1
|
Jiao XF, Gao Y, Ni R, Zhao WY, Zhao C, Lu X, Zhang HF, Gao W, Luo L. Low serum HSPA12B levels are associated with an increased risk of sarcopenia in a Chinese population of older adults. Cell Stress Chaperones 2025; 30:100-108. [PMID: 39983811 PMCID: PMC11909431 DOI: 10.1016/j.cstres.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by progressive loss of muscle mass and function. Heat shock protein (HSP) A12B is essential for angiogenesis and endothelial function. However, the association of HSPA12B levels with sarcopenia remains unclear. A total of 936 community-dwelling elderly people were recruited, and serum HSPA12B was measured by enzyme-linked immunosorbent assay. Appendicular skeletal muscle mass index (ASMI), grip strength, and gait speed were taken to assess sarcopenia. We found that serum HSPA12B levels in patients with sarcopenia (median [interquartile range] = 182.15 [137.58-225.86] ng/mL) were lower than those in elderly people without sarcopenia (228.96 [193.03-292.93] ng/mL, P < 0.001). Receiver operating characteristic curve analysis indicated that the optimal cut-off value of serum HSPA12B level for predicting sarcopenia was 185.50 ng/mL, with a sensitivity of 52.6% and a specificity of 80.8% (area under curve = 0.742, 95% confidence interval [CI] = 0.711-0.772, P < 0.001). Moreover, serum HSPA12B concentration was positively correlated with ASMI (r = 0.354, P < 0.001), grip strength (r = 0.381, P < 0.001), and gait speed (r = 0.169, P < 0.001). Multivariate logistic regression analysis showed that decreased serum HSPA12B levels (<185.50 ng/mL) were a risk factor for increased risk of sarcopenia (adjusted odds ratio = 4.335, 95% CI = 3.136-5.993, P < 0.001). In addition, serum HSPA12B level was also positively correlated with serum levels of angiogenesis markers, vascular endothelial growth factor (r = 0.080, P = 0.014), and angiopoietin-1 (r = 0.108, P = 0.001). In summary, our results indicate that low serum HSPA12B level is associated with an increased risk of sarcopenia in the elderly, suggesting a potential role of HSPA12B in the development of sarcopenia.
Collapse
Affiliation(s)
- Xin-Feng Jiao
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yue Gao
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ran Ni
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen-Ya Zhao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Hai-Feng Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Lan Luo
- Department of Geriatrics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Liu X, Zhang L, Tang W, Zhang T, Xiang P, Shen Q, Ye T, Xiao Y. Transcriptomic profiling and differential analysis reveal the renal toxicity mechanisms of mice under cantharidin exposure. Toxicol Appl Pharmacol 2023; 465:116450. [PMID: 36907384 DOI: 10.1016/j.taap.2023.116450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
Cantharidin (CTD), extracted from the traditional Chinese medicine mylabris, has shown significant curative effects against a variety of tumors, but its clinical application is limited by its high toxicity. Studies have revealed that CTD can cause toxicity in the kidneys; however, the underlying molecular mechanisms remain unclear. In this study, we investigated the toxic effects in mouse kidneys following CTD treatment by pathological and ultrastructure observations, biochemical index detection, and transcriptomics, and explored the underlying molecular mechanisms by RNA sequencing (RNA-seq). The results showed that after CTD exposure, the kidneys had different degrees of pathological damage, altered uric acid and creatinine levels in serum, and the antioxidant indexes in tissues were significantly increased. These changes were more pronounced at medium and high doses of CTD. RNA-seq analysis revealed 674 differentially expressed genes compared with the control group, of which 131 were upregulated and 543 were downregulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that many differentially expressed genes were closely related to the stress response, the CIDE protein family, and the transporter superfamily, as well as the MAPK, AMPK, and HIF-1 pathways. The reliability of the RNA-seq results was verified by qRT-PCR of the six target genes. These findings offer insight into the molecular mechanisms of renal toxicity caused by CTD and provide an important theoretical basis for the clinical treatment of CTD-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xin Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Linghan Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenchao Tang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China; Key Laboratory of Forensic Toxicology of Herbal Medicines, Guizhou Education Department, Guiyang, China.
| | - Tingting Zhang
- Chongqing university three gorges hospital, Chongqing, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Qin Shen
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taotao Ye
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanyuan Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
3
|
Lian Y, Gòdia M, Castello A, Rodriguez-Gil JE, Balasch S, Sanchez A, Clop A. Characterization of the Impact of Density Gradient Centrifugation on the Profile of the Pig Sperm Transcriptome by RNA-Seq. Front Vet Sci 2021; 8:668158. [PMID: 34350225 PMCID: PMC8326511 DOI: 10.3389/fvets.2021.668158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022] Open
Abstract
RNA-Seq data from human semen suggests that the study of the sperm transcriptome requires the previous elimination from the ejaculates of somatic cells carrying a larger load of RNA. Semen purification is also carried to study the sperm transcriptome in other species including swine and it is often done by density gradient centrifugation to obtain viable spermatozoa from fresh ejaculates or artificial insemination doses, thereby limiting the throughput and remoteness of the samples that can be processed in one study. The aim of this work was to evaluate the impact of purification with density gradient centrifugation by BoviPureTM on porcine sperm. Four boar ejaculates were purified with BoviPureTM and their transcriptome sequenced by RNA-Seq was compared with the RNA-Seq profiles of their paired non-purified sample. Seven thousand five hundred and nineteen protein coding genes were identified. Correlation, cluster, and principal component analysis indicated high—although not complete—similarity between the purified and the paired non-purified ejaculates. 372 genes displayed differentially abundant RNA levels between treatments. Most of these genes had lower abundances after purification and were mostly related to translation, transcription and metabolic processes. We detected a significant change in the proportion of genes of epididymal origin within the differentially abundant genes (1.3%) when compared with the catalog of unaltered genes (0.2%). In contrast, the proportion of testis-specific genes was higher in the group of unaltered genes (4%) when compared to the list of differentially abundant genes (0%). No proportion differences were identified for prostate, white blood, lymph node, tonsil, duodenum, skeletal muscle, liver, and mammary gland. Altogether, these results suggest that the purification impacts on the RNA levels of a small number of genes which are most likely caused by the removal of epididymal epithelial cells but also premature germinal cells, immature or abnormal spermatozoa or seminal exosomes with a distinct load of RNAs.
Collapse
Affiliation(s)
- Yu Lian
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Marta Gòdia
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Anna Castello
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.,Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Joan Enric Rodriguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Armand Sanchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.,Unit of Animal Science, Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Alex Clop
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
4
|
Fan M, Yang K, Wang X, Wang Y, Tu F, Ha T, Liu L, Williams DL, Li C. Endothelial cell HSPA12B and yes-associated protein cooperatively regulate angiogenesis following myocardial infarction. JCI Insight 2020; 5:139640. [PMID: 32790647 PMCID: PMC7526558 DOI: 10.1172/jci.insight.139640] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is essential for cardiac functional recovery after myocardial infarction (MI). HSPA12B is predominately expressed in endothelial cells and required for angiogenesis. Yes-associated protein (YAP) plays an important role in tumor angiogenesis. This study investigated the cooperative role of HSPA12B and YAP in angiogenesis after MI. Silencing of either HSPA12B or YAP impaired hypoxia-promoted endothelial cell proliferation and angiogenesis. Deficiency of HSPA12B suppressed YAP expression and nuclear translocation after hypoxia. Knockdown of YAP attenuated hypoxia-stimulated HSPA12B nuclear translocation and abrogated HSPA12B-promoted endothelial cell angiogenesis. Mechanistically, hypoxia induced an interaction between endothelial HSPA12B and YAP. ChIP assay showed that HSPA12B is a target gene of YAP/transcriptional enhanced associated domain 4 (TEAD4) and a coactivator in YAP-associated angiogenesis. In vivo studies using the MI model showed that endothelial cell-specific deficiency of HSPA12B (eHspa12b-/-) or YAP (eYap-/-) impaired angiogenesis and exacerbated cardiac dysfunction compared with WT mice. MI increased YAP expression and nuclear translocation in WT hearts but not eHspa12b-/- hearts. HSPA12B expression and nuclear translocation were upregulated in WT MI hearts but not eYap-/- MI myocardium. Our data demonstrate that endothelial HSPA12B is a target and coactivator for YAP/TEAD4 and cooperates with YAP to regulate endothelial angiogenesis after MI.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Kun Yang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Xiaohui Wang
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | | | - Fei Tu
- Department of Surgery and
| | - Tuanzhu Ha
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - David L. Williams
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| | - Chuanfu Li
- Department of Surgery and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, Tennessee, USA
| |
Collapse
|
5
|
Zhou J, Zhang A, Fan L. HSPA12B Secreted by Tumor-Associated Endothelial Cells Might Induce M2 Polarization of Macrophages via Activating PI3K/Akt/mTOR Signaling. Onco Targets Ther 2020; 13:9103-9111. [PMID: 32982299 PMCID: PMC7494226 DOI: 10.2147/ott.s254985] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose The intratumoral microenvironment of head and neck squamous cell carcinoma (HNSC) is highly immunosuppressive. In this study, we explored the potential functional role of HSPA12B secreted by tumor-associated endothelial cells (TECs) in M2 polarization of macrophages. Materials and Methods Bulk-seq data from TCGA-HNSC and single-cell RNA-seq data from GSE103322 (with over 5000 cells from 18 primary HNSC cases) were used for bioinformatic analysis. RAW264.7 cell line was used for in vitro studies. Results TECs in HNSC had significantly higher expression and secretion of HSPA12B, compared to normal human umbilical vein endothelial cells (HUVECs). Exogenous HSPA12B treatment increased the expression of M2 macrophage marker CD163 and CD206 on RAW264.7 cells in a dose-dependent manner but had no significant influence on CD86, an M1 macrophage marker. OLR1, a known receptor of HSP70 proteins, was specifically expressed in tumor-associated macrophages (TAMs) in HNSC. OLR1 knockdown significantly impaired HSPA12B uptake by RAW264.7 cells and weakened HSPA12B-induced CD163 and CD206 upregulation. HSPA12B treatment increased the expression of p-PI3K, p-Akt and p-mTOR in a dose-dependent manner in RAW264.7 cells. OLR1 inhibition and LY294002 treatment significantly weakened the effects HSPA12B on activating the PI3K/Akt/mTOR signaling and M2 marker expression. Conclusion Based on these findings, we speculated that aberrantly expressed and secreted HSPA12B by TECs could be taken by macrophages partly via OLR1, leading to subsequent activation of the PI3K/Akt/mTOR signaling pathway and elevated expression of M2 markers. This mechanism shows a novel cross-talk between TECs and TAMs, which contributes to the intratumoral immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Jingjie Zhou
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| | - Aiping Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| | - Liang Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, Jingmen No. 1 People's Hospital, Jingmen, Hubei 448000, People's Republic of China
| |
Collapse
|
6
|
Ni Y, Wang J, Wang Z, Zhang X, Cao X, Ding Z. Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis. Cell Stress Chaperones 2020; 25:455-466. [PMID: 32219685 PMCID: PMC7192994 DOI: 10.1007/s12192-020-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells play essential roles in angiogenesis. Heat shock protein A12B (HSPA12B), a novel member of the multigene Hsp70 family, expresses specifically in endothelial cells. Alpha-lipoic acid (LA) has been used for the treatment of human diabetic complications for more than 20 years. However, little is known whether LA impacts endothelial proliferation and migration. To address these questions, primary human umbilical vein endothelial cells (HUVECs) were isolated and treated with LA. We found that LA reduced viable HUVECs but not caused LDH leakage and nuclear condensation, suggesting an inhibitory effect of LA on HUVEC proliferation. We also noticed that LA impeded wound closure of HUVEC monolayers. The expressions of C-Myc, VEGF, and eNOS and phosphorylation of focal adhesion kinase were reduced by LA. Moreover, LA decreased the expression of heat shock protein A12B (HSPA12B). Notably, overexpression of HSPA12B in endothelial cells prevented the LA-induced loss of VEGF. More importantly, HSPA12B overexpression attenuated the LA-induced inhibition of endothelial proliferation and migration. Collectively, the results demonstrated that LA inhibited proliferative and migratory abilities in human vascular endothelial cells through the downregulation of the HSPA12B/VEGF signaling axis. The data suggest that besides the treatment in diabetic complications, LA might represent a viable therapeutic potential for human diseases that involve high angiogenic activities such as cancers.
Collapse
Affiliation(s)
- Yan Ni
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Juan Wang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhuyao Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
7
|
Wang JS, Dai HH, Yan YB, Gong XH, Li X, Li HS, Wang B. Research of stroke combined hyperlipidemia-induced erectile dysfunction in rat model. Aging Male 2019; 22:278-286. [PMID: 30451062 DOI: 10.1080/13685538.2018.1484443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective: The study was aimed to evaluate the influences of erectile dysfunction (ED) in a rat model of stroke combined with hyperlipidemia (HLP). Methods: Male Sprague-Dawley rats were divided into control and hyperlipidemia (HLP) groups. HLP model was constructed by feeding with high-fat and cholesterol diets. Serum levels of total cholesterol (TC), low density lipoprotein (LDL), high density lipoprotein (HDL), triglyceride (TG), and non-HDL were identified to check the model was success. Stroke model was established by FeCl3. ICP/MAP value was detected to evaluate the erectile function of rats. Serum level of lipoproteins and the expressions of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) were detected by ELISA. Hematoxylin-eosin (HE) staining of corpus cavernosum and measurement of penis length were utilized to assessment erectile function. Western blot was used. Results: TC, TG, LDL, and non-HDL-C in serum were up-regulated, while HDL level was attenuated. After treatment, the serum lipid level recovered. From the ICP/MAP values, the erectile function of both two treatment groups recovered. The expression of PDE5A was up-regulated, while the levels of eNOS and cGMP were suppressed after surgery. The length of penis was decreased, and corpus cavernosum was damaged following HLP and stroke. However, the erectile function was recovered after treatment. Conclusion: Stroke combined HLP caused ED through NO-cGMP-PDE5 pathway.
Collapse
Affiliation(s)
- Ji-Sheng Wang
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| | - Heng-Heng Dai
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| | - Yu-Bing Yan
- Department of Chinese Medicine, Beijing University of Chinese Medicine , Chaoyang District , Beijing , China
| | - Xi-Hao Gong
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| | - Xiao Li
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| | - Hai-Song Li
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital Attached to Beijing University of Chinese Medicine , Dongcheng District , Beijing , China
| |
Collapse
|
8
|
Liu S, Jin R, Xiao AY, Zhong W, Li G. Inhibition of CD147 improves oligodendrogenesis and promotes white matter integrity and functional recovery in mice after ischemic stroke. Brain Behav Immun 2019; 82:13-24. [PMID: 31356925 PMCID: PMC6800638 DOI: 10.1016/j.bbi.2019.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023] Open
Abstract
White matter damage is an important contributor to long-term neurological deficit after stroke. Our previous study has shown that inhibition of CD147 ameliorates acute ischemic stroke in mice. In this study, we aimed to investigate whether inhibition of CD147 promotes white matter repair and long-term functional recovery after ischemic stroke.Male adult C57BL/6 mice were subjected to transient (1-h) middle cerebral artery occlusion (tMCAO). Anti-CD147 function-blocking antibody (αCD147) was injected intravenously once daily for 3 days beginning 4 h after onset of ischemia. Sensorimotor and cognitive functions were evaluated up to 28 days after stroke. We found that αCD147 treatment not only prevented neuronal and oligodendrocyte cell death in the acute phase, but also profoundly protected white matter integrity and reduced brain atrophy and tissue loss in the late phase, leading to improved sensorimotor and cognitive functions for at least 28 days after stroke. Mechanistically, we found that αCD147 treatment increased the number of proliferating NG2(+)/PDGFRα(+) oligodendrocyte precursor cells (OPCs) and newly generated mature APC(+)/Sox10(+) oligodendrocytes after stroke, possibly through upregulation of SDF-1/CXCR4 axis in OPCs. In conclusion, inhibition of CD147 promotes long-term functional recovery after stroke, at least in part, by enhancing oligodendrogenesis and white matter repair.
Collapse
Affiliation(s)
- Shan Liu
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Rong Jin
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Adam Y Xiao
- The Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA
| | - Wei Zhong
- Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Guohong Li
- From the Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|