mutation. These results, together with reports from Korea, indicate that MKRN3 defects are rare in Asian populations. The ethnic differences likely reflect Western country-specific founder mutations and the rarity of de novo mutations.
Collapse
Affiliation(s)
- Erina Suzuki
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirohito Shima
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shun Soneda
- 2Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Shuichi Yatsuga
- 4Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Junko Nishioka
- 4Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Yuji Oto
- 5Department of Pediatrics, Saitama Medical Center, Dokkyo Medical University, Saitama, Japan
| | - Toshiya Kamiya
- Department of Pediatrics, JA Mie Kouseiren Matsusaka Central General Hospital, Matsusaka, Japan
| | - Yasuhiro Naiki
- 7Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- 8Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- 8Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akie Nakamura
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Sayaka Kawashima
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuntaro Morikawa
- 9Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan
| | - Reiko Horikawa
- 7Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | | | - Maki Fukami
- 1Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
19
|
Cox KH, Oliveira LMB, Plummer L, Corbin B, Gardella T, Balasubramanian R, Crowley WF. Modeling mutant/wild-type interactions to ascertain pathogenicity of PROKR2 missense variants in patients with isolated GnRH deficiency. Hum Mol Genet 2019; 27:338-350. [PMID: 29161432 DOI: 10.1093/hmg/ddx404] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
A major challenge in human genetics is the validation of pathogenicity of heterozygous missense variants. This problem is well-illustrated by PROKR2 variants associated with Isolated GnRH Deficiency (IGD). Homozygous, loss of function variants in PROKR2 was initially implicated in autosomal recessive IGD; however, most IGD-associated PROKR2 variants are heterozygous. Moreover, while IGD patient cohorts are enriched for PROKR2 missense variants similar rare variants are also found in normal individuals. To elucidate the pathogenic mechanisms distinguishing IGD-associated PROKR2 variants from rare variants in controls, we assessed 59 variants using three approaches: (i) in silico prediction, (ii) traditional in vitro functional assays across three signaling pathways with mutant-alone transfections, and (iii) modified in vitro assays with mutant and wild-type expression constructs co-transfected to model in vivo heterozygosity. We found that neither in silico analyses nor traditional in vitro assessments of mutants transfected alone could distinguish IGD variants from control variants. However, in vitro co-transfections revealed that 15/34 IGD variants caused loss-of-function (LoF), including 3 novel dominant-negatives, while only 4/25 control variants caused LoF. Surprisingly, 19 IGD-associated variants were benign or exhibited LoF that could be rescued by WT co-transfection. Overall, variants that were LoF in ≥ 2 signaling assays under co-transfection conditions were more likely to be disease-associated than benign or 'rescuable' variants. Our findings suggest that in vitro modeling of WT/Mutant interactions increases the resolution for identifying causal variants, uncovers novel dominant negative mutations, and provides new insights into the pathogenic mechanisms underlying heterozygous PROKR2 variants.
Collapse
Affiliation(s)
- Kimberly H Cox
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Luciana M B Oliveira
- Department of Bioregulation, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Lacey Plummer
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Braden Corbin
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Thomas Gardella
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - William F Crowley
- Harvard Reproductive Sciences Center and The Reproductive Endocrine Unit of the Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
20
|
Fanis P, Skordis N, Toumba M, Papaioannou N, Makris A, Kyriakou A, Neocleous V, Phylactou LA. Central Precocious Puberty Caused by Novel Mutations in the Promoter and 5'-UTR Region of the Imprinted MKRN3 Gene. Front Endocrinol (Lausanne) 2019; 10:677. [PMID: 31636607 PMCID: PMC6787840 DOI: 10.3389/fendo.2019.00677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Central Precocious Puberty (CPP) is clinically defined by the development of secondary sexual characteristics before the age of 8 years in girls and 9 years in boys. To date, mutations in the coding region of KISS1, KISS1R, PROKR2, DLK1, and MKRN3 genes have been reported as causative for CPP. This study investigated the presence of causative mutations in both the promoter and the 5'-UTR regions of the MKRN3 gene. Methods: Sanger DNA sequencing was used for screening the proximal promoter and 5'-UTR region of the MKRN3 gene in a group of 73 index girls with CPP. Mutations identified were cloned in luciferase reporter gene vectors and transiently transfected in GN11 cells in order to check for changes in the activity of the MKRN3 promoter. GN11 cells were previously checked for Mkrn3 expression using lentivirus mediated knock-down. In silico analysis was implemented for the detection of changes in the mRNA secondary structure of the mutated MKRN3 5'-UTR. Results: Three novel heterozygous mutations (-166, -865, -886 nt upstream to the transcription start site) located in the proximal promoter region of the MKRN3 gene were identified in six non-related girls with CPP. Four of these girls shared the -865 mutation, one the -166, and another one the -886. A 5'-UTR (+13 nt downstream to the transcription start site) novel mutation was also identified in a girl with similar clinical phenotype. Gene reporter assay evaluated the identified promoter mutations and demonstrated a significant reduction of MKRN3 promoter activity in transfected GN11 cells. In silico analysis for the mutated 5'-UTR predicted a significant change of the mRNA secondary structure. The minimum free energy (MFE) of the mutated 5'-UTR was higher when compared to the corresponding wild-type indicating less stable RNA secondary structure. Conclusion: Our findings demonstrated novel genetic alterations in the promoter and 5'-UTR regulatory regions of the MKRN3 gene. These changes add to another region to check for the etiology of CPP.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicos Skordis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Pediatric Endocrine Clinic, Paedi Center for Specialized Pediatrics, Nicosia, Cyprus
| | - Meropi Toumba
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Pediatrics, Iasis Hospital, Paphos, Cyprus
| | - Nikoletta Papaioannou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Anestis Makris
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Kyriakou
- Developmental Endocrinology Research Group, School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- *Correspondence: Leonidas A. Phylactou
| |
Collapse
|
21
|
Grandone A, Cirillo G, Sasso M, Tornese G, Luongo C, Festa A, Marzuillo P, Miraglia Del Giudice E. MKRN3 Levels in Girls with Central Precocious Puberty during GnRHa Treatment: A Longitudinal Study. Horm Res Paediatr 2018; 90:190-195. [PMID: 30269125 DOI: 10.1159/000493134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, mutations of makorin RING finger protein 3 (MKRN3) have been identified in familial central precocious puberty (CPP). Serum levels of this protein decline before the pubertal onset in healthy girls and boys and are lower in patients with CPP compared to prepubertal matched pairs. The aim of our study was to investigate longitudinal changes in circulating MKRN3 levels in patients with CPP before and during GnRH analogs (GnRHa) treatment. METHODS We performed a longitudinal prospective study. We enrolled 15 patients with CPP aged 7.2 years (range: 2-8) with age at breast development onset < 8 years and 12 control girls matched for the time from puberty onset (mean age 11.8 ± 1.2 years). Serum values of MKRN3, gonadotropins, and 17β-estradiol were evaluated before and during treatment with GnRHa (at 6 and 12 months). The MKRN3 gene was genotyped in CPP patients. In the girls from the control group, only basal levels were analyzed. RESULTS No MKRN3 mutations were found among CPP patients. MKRN3 levels declined significantly from baseline to 6 months of GnRHa treatment (p = 0.0007) and from 6 to 12 months of treatment (p = 0.003); MKRN3 levels at 6 months were significantly lower than in the control girls (p < 0.0001). CONCLUSIONS We showed that girls with CPP had a decline in peripheral levels of MKRN3 during GnRHa treatment. Our data suggest a suppression of MKRN3 by continuous pharmacological administration of GnRHa.
Collapse
Affiliation(s)
- Anna Grandone
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Grazia Cirillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Sasso
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Caterina Luongo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Adalgisa Festa
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Pierluigi Marzuillo
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples,
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child, General and Specialized Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Topor LS, Bowerman K, Machan JT, Gilbert CL, Kangarloo T, Shaw ND. Central precocious puberty in Boston boys: A 10-year single center experience. PLoS One 2018; 13:e0199019. [PMID: 29949619 PMCID: PMC6021063 DOI: 10.1371/journal.pone.0199019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Recent studies in the US and abroad suggest that boys are undergoing puberty at a younger age. It is unknown if this secular trend extends to boys with central precocious puberty (CPP), who sit at the extreme end of the pubertal spectrum, and if neuroimaging should remain a standard diagnostic tool. Study design Retrospective chart review of all boys with CPP seen by Endocrinology at a US pediatric hospital from 2001–2010. Results Fifty boys had pubertal onset at an average age of 7.31 years (95CI 6.83–7.89), though many did not present until nearly one year thereafter, by which time 30% were mid-to-late pubertal. Boys were predominantly non-Hispanic White and 64% were overweight/obese. The majority (64%) of boys had neurogenic CPP (CNS-CPP) with neurofibromatosis type I being the most common diagnosis. Diagnosis of CPP led to discovery of a neurogenic lesion in only 3 of 32 (9%) CNS-CPP cases. The remaining boys, with idiopathic CPP (36%), were indistinguishable from those with CNS-CPP aside from four boys who endorsed a family history of PP (22% vs. 0% among CNS-CPP cases). Importantly, there was no change in the incidence of male CPP after accounting for the increase in clinic volume during this time period. Conclusion In this contemporary Boston-based cohort of 50 boys with CPP, most cases were neurogenic, consistent with older literature. Several idiopathic cases had a family history of PP but were otherwise indistinguishable from CNS-CPP cases. Thus, neuroimaging remains a critical diagnostic tool. We find no evidence for an increase in the prevalence of male CPP.
Collapse
Affiliation(s)
- Lisa Swartz Topor
- Department of Pediatrics, Division of Pediatric Endocrinology, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Hasbro Children’s Hospital, Providence, Rhode Island, United States of America
- * E-mail:
| | - Kimberly Bowerman
- Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jason T. Machan
- Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Lifespan Biostatistics Core, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Psychology, University of Rhode Island, South Kingston, Rhode Island, United States of America
| | - Courtney L. Gilbert
- University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Tairmae Kangarloo
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Natalie D. Shaw
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina, United States of America
| |
Collapse
|
23
|
Fukami M, Suzuki E, Igarashi M, Miyado M, Ogata T. Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders. Clin Endocrinol (Oxf) 2018; 88:351-359. [PMID: 29029377 DOI: 10.1111/cen.13496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 11/28/2022]
Abstract
The human genome encodes more than 700 G-protein-coupled receptors (GPCRs), many of which are involved in hormone secretion. To date, more than 100 gain-of-function (activating) mutations in at least ten genes for GPCRs, in addition to several loss-of-function mutations, have been implicated in human endocrine disorders. Previously reported gain-of-function GPCR mutations comprise various missense substitutions, frameshift mutations, intragenic inframe deletions and copy-number gains. Such mutations appear in both germline and somatic tumour cells, and lead to various hormonal abnormalities reflecting excessive receptor activity. Phenotypic consequences of these mutations include distinctive endocrine syndromes, as well as relatively common hormonal abnormalities. Such mutations encode hyperfunctioning receptors with increased constitutive activity, broadened ligand specificity, increased ligand sensitivity and/or delayed receptor desensitization. Furthermore, recent studies proposed a paradoxical gain-of-function mechanism caused by inactive GPCR mutants. Molecular diagnosis of GPCR activating mutations serves to improve the clinical management of mutation-positive patients. This review aims to introduce new aspects regarding gain-of-function mutations in GPCR genes associated with endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Erina Suzuki
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Igarashi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
24
|
Fukami M, Miyado M. Next generation sequencing and array-based comparative genomic hybridization for molecular diagnosis of pediatric endocrine disorders. Ann Pediatr Endocrinol Metab 2017; 22:90-94. [PMID: 28690986 PMCID: PMC5495984 DOI: 10.6065/apem.2017.22.2.90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/17/2017] [Indexed: 11/20/2022] Open
Abstract
Next-generation sequencing (NGS) and array-based comparative genomic hybridization (array CGH) have enabled us to perform high-throughput mutation screening and genome-wide copy number analysis, respectively. These methods can be used for molecular diagnosis of pediatric endocrine disorders. NGS has determined the frequency and phenotypic variation of mutations in several disease-associated genes. Furthermore, whole exome analysis using NGS has successfully identified several novel causative genes for endocrine disorders. Array CGH is currently used as the standard procedure for molecular cytogenetic analysis. Array CGH can detect various submicroscopic genomic rearrangements involving exons or enhancers of disease-associated genes. This review introduces some examples of the use of NGS and array CGH for the molecular diagnosis of pediatric endocrine disorders.
Collapse
Affiliation(s)
- Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|