1
|
Moghassemi S, Nikanfar S, Dadashzadeh A, Sousa MJ, Wan Y, Sun F, Colson A, De Windt S, Kwaspen L, Kanbar M, Sobhani K, Yang J, Vlieghe H, Li Y, Debiève F, Wyns C, Amorim CA. The revolutionary role of placental derivatives in biomedical research. Bioact Mater 2025; 49:456-485. [PMID: 40177109 PMCID: PMC11964572 DOI: 10.1016/j.bioactmat.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025] Open
Abstract
The human placenta is a transient yet crucial organ that plays a key role in sustaining the relationship between the maternal and fetal organisms. Despite its historical classification as "biowaste," placental tissues have garnered increasing attention since the early 1900s for their significant medical potential, particularly in wound repair and surgical application. As ethical considerations regarding human placental derivatives have largely been assuaged in many countries, they have gained significant attention due to their versatile applications in various biomedical fields, such as biomedical engineering, regenerative medicine, and pharmacology. Moreover, there is a substantial trend toward various animal product substitutions in laboratory research with human placental derivatives, reflecting a broader commitment to advancing ethical and sustainable research methodologies. This review provides a comprehensive examination of the current applications of human placental derivatives, explores the mechanisms behind their therapeutic effects, and outlines the future potential and directions of this rapidly advancing field.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Saba Nikanfar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yuting Wan
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Fengxuan Sun
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Arthur Colson
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sven De Windt
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lena Kwaspen
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Keyvan Sobhani
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Yongqian Li
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christine Wyns
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology and Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
2
|
Wang X, Li Q, Liu J, Xie C, Zou L, Shi Y, Jiang L, Qin X. Harnessing nano-delivery systems to un-cover the challenges for cervical cancer therapy. Int J Pharm 2025; 677:125657. [PMID: 40306445 DOI: 10.1016/j.ijpharm.2025.125657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Cervical cancer (CC) remains a prevalent malignancy among women, with current therapeutic strategies facing significant challenges in curbing its rising incidence. Nano-delivery systems have emerged as a promising approach to hinder CC progression. This review provides a comprehensive examination of CC pathogenesis and its physiological characteristics while focusing on applying various nano-delivery systems in CC therapy. Specifically, it highlights the potential of both internal (e.g., pH, reactive oxygen species, glutathione) and external (e.g., Photo, magnetism, sound waves, microwaves, electricity) stimuli-responsive nano-delivery platforms to enhance therapeutic efficacy. The challenges of nano-delivery systems in CC therapy, encompassing in vivo stability, biosafety, distribution, and metabolic processes, are addressed, along with potential remedies. Additionally, the review underscores recent preclinical advances in nano-delivery systems for CC therapy. By thoroughly exploring nanomaterial applications, this review provides valuable perspectives for advancing CC treatment and stimulating future research and innovation in this domain.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qi Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianxin Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Chunbao Xie
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi Shi
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China; Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Xianyan Qin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medical, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
3
|
Ahmad F, Sudesh R, Ahmed AT, Arumugam M, Mathkor DM, Haque S. The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget. Expert Rev Mol Med 2024; 26:e11. [PMID: 38682637 PMCID: PMC11140545 DOI: 10.1017/erm.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Atheeq Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
4
|
Ahmad F, Sudesh R, Ahmed AT, Haque S. Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. Cell Mol Neurobiol 2024; 44:23. [PMID: 38366205 PMCID: PMC10873238 DOI: 10.1007/s10571-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - A Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| |
Collapse
|
5
|
Liu C, Liu D, Zhang X, Hui L, Zhao L. Nanofibrous polycaprolactone/amniotic membrane facilitates peripheral nerve regeneration by promoting macrophage polarization and regulating inflammatory microenvironment. Int Immunopharmacol 2023; 121:110507. [PMID: 37356125 DOI: 10.1016/j.intimp.2023.110507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Appropriate levels of inflammation are an important part of functional repair of nerve damage. However, excessive inflammation can cause the continuous activation of immune inflammatory cells and degeneration of nerve cells. Regulating the temporal and spatial changes in M1/M2 macrophages can regulate the local inflammatory immune environment of the tissue to promote its transformation to a direction conducive to tissue repair.In the present study, a multi-layer multifunctional nanofiber composite membrane of polycaprolactone(PCL) and amniotic membrane (AM) was constructed using electrospinning. In vitro studies have shown that the PCL/AM composite promoted the axon growth of SH-SY5Y cells and induced their differentiation into neurons. The PCL/AM composite wrapped the nerve stump to form a microenvironment that was conducive to nerve regeneration, blocked the invasion of scar tissue, promoted the recruitment of macrophages and moderate polarization to M2, enhanced the expression of anti-inflammatory factors IL-10 and IL-13, inhibited the expression of pro-inflammatory factors IL-6 and TNF-α, and induced myelin sheath and axon regeneration. By releasing various bioactive substances to regulate the polarization of M2 macrophages and formation of anti-inflammatory factors, the PCL/AM composite can enhance axonal regeneration and improve nerve repair.
Collapse
Affiliation(s)
- Chunjie Liu
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Postdoctoral Mobile Station, Hebei Medical University, Shijiazhuang 050017, China; Department of Orthopedics, Tangshan Workers Hospital, Tangshan 063000, China
| | - Dengxiang Liu
- Institute of Cancer Control, Xingtai People's Hospital, Xingtai 054001, China; Xingtai Key Laboratory of Precision Medicine for Liver Cirrhosis and Portal Hypertension, Xingtai People's Hospital, Xingtai 054001, China
| | - Xiaochong Zhang
- Department of Research and Education, Xingtai People's Hospital, Xingtai 054031, China
| | - Limin Hui
- Department of Gynecology, Xingtai People's Hospital, Xingtai 054001, China
| | - Lili Zhao
- Xingtai People's Hospital Postdoctoral Workstation, Xingtai People's Hospital, Xingtai 054031, China; Department of Orthopedics, Xingtai People's Hospital, Xingtai 054031, China.
| |
Collapse
|
6
|
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, Qian H, Liu W, Liu T. Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci 2022; 19:1680-1694. [PMID: 36237989 PMCID: PMC9553860 DOI: 10.7150/ijms.73701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. In this study, we constructed Atranorin complexes comprising superparamagnetic iron oxide nanoparticles (SPION) (Atranorin@SPION). In vitro and in vivo experiments confirmed that Atranorin@SPION could significantly inhibit the proliferation, invasion, angiogenesis, and tumorigenicity of CD44+/ CD24+ GCSCs, and induce oxidative stress injury, Fe2+ accumulation, and ferroptosis. Quantitative real-time reverse transcription PCR and western blotting results showed that Atranorin@SPION not only reduced the expression levels of GCSC stem cell markers and cell proliferation and division markers, but also significantly inhibited the expression levels of key molecules in the cystine/glutamate transporter (Xc-)/glutathione peroxidase 4 (GPX4) and Tet methylcytosine dioxygenase (TET) family proteins. The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5‑hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.
Collapse
Affiliation(s)
- Zhentian Ni
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Hairong Zhang
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Lingquan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200086, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Wentao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
7
|
A Mutation in Endogenous saRNA miR-23a Influences Granulosa Cells Response to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11061174. [PMID: 35740072 PMCID: PMC9219974 DOI: 10.3390/antiox11061174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Phenotypes are the result of the interaction between the gene and the environment, so the response of individuals with different genotypes to an environment is variable. Here, we reported that a mutation in miR-23a influences granulosa cells (GCs) response to oxidative stress, a common mechanism of environmental factors affecting female reproduction. We showed that nuclear miR-23a is a pro-apoptotic miRNA in porcine GCs through the activation of the transcription and function of NORHA, a long non-coding RNA (lncRNA) induces GC apoptosis and responses to oxidative stress. Mechanistically, miR-23a acts as an endogenous small activating RNA (saRNA) to alter histone modifications of the NORHA promoter through the direct binding to its core promoter. A C > T mutation was identified at −398 nt of the miR-23a core promoter, which created a novel binding site for the transcription factor SMAD4 and recruited the transcription repressor SMAD4 to inhibit miR-23a transcription and function in GCs. Notably, g.−398C > T mutation in the miR-23a promoter reduced GCs response to oxidative stress. In addition, g.−398C > T mutation was significantly associated with sow fertility traits. In short, our findings preliminarily revealed the genetic basis of individual differences in the response to oxidative stress from the perspective of a single mutation and identified miR-23a as a candidate gene for the environmental adaptation to oxidative stress.
Collapse
|
8
|
The Emerging Roles of Long Non-Coding RNAs in Intellectual Disability and Related Neurodevelopmental Disorders. Int J Mol Sci 2022; 23:ijms23116118. [PMID: 35682796 PMCID: PMC9181295 DOI: 10.3390/ijms23116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
In the human brain, long non-coding RNAs (lncRNAs) are widely expressed in an exquisitely temporally and spatially regulated manner, thus suggesting their contribution to normal brain development and their probable involvement in the molecular pathology of neurodevelopmental disorders (NDD). Bypassing the classic protein-centric conception of disease mechanisms, some studies have been conducted to identify and characterize the putative roles of non-coding sequences in the genetic pathogenesis and diagnosis of complex diseases. However, their involvement in NDD, and more specifically in intellectual disability (ID), is still poorly documented and only a few genomic alterations affecting the lncRNAs function and/or expression have been causally linked to the disease endophenotype. Considering that a significant fraction of patients still lacks a genetic or molecular explanation, we expect that a deeper investigation of the non-coding genome will unravel novel pathogenic mechanisms, opening new translational opportunities. Here, we present evidence of the possible involvement of many lncRNAs in the etiology of different forms of ID and NDD, grouping the candidate disease-genes in the most frequently affected cellular processes in which ID-risk genes were previously collected. We also illustrate new approaches for the identification and prioritization of NDD-risk lncRNAs, together with the current strategies to exploit them in diagnosis.
Collapse
|
9
|
Gong F, Zhu W, Liao W, Wang M, Zheng X, Wang C, Liu T, Pan W. Mechanism of the Curative Effect of Wen-Shen-Jian-Pi Prescription in the Treatment of Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:873224. [PMID: 35462696 PMCID: PMC9024327 DOI: 10.3389/fnagi.2022.873224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Objective To study the mechanism of the effect of Wen-Shen-Jian-Pi (WSJP) prescription on an ALS model comprising mice knocked out for an encoding RNA editing, mice (AR2). Methods Twenty-four transgenic AR2 mice were randomly divided into a vehicle group, a low dose WSJP group (15 mg), a medium-dose WSJP group (30 mg), and a high-dose WSJP group (45 mg) (all n = 6 per group). In the treatment groups, the WSJP prescription was given once a day while the vehicle group was fed the same volume of water. The weekly changes in body weight, rotarod test, and grip strength were used to detect the changes in the AR2 and changes of the number of normal mitochondria, abnormal mitochondria, and autophagosomes in injured spinal cord cells were used to evaluate the pathogenetic effects of WSJP treatment. Results The WSJP-treated AR2 mice gained weight more quickly from 8 weeks, and showed active behavior and displayed significantly better constant rotarod scores and grip strengths during the experiment compared with those of the vehicle AR2 mice. The number of normal mitochondria in the WSJP-treated AR2 mice had significantly more normal mitochondria than the vehicle group, while the numbers of abnormal mitochondria and autophagosomes were greatly decreased compared with those in the vehicle group. Conclusion The WSJP prescription could delay the decline in motor function of ALS model mice by reducing the degeneration of neurons. The potential of WSJP to treat ALS should be assessed in a clinical trial.
Collapse
Affiliation(s)
- Fan Gong
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zhu
- Department of Neurology, Gongli Hospital Affiliated to Naval Medical University, Shanghai, China
| | - Weilong Liao
- Neurology Department of Integrated Chinese and Western Medicine, Shanghai Pudong TCM Hospital, Shanghai, China
| | - Mingzhe Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuanlu Zheng
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenghui Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Te Liu,
| | - Weidong Pan
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Weidong Pan,
| |
Collapse
|
10
|
Zhang J, Starkuviene V, Erfle H, Wang Z, Gunkel M, Zeng Z, Sticht C, Kan K, Rahbari N, Keese M. High-content analysis of microRNAs involved in the phenotype regulation of vascular smooth muscle cells. Sci Rep 2022; 12:3498. [PMID: 35241704 PMCID: PMC8894385 DOI: 10.1038/s41598-022-07280-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022] Open
Abstract
In response to vascular injury vascular smooth muscle cells (VSMCs) alternate between a differentiated (contractile) and a dedifferentiated (synthetic) state or phenotype. Although parts of the signaling cascade regulating the phenotypic switch have been described, the role of miRNAs is still incompletely understood. To systematically address this issue, we have established a microscopy-based quantitative assay and identified 23 miRNAs that induced contractile phenotypes when over-expressed. These were then correlated to miRNAs identified from RNA-sequencing when comparing cells in the contractile and synthetic states. Using both approaches, six miRNAs (miR-132-3p, miR-138-5p, miR-141-3p, miR-145-5p, miR-150-5p, and miR-22-3p) were filtered as candidates that induce the phenotypic switch from synthetic to contractile. To identify potentially common regulatory mechanisms of these six miRNAs, their predicted targets were compared with five miRNAs sharing ZBTB20, ZNF704, and EIF4EBP2 as common potential targets and four miRNAs sharing 16 common potential targets. The interaction network consisting of these 19 targets and additional 18 hub targets were created to facilitate validation of miRNA-mRNA interactions by suggesting the most plausible pairs. Furthermore, the information on drug candidates was integrated into the network to predict novel combinatorial therapies that encompass the complexity of miRNAs-mediated regulation. This is the first study that combines a phenotypic screening approach with RNA sequencing and bioinformatics to systematically identify miRNA-mediated pathways and to detect potential drug candidates to positively influence the phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Jian Zhang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Heidelberg, Germany. .,Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania.
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Zhaohui Wang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ziwei Zeng
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Keese
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Huang Y, Du X, Liu T, Liu Q. siRNA@superparamagnetic iron oxide nanoparticles attenuate physiological toxicity of DEHP by suppressing autophagy pathway activities in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113083. [PMID: 34915219 DOI: 10.1016/j.ecoenv.2021.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Bis(2-ethylhexyl)ortho-phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride materials. Considering its widespread application, it has become a major environmental pollutant and can cause endocrine, reproductive system, and gastrointestinal disorders. Herein we aimed to elucidate the mechanisms via which DEHP causes cytotoxicity in Caenorhabditis elegans and assess whether siRNA@superparamagnetic iron oxide nanoparticles (SPIONs) can attenuate this effect. On exposing C. elegans to 10 μM DEHP, its physiological functions and gene expression levels were markedly affected. RNA-seq and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that DEHP exposure significantly activated the autophagy-animal signal transduction pathway in the somatic cells of C. elegans. Subsequently, the surface of SPIONs was loaded with siRNAs and transfected into C. elegans. Transmission electron microscopy showed that SPIONs could smoothly enter the somatic cells of C. elegans. Further, qPCR showed that the expression levels of autophagy pathway-related genes, namely Atg-2, Epg-9, Atg-18, Bec-1, and Atg-16.2, in the siRNA@SPION intervention group were significantly lower than those in the control group. Biochemical and physiological test results suggested that siRNA@SPION complexes attenuated DEHP-induced physiological toxicity and oxidative stress damage in C. elegans. Collectively, our findings indicated that DEHP markedly affects the physiological activity of C. elegans, induces changes in gene expression levels, and activates the autophagy signal transduction pathway and that siRNA@SPION complexes suppress such toxic effects by silencing the expression of genes involved in the autophagy signal transduction pathway.
Collapse
Affiliation(s)
- Yongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Te Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China.
| | - Qiang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
12
|
Guigou C, Lalande A, Millot N, Belharet K, Bozorg Grayeli A. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sci 2021; 11:358. [PMID: 33799690 PMCID: PMC7998448 DOI: 10.3390/brainsci11030358] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Drug delivery and distribution in the central nervous system (CNS) and the inner ear represent a challenge for the medical and scientific world, especially because of the blood-brain and the blood-perilymph barriers. Solutions are being studied to circumvent or to facilitate drug diffusion across these structures. Using superparamagnetic iron oxide nanoparticles (SPIONs), which can be coated to change their properties and ensure biocompatibility, represents a promising tool as a drug carrier. They can act as nanocarriers and can be driven with precision by magnetic forces. The aim of this study was to systematically review the use of SPIONs in the CNS and the inner ear. A systematic PubMed search between 1999 and 2019 yielded 97 studies. In this review, we describe the applications of the SPIONS, their design, their administration, their pharmacokinetic, their toxicity and the methods used for targeted delivery of drugs into the ear and the CNS.
Collapse
Affiliation(s)
- Caroline Guigou
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Alain Lalande
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France;
| | - Karim Belharet
- Laboratoire PRISME, JUNIA Campus Centre, 36000 Châteauroux, France;
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| |
Collapse
|
13
|
Shi Y, Yang R, Tu L, Liu D. Long non‑coding RNA HOTAIR promotes burn wound healing by regulating epidermal stem cells. Mol Med Rep 2020; 22:1811-1820. [PMID: 32582996 PMCID: PMC7411415 DOI: 10.3892/mmr.2020.11268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Local transplantation of epidermal stem cells (ESCs) exerts a therapeutic effect on burn wounds. However, cell viability can impede their clinical application. HOX antisense intergenic RNA (HOTAIR) is involved in regulating adult tissue stem cells, as well as in developmental patterning and pluripotency. However, little is known about its role in regulating ESCs. The present study was performed to investigate the effects of HOTAIR in the modulation of ESCs and wound repair. Firstly, reverse transcription‑quantitative PCR was used to detect the relative expression of HOTAIR during burn wound healing in mice to determine whether HOTAIR is associated with wound healing. Subsequently, ESCs derived from mouse skin were transfected with a lentiviral vector to overexpress or knockdown HOTAIR. The effects of HOTAIR on cell proliferation and differentiation were measured by 5‑bromodeoxyuridine and MTT assays, and by assessing NANOG mRNA expression. Lastly, mice with burns were administered a subcutaneous injection of HOTAIR‑overexpressing ESCs. Images were captured and histological analyses were performed to evaluate wound healing. The results revealed that the expression of HOTAIR gradually increased and peaked at day 7 post‑burn and maintained at relatively high levels until day 14 post‑burn during wound healing. Furthermore, overexpression of HOTAIR promoted ESC proliferation and maintained the stem cell state in vitro. By contrast, suppression of HOTAIR inhibited cell proliferation and cell stemness. It was also identified that HOTIR‑overexpressing ESCs accelerated re‑epithelialization and facilitated burn wound repair. In conclusion, the present findings confirmed an essential role of HOTAIR in the regulation of ESC proliferation and stemness. Therefore, targeting HOTAIR in ESCs may be a potentially promising therapy for burn wound healing.
Collapse
Affiliation(s)
- Yan Shi
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Department of Plastic and Aesthetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330008, P.R. China
| | - Ronghua Yang
- Burns Department, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Longxiang Tu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Burns Institute, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Kumar A, Chaudhary RK, Singh R, Singh SP, Wang SY, Hoe ZY, Pan CT, Shiue YL, Wei DQ, Kaushik AC, Dai X. Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Front Neurosci 2020; 14:305. [PMID: 32425743 PMCID: PMC7203731 DOI: 10.3389/fnins.2020.00305] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology utilizes engineered materials and devices which function with biological systems at the molecular level and could transform the management of neurodegenerative diseases (NDs) by provoking, reacting to, and intermingling with target sites to stimulate physiological responses while minimizing side effects. Blood-brain barrier (BBB) protects the brain from harmful agents, and transporting drugs across the BBB is a major challenge for diagnosis, targeting, and treatment of NDs. The BBB provides severe limitations for diagnosis and treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and various other neurological diseases. Conventional drug delivery systems generally fail to cross the BBB, thus are inefficient in treatment. Although gradual development through research is ensuring the progress of nanotheranostic approaches from animal to human modeling, aspects of translational applicability and safety are a key concern. This demands a deep understanding of the interaction of body systems with nanomaterials. There are various plant-based nanobioactive compounds which are reported to have applicability in the diagnosis and treatment of these NDs. This review article provides an overview of applications of nanotheranostics in AD and PD. The review also discusses nano-enabled drug delivery systems and their current and potential applications for the treatment of various NDs.
Collapse
Affiliation(s)
- Ajay Kumar
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ravi Kumar Chaudhary
- Department of Biotechnology, Institute of Applied Medicines & Research, Ghaziabad, India
| | - Rachita Singh
- Department of Electrical and Electronics Engineering, IIMT Engineering College, Uttar Pradesh Technical University, Meerut, India
| | - Satya P. Singh
- School of Computer Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shao-Yu Wang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zheng-Yu Hoe
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Dong-Qing Wei
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aman Chandra Kaushik
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Guo J, Xiang Q, Xin Y, Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal 2020; 18:35. [PMID: 32127022 PMCID: PMC7055126 DOI: 10.1186/s12964-019-0504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation and oxidative stress induced by oxidized low density lipoprotein are the main causes of vascular endothelial injury and atherosclerosis. Endothelial cells are important for the formation and repair of blood vessels. However, the detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived endothelial like cells remains unclear. Besides, YY1 and TET2 play a key role on epigenetic modifications of proliferation and differentiation of stem cells. However, the regulatory mechanism of epigenetic modification induced by YY1 and TET2 on stem cells to iECICs is also not clear. Aim Here, we want to investigate detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived iECICs by by YY1 and TET2. Methods The qPCR, Western blot, immunohistochemical staining and flow cytometric analysis were used to analyze the expression level of each gene. Luciferase reporter assay was used to detect the binding sites between microRNA and target genes. The hMeDIP-sequence, ChIP-PCR and dot blot were used to detect the 5-hydroxymethylcytosine modification of genomic DNA. ATP, ROS, SOD assay were used to evaluate of oxidative stress in cells. The iECICs transplantation group The ApoE−/− mice were intravenous injected of iECICs to evaluation of therapeutic effect in vivo. Results Our studies have found that as the differentiation of human amniotic epithelial cells (HuAECs) is directed towards iECICs in vitro, the expression levels of vascular endothelial cell markers and miR-544 increase significantly and the expression level of YinYang 1 (YY1) decreases significantly. The luciferase reporter assay suggests that Yy1 is one of the targets of miR-544. Hydroxymethylated DNA immunoprecipitation sequencing showed that compared with HuAECs, iECICs had 174 protein-coding DNA sequences with extensive hydroxymethylation modifications. Overexpression of miR-544 inhibits the activity of the YY1/PRC2 complex and promotes the transcription and expression of the ten-eleven translocation 2 (TET2) gene, thereby activating the key factors of the serotonergic synapse pathway, CACNA1F, and CYP2D6. In addition, it promotes ability of maturity, antioxidation and vascular formation in vitro. Meanwhile, transplantation for miR-544-iECICs can significantly relieve oxidative stress injury on ApoE−/− atherosclerotic mice in vivo. Conclusions miR-544 regulates the maturity and antioxidation of iECICs derived from HuAECs by regulating the YY1/TET2/serotonergic synapse signalling axis. Video abstract
Collapse
Affiliation(s)
- Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Qiuling Xiang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyi Huang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA. .,Shanghai Geriatric Institute of Chinese Medicine, University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
16
|
Pan Z, Huang Y, Qian H, Du X, Qin W, Liu T. Superparamagnetic iron oxide nanoparticles drive miR-485-5p inhibition in glioma stem cells by silencing Tie1 expression. Int J Biol Sci 2020; 16:1274-1287. [PMID: 32174801 PMCID: PMC7053326 DOI: 10.7150/ijbs.42887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are highly malignant nervous system tumours. Studies shown that cancer stem cells are one of the main reasons underlying recurrence, metastasis, and poor prognosis in glioma cases. Our previous studies have found that superparamagnetic iron oxide nanoparticles (SPIONs) can act as nucleic acid carriers to drive intracellular overexpression of these nucleic acids. In this study, CD44+/CD133+ glioma stem cells (HuGSCs) were first isolated from surgically resected tissues from patients. qPCR and western blot results showed that Tie1 expression in HuGSCs was significantly higher thanexpression in CD44-/CD133- glioma cells. Bioinformatic analysis and luciferase reporter assays showed that miR-485-5p binds to specific loci on the 3′-UTR of Tie1 mRNA to inhibit Tie1 expression. Subsequently, miR-485-5p/miR-mut and SPION complexes were transfected into HuGSCs. Transmission electron microscopy showed that a highly dense metallic electron cloud is present in HuGSCs. At the same time, in vivo and in vitro studies showed that miR-485-5p@SPIONs can significantly inhibit HuGSC proliferation, invasion, tumourigenicity, and angiogenesis. In-depth analysis showed that Tie1 interacts with neuronal growth factors such as FGF2, BDNF, GDNF, and GFAP. qPCR and western blot results showed that in miR-485-5p@SPIONs-HuGSCs, the expression levels of Tie1 and stem cell markers (Oct4, Sox2, Nanog, CD44, and CD133), and even FGF2, BDNF, GDNF, and GFAP were significantly lower than thelevels in the control group (miR-mut@SPIONs-HuGSCs). Therefore, this study showedthat Tie1 is an important factor that maintains glioma stem cell activity. SPIONs drive miR-485-5p overexpression in cells and inhibit endogenous Tie1 expression to downregulate the protein expression levels of Fgf2/GDNF/GFAP/BDNF and significantly weaken the in vivo and in vitro viability of gliomas.
Collapse
Affiliation(s)
- Zhiguang Pan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yongyi Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Wenxing Qin
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 200437, China.,Department of medical oncology, Shanghai Changzheng hospital, Second Military Medical University, Shanghai 200003, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
17
|
Ye W, Ni Z, Yicheng S, Pan H, Huang Y, Xiong Y, Liu T. Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the lncRNA‑Meg3/miR‑421/PDGFRA axis. Int J Oncol 2019; 55:1296-1312. [PMID: 31638182 PMCID: PMC6831202 DOI: 10.3892/ijo.2019.4887] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis has an important role in tumour cell growth and metastasis. Anisomycin has been shown to inhibit tumour cell growth. However, whether anisomycin can inhibit angiogenesis of tumours has not been reported. The present study demonstrated that there was a positive correlation between tumour angiogenesis and the number of CD44+/CD133+ serous human ovarian cancer stem cells (HuOCSCs). Subsequently, it was confirmed that anisomycin significantly inhibited the proliferation, invasion, tumorigenic ability and tumour angiogenesis of HuOCSCs. Gene expression profiling by cDNA microarrays revealed that the expression levels of vascular endothelial cell markers, platelet‑derived growth factors, Notch pathway components and 27 tumour angiogenesis‑related genes were significantly decreased in the anisomycin‑treated group compared with the control group. Further experiments demonstrated that the expression levels of endogenous long non‑coding RNA (lncRNA) maternally expressed 3 (Meg3) were significantly decreased in anisomycin‑treated HuOCSCs, whereas the expression levels of microRNA (miR)‑421 were significantly increased. The results of luciferase reporter assays indicated that, when miR‑421 was overexpressed in cells, the luciferase activities of wild‑type platelet derived growth factor receptor α (PDGFRA) 3' untranslated region and Meg3 reporter plasmids were significantly decreased. Overexpression of miR‑421 in HuOCSCs significantly enhanced the anisomycin‑mediated inhibition of HuOCSC proliferation. Taken together, the present results demonstrated that anisomycin inhibited the activation downstream of the Notch1 pathway by attenuating the molecular sponge effect of the lncRNA‑Meg3/miR‑421/PDGFRA axis, ultimately inhibiting angiogenesis, proliferation and invasion in ovarian cancer cells.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Anisomycin/pharmacology
- Anisomycin/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinoma, Ovarian Epithelial/blood supply
- Carcinoma, Ovarian Epithelial/drug therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Screening Assays, Antitumor
- Embryo, Nonmammalian
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- MicroRNAs/agonists
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness/genetics
- Neoplasm Invasiveness/pathology
- Neoplasm Invasiveness/prevention & control
- Neoplastic Stem Cells
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Neovascularization, Physiologic/drug effects
- Ovarian Neoplasms/blood supply
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovary/pathology
- Primary Cell Culture
- RNA, Long Noncoding/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Zebrafish
Collapse
Affiliation(s)
- Weiping Ye
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086
| | - Zhentian Ni
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine
| | - Shen Yicheng
- Longhua hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200031
| | - Hao Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, Sichuan 400016
| | | | - Ying Xiong
- Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
18
|
Gao Y, Qian H, Tang X, Du X, Wang G, Zhang H, Ye F, Liu T. Superparamagnetic iron oxide nanoparticle-mediated expression of miR-326 inhibits human endometrial carcinoma stem cell growth. Int J Nanomedicine 2019; 14:2719-2731. [PMID: 31114192 PMCID: PMC6497851 DOI: 10.2147/ijn.s200480] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Previously, our group confirmed the presence of a subset of cancer stem cells in the tissues of endometrial carcinoma (ie, human endometrial carcinoma stem cells [HuECSCs]). However, the mechanisms by which microRNAs regulate the growth of HuECSCs remain elusive. Methods: We loaded miR-326 onto superparamagnetic iron oxide nanoparticles (miR-326@SPION) and transfected them into HuECSCs. Results: In the present study, we found that the expression levels of members of the G-protein coupled receptor 91 (GPR91)/signal transducer and activator of transcription 3 (STAT3)/vascular endothelial growth factor (VEGF) pathway were significantly elevated in CD44+/CD133+ HuECSCs. Luciferase reporter assays indicated that the succinate receptor 1 (SUCNR1) gene, also known as the G-protein coupled receptor 91 (GPR91) gene, was one of the potential targets of miR-326. Transmission electron microscopy revealed that the SPIONs could cross the cell membrane and accumulate in the cytoplasm. The overexpression of miR-326 significantly inhibited the proliferation and cell cycle progression of HuECSCs in vitro. MiR-326 overexpression also effectively inhibited the invasion and angiogenic capacities of HuECSCs in the extracellular matrix. Meanwhile, miR-326 overexpression significantly inhibited the tumorigenicity and tumour neovascularization capacity of HuECSCs in nude mice. Both quantitative real-time PCR and Western blotting confirmed that overexpression of miR-326 significantly reduced the expression of members of the GPR91/STAT3/VEGF pathway in HuECSCs, and the activity (level of phosphorylation) of key molecules in this pathway was also reduced. Conclusion: Collectively, we confirmed that SPIONs are highly efficient nanocarriers for nucleic acids, on which the loading of miR-326 inhibited the activation of the GPR91/STAT3/VEGF signaling pathway and significantly attenuated the activity of stem cells in endometrial carcinoma, both in vitro and in vivo.
Collapse
Affiliation(s)
- Yongtao Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Shanghai, 200237, People's Republic of China
| | - Xue Tang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, People's Republic of China
| | - Gang Wang
- Department of Imaging, Dahua Hospital, Shanghai, 200237, People's Republic of China
| | - Hairong Zhang
- Department of Imaging, Dahua Hospital, Shanghai, 200237, People's Republic of China
| | - Fei Ye
- Department of Imaging, Dahua Hospital, Shanghai, 200237, People's Republic of China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, People's Republic of China
| |
Collapse
|