1
|
Jiang X, Zhang X, Deng H, Lin L, Wang Y, Wang Y, Huang J, Yang N, Xu S, Wang J, Shi K, Tao K, Chen Z, Cai F, Zhou K, Xiao J. Modulation of Macrophage ferroptosis under the guide of infrared thermography promotes the healing of pressure injuries. J Adv Res 2025:S2090-1232(25)00283-8. [PMID: 40294817 DOI: 10.1016/j.jare.2025.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/02/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Accurately recognizing and regulating the transition time of macrophages to a pro- (M1-like) or anti-inflammatory (M2-like) state is essential for improving chronic inflammation in pressure injuries (PIs). OBJECTIVE This study aimed to evaluate the effectiveness of infrared thermography (IRT) in measuring wound temperature of PIs for the purpose of guiding treatment in regulating chronic inflammation. METHODS The healing process of 21 patients with PIs was monitored using IRT prospectively followed for 30 days. The wound temperature changing pattern of different healing outcomes were analyzed and calculated the optimal wound temperature range to guide the treatment time of anti-inflammation for 100 patients with PIs accurately. Additionally, the molecular mechanisms underlying the observed temperature changes in a mouse model of PI were investigated, and the effect of IRT-guided chronic inflammation targeting ferroptosis modulation on PIs was validated. RESULTS The application of IRT to monitor PIs temperatures outside the 36.23 °C to 37.37 °C range is indicative of a potential risk indicator, which allows for the timely guidance of treatment to markedly enhance the efficacy of PIs healing outcomes. This wound temperature change was also observed during the process of PIs healing in mice, as a result of the imbalance of M1-like/M2-like macrophages and the subsequent chronic inflammation. Mechanically, evidence indicates that ferroptosis is hyperactivated in PIs, and the enrichment of M1-like macrophages with iNOS/NO• can enhance their resistance to ferroptosis compared with M2-like macrophages, resulting in the imbalance of M1-like/M2-like macrophages and subsequent alteration of wound temperature. CONCLUSIONS The modulation of M2-like macrophage resistance to ferroptosis in PIs by NO• donors, suggesting by IRT-monitored temperature changes, has been demonstrated to significantly improve chronic inflammation. This establishes a foundation for the application of IRT to direct a therapeutic strategy for the precise promotion of PIs healing.
Collapse
Affiliation(s)
- Xiaoqiong Jiang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Xuanlong Zhang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huiming Deng
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lulu Lin
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuqi Wang
- School of Nursing, Wenzhou Medical University, Wenzhou, China
| | - Jiayi Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shi Xu
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Tao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zimiao Chen
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fuman Cai
- School of Nursing, Wenzhou Medical University, Wenzhou, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jian Xiao
- Department of Wound healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Kabir F, Yung DBY, da Cruz Nizer WS, Allison KN, Zigic S, Russell E, DeZeeuw KG, Marek JE, Cassol E, Pletzer D, Overhage J. Pressure injuries and biofilms: Microbiome, model systems and therapies. Wound Repair Regen 2025; 33:e70005. [PMID: 39949184 PMCID: PMC11826131 DOI: 10.1111/wrr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025]
Abstract
Chronic wounds have emerged as significant clinical problems owing to their increasing incidence and greater recognition of associated morbidity and socio-economic burden. They are defined as wounds that do not progress normally through the stages of healing in a timely and/or orderly manner. Pressure injuries, in particular, represent a serious problem for patients who are elderly or have limited mobility, such as wheelchair users or those who spend most of the day in bed. These injuries often result from prolonged pressure exerted on the skin over the bone. Treatment of pressure injuries is complex and costly. Emerging evidence suggests that the pressure injury microbiome plays a vital role in chronic wound formation and delaying wound healing. Additionally, antibiotics often fail due to the formation of resistant biofilms and the emergence of antimicrobial-resistant bacteria. In this review, we will summarise the current knowledge on: (a) biofilms and microbiomes in pressure injuries; (b) in vitro and in vivo model systems to study pressure injuries, and (c) current therapies and novel treatment approaches. Understanding the complex interactions between microbes and the host immune system in pressure injuries will provide valuable insights to improve patient outcomes.
Collapse
Affiliation(s)
- Fahad Kabir
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | | | | | | | - Sandra Zigic
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Emily Russell
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Katrina G. DeZeeuw
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Jonah E. Marek
- Department of Complex Continuing CareSaint Vincent HospitalOttawaOntarioCanada
| | - Edana Cassol
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| | - Daniel Pletzer
- Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
| | - Joerg Overhage
- Department of Health SciencesCarleton UniversityOttawaOntarioCanada
| |
Collapse
|
3
|
Ojeh N, Vecin NM, Pastar I, Volk SW, Wilgus T, Griffiths S, Ramey‐Ward AN, Driver VR, DiPietro LA, Gould LJ, Tomic‐Canic M. The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines. Wound Repair Regen 2025; 33:e13232. [PMID: 39639458 PMCID: PMC11621255 DOI: 10.1111/wrr.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Preclinical studies for wound healing disorders are an essential step in translating discoveries into therapies. Also, they are an integral component of initial safety screening and gaining mechanistic insights using an in vivo approach. Given the complexity of the wound healing process, existing guidelines for animal testing do not capture key information due to the inevitable variability in experimental design. Variations in study interpretation are increased by complexities associated with wound aetiology, wounding procedure, multiple treatment conditions, wound assessment, and analysis, as well as lack of acknowledgement of limitation of the model used. Yet, no standards exist to guide reporting crucial experimental information required to interpret results in translational studies of wound healing. Consistency in reporting allows transparency, comparative, and meta-analysis studies and avoids repetition and redundancy. Therefore, there is a critical and unmet need to standardise reporting for preclinical wound studies. To aid in reporting experimental conditions, The Wound Reporting in Animal and Human Preclinical Studies (WRAHPS) Guidelines have now been created by the authors working with the Wound Care Collaborative Community (WCCC) GAPS group to provide a checklist and reporting template for the most frequently used preclinical models in support of development for human clinical trials for wound healing disorders. It is anticipated that the WRAHPS Guidelines will standardise comprehensive methods for reporting in scientific manuscripts and the wound healing field overall. This article is not intended to address regulatory requirements but is intended to provide general guidelines on important scientific considerations for such studies.
Collapse
Affiliation(s)
- Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Department of Preclinical and Health Sciences, Faculty of Medical SciencesThe University of the West IndiesBridgetownBarbados
| | - Nicole M. Vecin
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Traci Wilgus
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | | | | | - Vickie R. Driver
- School of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue RegenerationUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - Lisa J. Gould
- South Shore Hospital Center for Wound HealingWeymouthMassachusettsUSA
| | - Marjana Tomic‐Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| |
Collapse
|
4
|
Kura B, Slezak J. The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury. Int J Mol Sci 2024; 25:7884. [PMID: 39063126 PMCID: PMC11276695 DOI: 10.3390/ijms25147884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
5
|
Zhou W, Zhang J, Chen W, Miao C. Prospects of molecular hydrogen in cancer prevention and treatment. J Cancer Res Clin Oncol 2024; 150:170. [PMID: 38555538 PMCID: PMC10982102 DOI: 10.1007/s00432-024-05685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Gas signaling molecules, including carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), have been shown to have cancer therapeutic potential, pointing to a new direction for cancer treatment. In recent years, a series of studies have confirmed that hydrogen (H2), a weakly reductive gas, also has therapeutic effects on various cancers and can mitigate oxidative stress caused by radiation and chemotherapy, reducing tissue damage and immunosuppression to improve prognosis. Meanwhile, H2 also has immunomodulatory effects, inhibiting T cell exhaustion and enhancing T cell anti-tumor function. It is worth noting that human intestinal flora can produce large amounts of H2 daily, which becomes a natural barrier to maintaining the body's resistance to diseases such as tumors. Although the potential anti-tumor mechanisms of H2 are still to be investigated, previous studies have shown that H2 can selectively scavenge highly toxic reactive oxygen species (ROS) and inhibit various ROS-dependent signaling pathways in cancer cells, thus inhibiting cancer cell proliferation and metastasis. The ROS scavenging ability of H2 may also be the underlying mechanism of its immunomodulatory function. In this paper, we review the significance of H2 produced by intestinal flora on the immune homeostasis of the body, the role of H2 in cancer therapy and the underlying mechanisms, and the specific application of H2 to provide new ideas for the comprehensive treatment of cancer patients.
Collapse
Affiliation(s)
- Wenchang Zhou
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology; Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Feng-Lin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
6
|
Pan Y, Yang D, Zhou M, Liu Y, Pan J, Wu Y, Huang L, Li H. Advance in topical biomaterials and mechanisms for the intervention of pressure injury. iScience 2023; 26:106956. [PMID: 37378311 PMCID: PMC10291478 DOI: 10.1016/j.isci.2023.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Pressure injuries (PIs) are localized tissue damage resulting from prolonged compression or shear forces on the skin or underlying tissue, or both. Different stages of PIs share common features include intense oxidative stress, abnormal inflammatory response, cell death, and subdued tissue remodeling. Despite various clinical interventions, stage 1 or stage 2 PIs are hard to monitor for the changes of skin or identify from other disease, whereas stage 3 or stage 4 PIs are challenging to heal, painful, expensive to manage, and have a negative impact on quality of life. Here, we review the underlying pathogenesis and the current advances of biochemicals in PIs. We first discuss the crucial events involved in the pathogenesis of PIs and key biochemical pathways lead to wound delay. Then, we examine the recent progress of biomaterials-assisted wound prevention and healing and their prospects.
Collapse
Affiliation(s)
- Yingying Pan
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Dejun Yang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Min Zhou
- School of Nursing, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Liu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Jiandan Pan
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunlong Wu
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Lijiang Huang
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| | - Huaqiong Li
- Joint Research Centre on Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China
| |
Collapse
|
7
|
Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z, Lu S, Ma X. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Pharmaceuticals (Basel) 2023; 16:885. [PMID: 37375833 DOI: 10.3390/ph16060885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and anti-inflammatory effects, has been shown to promote M2 polarization in injury and disease. However, more in vivo time series studies of the role of M1-to-M2 polarization in wound healing are needed. In the current study, we performed time series experiments on a dorsal full-thickness skin defect mouse model in the inflammatory stage to examine the effects of H2 inhalation. Our results revealed that H2 could promote very early M1-to-M2 polarization (on days 2-3 post wounding, 2-3 days earlier than in conventional wound healing), without disturbing the functions of the M1 phenotype. Time series analysis of the transcriptome, blood cell counts, and multiple cytokines further indicated that peripheral blood monocytes were a source of H2-induced M2 macrophages and that the functions of H2 in macrophage polarization were not only dependent on its antioxidant effects. Therefore, we believe that H2 could reduce inflammation in wound care by shifting early macrophage polarization in clinical settings.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Shidong Lu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| |
Collapse
|
8
|
Zhao P, Dang Z, Liu M, Guo D, Luo R, Zhang M, Xie F, Zhang X, Wang Y, Pan S, Ma X. Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflamm Regen 2023; 43:22. [PMID: 36973725 PMCID: PMC10044764 DOI: 10.1186/s41232-023-00271-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/26/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Despite progress in developing wound care strategies, there is currently no treatment that promotes the self-tissue repair capabilities. H2 has been shown to effectively protect cells and tissues from oxidative and inflammatory damage. While comprehensive effects and how H2 functions in wound healing remains unknown, especially for the link between H2 and extracellular matrix (ECM) deposition and epidermal stem cells (EpSCs) activation. METHODS Here, we established a cutaneous aseptic wound model and applied a high concentration of H2 (66% H2) in a treatment chamber. Molecular mechanisms and the effects of healing were evaluated by gene functional enrichment analysis, digital spatial profiler analysis, blood perfusion/oxygen detection assay, in vitro tube formation assay, enzyme-linked immunosorbent assay, immunofluorescent staining, non-targeted metabonomic analysis, flow cytometry, transmission electron microscope, and live-cell imaging. RESULTS We revealed that a high concentration of H2 (66% H2) greatly increased the healing rate (3 times higher than the control group) on day 11 post-wounding. The effect was not dependent on O2 or anti-reactive oxygen species functions. Histological and cellular experiments proved the fast re-epithelialization in the H2 group. ECM components early (3 days post-wounding) deposition were found in the H2 group of the proximal wound, especially for the dermal col-I, epidermal col-III, and dermis-epidermis-junction col-XVII. H2 accelerated early autologous EpSCs proliferation (1-2 days in advance) and then differentiation into myoepithelial cells. These epidermal myoepithelial cells could further contribute to ECM deposition. Other beneficial outcomes include sustained moist healing, greater vascularization, less T-helper-1 and T-helper-17 cell-related systemic inflammation, and better tissue remodelling. CONCLUSION We have discovered a novel pattern of wound healing induced by molecular hydrogen treatment. This is the first time to reveal the direct link between H2 and ECM deposition and EpSCs activation. These H2-induced multiple advantages in healing may be related to the enhancement of cell viability in various cells and the maintenance of mitochondrial functions at a basic level in the biological processes of life.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Zheng Dang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ruiliu Luo
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital (Dongdan campus), No. 1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, People's Republic of China.
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, People's Republic of China.
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing, 100124, People's Republic of China.
| |
Collapse
|
9
|
Artamonov MY, Martusevich AK, Pyatakovich FA, Minenko IA, Dlin SV, LeBaron TW. Molecular Hydrogen: From Molecular Effects to Stem Cells Management and Tissue Regeneration. Antioxidants (Basel) 2023; 12:antiox12030636. [PMID: 36978884 PMCID: PMC10045005 DOI: 10.3390/antiox12030636] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
It is known that molecular hydrogen is a relatively stable, ubiquitous gas that is a minor component of the atmosphere. At the same time, in recent decades molecular hydrogen has been shown to have diverse biological effects. By the end of 2022, more than 2000 articles have been published in the field of hydrogen medicine, many of which are original studies. Despite the existence of several review articles on the biology of molecular hydrogen, many aspects of the research direction remain unsystematic. Therefore, the purpose of this review was to systematize ideas about the nature, characteristics, and mechanisms of the influence of molecular hydrogen on various types of cells, including stem cells. The historical aspects of the discovery of the biological activity of molecular hydrogen are presented. The ways of administering molecular hydrogen into the body are described. The molecular, cellular, tissue, and systemic effects of hydrogen are also reviewed. Specifically, the effect of hydrogen on various types of cells, including stem cells, is addressed. The existing literature indicates that the molecular and cellular effects of hydrogen qualify it to be a potentially effective agent in regenerative medicine.
Collapse
Affiliation(s)
- Mikhail Yu. Artamonov
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| | - Andrew K. Martusevich
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- Laboratory of Medical Biophysics, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia
| | | | - Inessa A. Minenko
- Laboratory of Translational Free Radical Biomedicine, Sechenov University, 119991 Moscow, Russia
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Sergei V. Dlin
- MJA Research and Development, Inc., East Stroudsburg, PA 18301, USA
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Correspondence: (M.Y.A.); (T.W.L.); Tel.: +1-570-972-6778 (M.Y.A.); +1-435-586-7818 (T.W.L.)
| |
Collapse
|
10
|
Otani N, Tomita K, Kobayashi Y, Kuroda K, Koyama Y, Kobayashi H, Kubo T. Hydrogen-generating Si-based agent protects against skin flap ischemia-reperfusion injury in rats. Sci Rep 2022; 12:6168. [PMID: 35418596 PMCID: PMC9008008 DOI: 10.1038/s41598-022-10228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogen is effective against ischemia–reperfusion (I/R) injury in skin flaps. However, the difficulty of continuously administering a sufficient amount of hydrogen using conventional methods has been an issue in the clinical application of hydrogen-based therapy. An Si-based agent administered orally was previously shown to continuously generate a large amount of hydrogen in the intestinal environment. In this study, we assessed the effect of the Si-based agent on the inhibition of I/R injury in skin flaps using a rat model. In the I/R groups, the vascular pedicle of the abdominal skin flap was occluded for three hours followed by reperfusion. In the I/R + Si group, the Si-based agent was administered perioperatively. After reperfusion, flap survival rate, blood flow, oxidative stress markers, inflammatory markers/findings, and degree of apoptosis were evaluated. Flap survival rate was significantly higher, and histological inflammation, apoptotic cells, oxidative stress markers, and levels of inflammatory cytokine mRNA and protein expression were significantly lower, in the I/R + Si group compared to the I/R group. The Si-based agent suppressed oxidative stress, apoptosis, and inflammatory reactions resulting from I/R injury, thereby contributing to improvements in skin flap survival.
Collapse
Affiliation(s)
- Naoya Otani
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koichi Tomita
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Yuki Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Kazuya Kuroda
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihisa Koyama
- Department of Neuroscience and Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan.,Addiction Research Unit, Development of Novel Diagnosis and Treatment Division, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka Prefectural Hospital Organization, Osaka, Japan
| | - Hikaru Kobayashi
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Tateki Kubo
- Department of Plastic and Reconstructive Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
11
|
Zhou H, Liu B, Liu Y, Huang Q, Yan W. Ultrasonic Intelligent Diagnosis of Papillary Thyroid Carcinoma Based on Machine Learning. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6428796. [PMID: 35047154 PMCID: PMC8763541 DOI: 10.1155/2022/6428796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/03/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022]
Abstract
Thyroid diseases are divided into papillary carcinoma and nodular diseases, which are very harmful to the human body. Ultrasound is a common diagnostic method for thyroid diseases. In the process of diagnosis, doctors need to observe the characteristics of ultrasound images, combined with professional knowledge and clinical experience, to give the disease situation of patients. However, different doctors have different clinical experience and professional backgrounds, and the diagnosis results lack objectivity and consistency, so an intelligent diagnosis technology for thyroid diseases based on the ultrasound image is needed in clinic, which can give objective and reliable diagnosis opinions on thyroid diseases by extracting the texture, shape, and other information of the image and assist doctors in clinical diagnosis. This paper mainly studies the intelligent ultrasonic diagnosis of papillary thyroid cancer based on machine learning, compares the ultrasonic characteristics of PTMC diagnosed by using the new ultrasound technology (CEUS and UE), and summarizes the differential diagnosis effect and clinical application value of the two technology methods for PTMC. In this paper, machine learning, diffuse thyroid image features, and RBM learning methods are used to study the ultrasonic intelligent diagnosis of papillary thyroid cancer based on machine learning. At the same time, the new contrast-enhanced ultrasound (CEUS) technology and ultrasound elastography (UE) technology are used to obtain the experimental phenomena in the experiment of ultrasonic intelligent diagnosis of papillary thyroid cancer. The results showed that 90% of the cases were diagnosed by contrast-enhanced ultrasound and confirmed by postoperative pathology. CEUS and UE have reliable practical value in the diagnosis of PTMC, and the combined application of CEUS and UE can improve the sensitivity and accuracy of PTMC diagnosis.
Collapse
Affiliation(s)
- Heng Zhou
- Ultrasound Department, Hubei Provincial Hospital of TCM, Wuhan 430061, China
| | - Bin Liu
- Network and Computing Center, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yang Liu
- Ultrasound Department, Hubei Provincial Hospital of TCM, Wuhan 430061, China
| | - Qunan Huang
- Department of Ultrasound Diagnosis, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan 430000, China
| | - Wei Yan
- Ultrasound Department, Hubei Provincial Hospital of TCM, Wuhan 430061, China
| |
Collapse
|
12
|
Molecular hydrogen alleviates lung injury after traumatic brain injury: Pyroptosis and apoptosis. Eur J Pharmacol 2022; 914:174664. [PMID: 34883075 DOI: 10.1016/j.ejphar.2021.174664] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI)-induced acute lung injury (ALI) is a critical condition, and inflammation and apoptosis play essential roles. Molecular hydrogen (H2) exerts anti-inflammatory and anti-apoptotic effects. Our previous work has shown that 42% H2 can improve TBI. In the current study, we tested the hypothesis that inhalation of hydrogen (42% H2, 21% O2, balanced nitrogen) for 1 h per day can improve TBI-induced ALI. METHODS Sprague-Dawley male rats were randomly divided into 3 groups. Except for the sham group (group S), rats were subjected to a fluid percussion injury (FPI) and the H2 treatment group were given inhaled hydrogen for 1 h per day. We evaluated the lung function, pyroptosis and apoptosis at 24 h, 48 h and 72 h. RESULTS Compared with group S, the rats in the TBI group (group T) showed obvious pulmonary edema after a TBI. Inhalation of high-concentration hydrogen significantly improved the rats. During this process, rats had some tendency to heal on their own, and H2 also accelerated the self-healing process. Lung injury scores, oxygenation index and pulmonary edema were consistent. Compared with group S, the pyroptosis-related proteins Caspase-1, apoptosis-associated speck-like protein containing CARD (ASC) and Gasdermin-D (GSDM-D) in the lung tissues of the rats in group T were significantly increased after a TBI. In the H2 treatment group (group H), these proteins were significantly decreased. The levels of IL-1β and IL-18 were significantly increased after TBI while in group H were significantly decreased. At the same time, cleaved caspase-3 and BCL-2/Bax were also changed after H2 treatment. These demonstrates the powerful ameliorating effect of H2 on pyroptosis, apoptosis and systemic inflammation. However, rats also had tendency to heal on their own, and H2 also accelerated the self-healing process at the same time. CONCLUSIONS H2 improves TBI-ALI, and the mechanism may be due to the decrease of both pyroptosis and apoptosis and the alleviation of inflammation. These findings provide a reference and evidence for the use of H2 in TBI-ALI patients in the intensive care unit (ICU).
Collapse
|
13
|
Menegasso JF, Moraes NAC, Vásquez TP, Felipetti FA, Antonio RV, Dutra RC. Modified montmorillonite-bacterial cellulose composites as a novel dressing system for pressure injury. Int J Biol Macromol 2022; 194:402-411. [PMID: 34818530 DOI: 10.1016/j.ijbiomac.2021.11.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
The main objective of this study was to investigate the effects of bacterial cellulose hydrogel (BCH) incorporated into montmorillonite (MMT) and its underlying mechanisms of action on a skin wound healing mouse model following pressure injury model. Komagataeibacter hansenii was used to obtain 5 cm in diameter and 0.8 mm of thickness circular bacterial cellulose (BC) sheets, which were incorporated with MMT by deposition ex-site using a 0.1% MMT suspension (100 rpm for 24 h at 28 °C). Afterward, Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) were used to characterize the bacterial cellulose hydrogel incorporated into montmorillonite (BCH-MMT). The pressure injury model was assessed by macroscopic and histological analysis in male Swiss mice. Both, BC and BCH-MMT, showed a typical FTIR spectrum of cellulosic substrates with pronounces bands around 3344, 2920, 1637, and 1041 cm-1 while microparticles of MMT dispersed uniformly throughout BC were revealed by SEM photographs. Animals treated with BCH-MMT showed significant healing of pressure ulcers as demonstrated by reduced area of redness and spontaneous hyperalgesia, lower amounts of in-site inflammatory cells (to the same level as the positive control Dersani®) and ultimately, complete epidermis re-epithelialization and tissue regeneration. Altogether, these findings suggest that a modified BCH-MMT film could serve as scaffolding for skin tissue engineering and potentially as a novel dressing material for pressure injury.
Collapse
Affiliation(s)
- Jaíne Ferrareis Menegasso
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Nayara Alves Celinca Moraes
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Tatiana Pineda Vásquez
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Francielly Andressa Felipetti
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Regina Vasconcellos Antonio
- Laboratory of Biochemistry and Microbiology Applied to Biotechnological Processes, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Rafael Cypriano Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Yao J, Zhao J, Chen T, Zeng X. Prevention Effects of Chain Management on Pressure Ulcers of Hospitalized Patients. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6368189. [PMID: 34931138 PMCID: PMC8684506 DOI: 10.1155/2021/6368189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
The study focused on the preventive effects of the chain management model on pressure ulcers in the operating room. Sqoop big data collection module is used to collect patient information from various hospital information systems in a distributed manner. The data were from the clinical data center of the Zhongshan Hospital Xiamen University General Hospital, and 268 patients were selected as the research subjects. A chain management model is constructed, concerning the preventive measures, the management of each link, the perioperative pressure ulcer management, and the reporting of pressure ulcers. Then, the two groups were compared for the SAS and SDS scores before and after nursing, the pressure ulcer sites, pressure ulcer reporting rate, pressure ulcer staging, and nursing satisfaction. The results show that it is not that more collection modules will lead to better cluster performance and that the execution delay is caused by MapReduce requiring the JAVA virtual machine, and after reaching a certain point, the increase in the number of tasks will slow down the process, and as data size increases, DataNote has an expanded capability to analyze data. After nursing treatment, the SAS and SDS scores of the two groups of patients were significantly lower than before treatment (P < 0.05). The pressure ulcers were mainly distributed in the forehead, mandible, cheeks, front chest, and knees in the two groups, and the difference between the two groups was statistically significant (P < 0.05). The total satisfaction of the observation group was 93.28%, and the total satisfaction of the control group was 92.54%. The patients' satisfaction with the chain management model was higher than that of conventional nursing.
Collapse
Affiliation(s)
- Jiao Yao
- Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Jie Zhao
- The First Affiliated Hospital of Xiamen University, Xiamen 361001, China
| | - Tao Chen
- Zhongshan Hospital Xiamen University, Xiamen 361004, China
| | - Xuehui Zeng
- Zhongshan Hospital Xiamen University, Xiamen 361004, China
| |
Collapse
|
15
|
Zanini D, Todorovic N, Korovljev D, Stajer V, Ostojic J, Purac J, Kojic D, Vukasinovic E, Djordjievski S, Sopic M, Guzonjic A, Ninic A, Erceg S, Ostojic SM. The effects of 6-month hydrogen-rich water intake on molecular and phenotypic biomarkers of aging in older adults aged 70 years and over: A randomized controlled pilot trial. Exp Gerontol 2021; 155:111574. [PMID: 34601077 DOI: 10.1016/j.exger.2021.111574] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
In this randomized controlled pilot trial, we investigated the effects of a 6-month intake of hydrogen-rich water (HRW) on several molecular and phenotypic biomarkers of aging in older adults aged 70 years and over. Forty older adults (20 women) were randomly allocated in a parallel-group design to receive 0.5 L per day of HRW (15 ppm of hydrogen) or control drink (0 ppm of hydrogen) during a 6-month intervention period. The biomarkers assessed at baseline and 6-month follow up were molecular markers in the blood (DNA and chromosomes, nutrient sensing, protein, and lipid metabolism, oxidative stress and mitochondria, cell senescence, inflammation), brain metabolism, cognitive functioning, physical function and body composition, resting blood pressure, facial skin features, sleep outcomes, and health-related quality of life. The mean age, weight, and height of study participants were 76.0 ± 5.6 years, 78.2 ± 16.1 kg, height 167.5 ± 11.5 cm, respectively. A significant treatment vs. time interaction was found for telomere length (P = 0.049), with the length increased after HRW intervention (from 0.99 ± 0.15 at baseline to 1.02 ± 0.26 at follow up) and decreased after drinking control water (from 0.92 ± 0.27 to 0.79 ± 0.15). A marker of DNA methylation (Tet methylcytosine dioxygenase 2, TET2) expression at 6-month follow-up increased in both groups, yet the degree of elevation was significantly higher in HRW (from 0.81 ± 0.52 at baseline to 1.62 ± 0.66 at follow up) comparing to the control water (from 1.13 ± 0.82 to 1.76 ± 0.87) (P = 0.040). A strong trend for treatment vs. time interaction was found for a degree of DNA methylation (P = 0.166), with the methylation increased in the HRW group (from 120.6 ± 39.8 ng at baseline to 126.6 ± 33.8 ng at follow up) and decreased after taking control water (from 133.6 ± 52.9 ng to 121.2 ± 38.4 ng). HRW was superior to control water to increase brain choline and NAA levels in the left frontal grey matter, brain creatine at the right parietal white matter, and brain NAA at the right parietal mesial grey matter (P < 0.05). No significant differences were found between interventions for other outcomes (P > 0.05), except for a significantly improved chair stand performance after HRW intervention compared to the control water (P = 0.01). Owing to pleiotropic mechanisms of hydrogen action, this simple biomedical gas could be recognized as a possible anti-aging agent that tackles several hallmarks of aging, including loss of function and telomere length shortening. The study was registered at ClinicalTrials.gov (NCT04430803).
Collapse
Affiliation(s)
- Dragana Zanini
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | | | - Jelena Purac
- Faculty of Sciences, University of Novi Sad, Serbia.
| | | | | | | | - Miron Sopic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Azra Guzonjic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Ana Ninic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sanja Erceg
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia.
| |
Collapse
|
16
|
Wang L, Xie X, Ke B, Huang W, Jiang X, He G. Recent advances on endogenous gasotransmitters in inflammatory dermatological disorders. J Adv Res 2021; 38:261-274. [PMID: 35572410 PMCID: PMC9091779 DOI: 10.1016/j.jare.2021.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and potential candidates sulfur dioxide (SO2), methane (CH4), hydrogen gas (H2), ammonia (NH3) and carbon dioxide (CO2), are generated within the human body. Endogenous and potential gasotransmitters regulate inflammation, vasodilation, and oxidation in inflammatory dermatological disorders. Endogenous and potential gasotransmitters play potential roles in psoriasis, atopic dermatitis, acne, and chronic skin ulcers. Further research should explore the function of these gases and gas donors and inhibitors in inflammatory dermatological disorders.
Background Endogenous gasotransmitters are small gaseous mediators that can be generated endogenously by mammalian organisms. The dysregulation of the gasotransmitter system is associated with numerous disorders ranging from inflammatory diseases to cancers. However, the relevance of these endogenous gasotransmitters, prodrug donors and inhibitors in inflammatory dermatological disorders has not yet been thoroughly reviewed and discussed. Aim of review This review discusses the recent progress and will provide perspectives on endogenous gasotransmitters in the context of inflammatory dermatological disorders. Key scientific concepts of review Endogenous gasotransmitters nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are signaling molecules that regulate several physiological and pathological processes. In addition, sulfur dioxide (SO₂), methane (CH4), hydrogen gas (H2), ammonia (NH3), and carbon dioxide (CO2) can also be generated endogenously and may take part in physiological and pathological processes. These signaling molecules regulate inflammation, vasodilation, and oxidative stress, offering therapeutic potential and attracting interest in the field of inflammatory dermatological disorders including psoriasis, atopic dermatitis, acne, rosacea, and chronic skin ulcers. The development of effective gas donors and inhibitors is a promising alternative to treat inflammatory dermatological disorders with controllable and precise delivery in the future.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Xin Xie
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bowen Ke
- Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Wei Huang
- College of Medical Technology and School of Pharmacy, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
- Corresponding authors at: Department of Dermatology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (X. Jiang and G. He). Laboratory of Anaesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Wuhou District, Chengdu 610041, China (B.-W. Ke).
| |
Collapse
|
17
|
Ohta S. Direct Targets and Subsequent Pathways for Molecular Hydrogen to Exert Multiple Functions: Focusing on Interventions in Radical Reactions. Curr Pharm Des 2021; 27:595-609. [PMID: 32767925 DOI: 10.2174/1381612826666200806101137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
Molecular hydrogen (H2) was long regarded as non-functional in mammalian cells. We overturned the concept by demonstrating that H2 exhibits antioxidant effects and protects cells against oxidative stress. Subsequently, it has been revealed that H2 has multiple functions in addition to antioxidant effects, including antiinflammatory, anti-allergic functions, and as cell death and autophagy regulation. Additionally, H2 stimulates energy metabolism. As H2 does not readily react with most biomolecules without a catalyst, it is essential to identify the primary targets with which H2 reacts or interacts directly. As a first event, H2 may react directly with strong oxidants, such as hydroxyl radicals (•OH) in vivo. This review addresses the key issues related to this in vivo reaction. •OH may have a physiological role because it triggers a free radical chain reaction and may be involved in the regulation of Ca2+- or mitochondrial ATP-dependent K+-channeling. In the subsequent pathway, H2 suppressed a free radical chain reaction, leading to decreases in lipid peroxide and its end products. Derived from the peroxides, 4-hydroxy-2-nonenal functions as a mediator that up-regulates multiple functional PGC-1α. As the other direct target in vitro and in vivo, H2 intervenes in the free radical chain reaction to modify oxidized phospholipids, which may act as an antagonist of Ca2+-channels. The resulting suppression of Ca2+-signaling inactivates multiple functional NFAT and CREB transcription factors, which may explain H2 multi-functionality. This review also addresses the involvement of NFAT in the beneficial role of H2 in COVID-19, Alzheimer's disease and advanced cancer. We discuss some unsolved issues of H2 action on lipopolysaccharide signaling, MAPK and NF-κB pathways and the Nrf2 paradox. Finally, as a novel idea for the direct targeting of H2, this review introduces the possibility that H2 causes structural changes in proteins via hydrate water changes.
Collapse
Affiliation(s)
- Shigeo Ohta
- Department of Neurology Medicine, Juntendo University Graduate School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
18
|
Lin HY, Lai PC, Chen WL. A narrative review of hydrogen-oxygen mixture for medical purpose and the inhaler thereof. Med Gas Res 2021; 10:193-200. [PMID: 33380588 PMCID: PMC8092144 DOI: 10.4103/2045-9912.295226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recent development regarding mixture of H2 (concentration of ~66%) with O2 (concentration of ~34%) for medical purpose, such as treatment of coronavirus disease-19 (COVID-19) patients, is introduced. Furthermore, the design principles of a hydrogen inhaler which generates mixture of hydrogen (~66%) with oxygen (~34%) for medical purpose are proposed. With the installation of the liquid blocking module and flame arresters, the air pathway of the hydrogen inhaler is divided by multiple isolation zones to prevent any unexpected explosion propagating from one zone to the other. An integrated filtering/cycling module is utilized to purify the impurity, and cool down the temperature of the electrolytic module to reduce the risk of the explosion. Moreover, a nebulizer is provided to selectively atomize the water into vapor which is then mixed with the filtered hydrogen-oxygen mix gas, such that the static electricity of a substance hardly occurs to reduce the risk of the explosion. Furthermore, hydrogen concentration detector is installed to reduce the risk of hydrogen leakage. Result shows that the hydrogen inhaler implementing the aforesaid design rules could effectively inhibit the explosion, even ignition at the outset of the hydrogen inhaler which outputs hydrogen-oxygen gas (approximately 66% hydrogen: 34% oxygen).
Collapse
|
19
|
Wang ST, Bao C, He Y, Tian X, Yang Y, Zhang T, Xu KF. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients. QJM 2020; 113:870-875. [PMID: 32407476 PMCID: PMC7785302 DOI: 10.1093/qjmed/hcaa164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hydrogen was proven to have anti-oxidative and anti-inflammation effects to various diseases. AIM We wish to investigate the acute effects of inhaled hydrogen on airway inflammation in patients with asthma and chronic obstructive pulmonary disease (COPD). DESIGN Prospective study. METHODS In total, 2.4% hydrogen containing steam mixed gas (XEN) was inhaled once for 45 min in 10 patients with asthma and 10 patients with COPD. The levels of granulocyte-macrophage colony stimulating factor, interferon-γ, interleukin-1β (IL-1β), IL-2, IL-4, IL-6 and so on in peripheral blood and exhaled breath condensate (EBC) before and after 'XEN' inhalation were measured. RESULTS 45 minutes 'XEN' inhalation once decreased monocyte chemotactic protein 1 level in both COPD (564.70-451.51 pg/mL, P = 0.019) and asthma (386.39-332.76 pg/mL, P = 0.033) group, while decreased IL-8 level only in asthma group (5.25-4.49 pg/mL, P = 0.023). The level of EBC soluble cluster of differentiation-40 ligand in COPD group increased after inhalation (1.07-1.16 pg/mL, P = 0.031), while IL-4 and IL-6 levels in EBC were significantly lower after inhalation in the COPD (0.80-0.64 pg/mL, P = 0.025) and asthma (0.06-0.05 pg/mL, P = 0.007) group, respectively. CONCLUSIONS A single inhalation of hydrogen for 45 min attenuated inflammatory status in airways in patients with asthma and COPD.
Collapse
Affiliation(s)
- S -T Wang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - C Bao
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Y He
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - X Tian
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Y Yang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - T Zhang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - K -F Xu
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
20
|
Hydrogen: A Novel Option in Human Disease Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8384742. [PMID: 32963703 PMCID: PMC7495244 DOI: 10.1155/2020/8384742] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
Abstract
H2 has shown anti-inflammatory and antioxidant ability in many clinical trials, and its application is recommended in the latest Chinese novel coronavirus pneumonia (NCP) treatment guidelines. Clinical experiments have revealed the surprising finding that H2 gas may protect the lungs and extrapulmonary organs from pathological stimuli in NCP patients. The potential mechanisms underlying the action of H2 gas are not clear. H2 gas may regulate the anti-inflammatory and antioxidant activity, mitochondrial energy metabolism, endoplasmic reticulum stress, the immune system, and cell death (apoptosis, autophagy, pyroptosis, ferroptosis, and circadian clock, among others) and has therapeutic potential for many systemic diseases. This paper reviews the basic research and the latest clinical applications of H2 gas in multiorgan system diseases to establish strategies for the clinical treatment for various diseases.
Collapse
|
21
|
Liu Y, Wang DL, Huang YC, Wang TB, Zeng H. Hydrogen inhibits the osteoclastogenesis of mouse bone marrow mononuclear cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110640. [PMID: 32204074 DOI: 10.1016/j.msec.2020.110640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/05/2019] [Accepted: 01/03/2020] [Indexed: 12/16/2022]
Abstract
Hydrogen (H2) is one of the major biodegradation products of magnesium (Mg) alloys implanted for bony fracture healing and reconstruction; H2 thus plays a significant role in the regulation of local microenvironment and the biology of resident cells. The interactions between the H2 and the local cells are of great interest, and a full understanding of the effect of H2 on bone marrow mononuclear cells (BMMCs) would accelerate the development of effective strategies for successful bony healing. This study investigates how H2, with different concentrations and durations, regulates the osteoclastogenesis of mouse BMMCs. First, using H2 with five concentrations (0%, 2%, 25%, 50% and 75%) and three durations (5, 7 and 10 days), the osteoclastogenesis of mouse BMMCs in these H2 conditions were measured using TRAP staining, F-actin ring formation assay, pit formation assay and RT-qPCR analysis. Based on these findings, the proliferation assay, apoptosis assay, western blot analysis and ELISA assay of BMMCs after osteoclast induction were performed. The findings showed that H2 (especially the 50% and 75% H2) obviously inhibited the osteoclast formation, function and osteoclast-related genes expression of osteoclast-induced BMMCs; additionally, H2 (50%) was found to reduce the proliferation, promote the apoptosis and inhibit the expression of osteoclast-related proteins of BMMCs with the presence of osteoclast-induced medium. Therefore, H2 significantly inhibited the osteoclastogenesis of mouse BMMCs, which may become a new therapeutic agent for anti-bony resorption and open new avenues for the translational research of Mg alloys.
Collapse
Affiliation(s)
- Yong Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - De-Li Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Yong-Can Huang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China; Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Tian-Bing Wang
- Department of Orthopaedics, Peking University People's Hospital, Beijing 100044, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
22
|
Baldan-Martin M, Martin-Rojas T, Corbacho-Alonso N, Lopez JA, Sastre-Oliva T, Gil-Dones F, Vazquez J, Arevalo JM, Mourino-Alvarez L, Barderas MG. Comprehensive Proteomic Profiling of Pressure Ulcers in Patients with Spinal Cord Injury Identifies a Specific Protein Pattern of Pathology. Adv Wound Care (New Rochelle) 2020; 9:277-294. [PMID: 32226651 PMCID: PMC7099418 DOI: 10.1089/wound.2019.0968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/10/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe pressure ulcers (PUs) do not respond to conservative wound therapy and need surgical repair. To better understand the pathogenesis and to advance on new therapeutic options, we focused on the proteomic analysis of PU, which offers substantial opportunities to identify significant changes in protein abundance during the course of PU formation in an unbiased manner. Approach: To better define the protein pattern of this pathology, we performed a proteomic approach in which we compare severe PU tissue from spinal cord injury (SCI) patients with control tissue from the same patients. Results: We found 76 proteins with difference in abundance. Of these, 10 proteins were verified as proteins that define the pathology: antithrombin-III, alpha-1-antitrypsin, kininogen-1, alpha-2-macroglobulin, fibronectin, apolipoprotein A-I, collagen alpha-1 (XII) chain, haptoglobin, apolipoprotein B-100, and complement factor B. Innovation: This is the first study to analyze differential abundance protein of PU tissue from SCI patients using high-throughput protein identification and quantification by tandem mass tags followed by liquid chromatography tandem mass spectrometry. Conclusion: Differential abundance proteins are mainly involved in tissue regeneration. These proteins might be considered as future therapeutic options to enhance the physiological response and permit cellular repair of damaged tissue.
Collapse
Affiliation(s)
- Montserrat Baldan-Martin
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tatiana Martin-Rojas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Juan Antonio Lopez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Tamara Sastre-Oliva
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Felix Gil-Dones
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Jesus Vazquez
- Department of Plastic Surgery, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | | | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, National Hospital for Paraplegics (HNP), SESCAM, Toledo, Spain
| |
Collapse
|
23
|
Fang W, Tang L, Wang G, Lin J, Liao W, Pan W, Xu J. Molecular Hydrogen Protects Human Melanocytes from Oxidative Stress by Activating Nrf2 Signaling. J Invest Dermatol 2020; 140:2230-2241.e9. [PMID: 32234461 DOI: 10.1016/j.jid.2019.03.1165] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 01/03/2023]
Abstract
Oxidative stress is proven to be critical for the initiation and progression of vitiligo. Molecular hydrogen (H2) possesses potent antioxidant activity and has been shown to protect against various oxidative stress-related diseases. In this study, we first investigated the effects and mechanisms of H2 in human melanocytes damaged by hydrogen peroxide. We initially found that H2 reduced intracellular ROS accumulation and malondialdehyde levels in both vitiligo specimens and hydrogen peroxide-treated melanocytes in vitro in a concentration- and time-dependent manner, concomitant with the enhancement of antioxidant enzyme activity. Correspondingly, H2 reversed hydrogen peroxide-induced apoptosis and dysfunction in both normal and vitiligo melanocytes. H2 protected mitochondrial morphology and function in melanocytes under stress and promoted the activation of Nrf2 signaling, whereas Nrf2 deficiency abolished the protective effect of H2 against hydrogen peroxide-induced oxidative damage. Furthermore, H2 positively modulated β-catenin in hydrogen peroxide-treated melanocytes, and the β-catenin pathway was implicated in H2-induced Nrf2 activation. Collectively, our results indicate that H2 could be a promising therapeutic agent for vitiligo treatment via attenuating oxidative damage, and its beneficial effect in human melanocytes might involve Wnt/β-catenin-mediated activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Wei Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; The Shanghai Institute of Dermatology, Shanghai, China; Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; The Shanghai Institute of Dermatology, Shanghai, China
| | - Guizhen Wang
- Emergency room, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Shanghai, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Medical Mycology, Department of Dermatology, Changzheng Hospital, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China; The Shanghai Institute of Dermatology, Shanghai, China.
| |
Collapse
|
24
|
Kawamura M, Imamura R, Kobayashi Y, Taniguchi A, Nakazawa S, Kato T, Namba-Hamano T, Abe T, Uemura M, Kobayashi H, Nonomura N. Oral Administration of Si-Based Agent Attenuates Oxidative Stress and Ischemia-Reperfusion Injury in a Rat Model: A Novel Hydrogen Administration Method. Front Med (Lausanne) 2020; 7:95. [PMID: 32266279 PMCID: PMC7099649 DOI: 10.3389/fmed.2020.00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Organ ischemia-reperfusion injury (IRI), which is unavoidable in kidney transplantation, induces the formation of reactive oxygen species and causes organ damage. Although the efficacy of molecular hydrogen (H2) in IRI has been reported, oral intake of H2-rich water and inhalation of H2 gas are still not widely used in clinical settings because of the lack of efficiency and difficulty in handling. We successfully generated large quantities of H2 molecules by crushing silicon (Si) to nano-sized Si particles (nano-Si) which were allowed to react with water. The nano-Si or relatively large-sized Si particles (large-Si) were orally administered to rats with renal IRI. Animals were divided into four groups: sham, IRI, IRI + nano-Si, and IRI + large-Si. The levels of serum creatinine and urine protein were significantly decreased 72 h following IRI in rats that were administered nano-Si. The levels of oxidative stress marker, urinary 8-hydroxydeoxyguanosine were also significantly decreased with the nano-Si treatment. Transcriptome and gene ontology enrichment analyses showed that the oral nano-Si intake downregulated the biological processes related to oxidative stress, such as immune response, cytokine production, and extrinsic apoptotic signaling pathway. Alterations in the regulation of a subset of genes in the altered pathways were validated by quantitative polymerase chain reaction. Furthermore, immunohistochemical analysis demonstrated that the nano-Si treatment alleviated interstitial macrophage infiltration and tubular apoptosis, implicating the anti-inflammatory and anti-apoptotic effects of nano-Si. In conclusion, renal IRI was attenuated by the oral administration of nano-Si, which should be considered as a novel H2 administration method.
Collapse
Affiliation(s)
- Masataka Kawamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ayumu Taniguchi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toyofumi Abe
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hikaru Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
25
|
Safonov M, You J, Lee J, Safonov VL, Berman D, Zhu D. Hydrogen generating patch improves skin cell viability, migration activity, and collagen expression. ENGINEERED REGENERATION 2020. [DOI: 10.1016/j.engreg.2020.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Hydrogen and Oxygen Mixture to Improve Cardiac Dysfunction and Myocardial Pathological Changes Induced by Intermittent Hypoxia in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7415212. [PMID: 30984338 PMCID: PMC6431505 DOI: 10.1155/2019/7415212] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/11/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Obstructive sleep apnea (OSA) can cause intermittent changes in blood oxygen saturation, resulting in the generation of many reactive oxygen species (ROS). To discover new antioxidants and clarify the endoplasmic reticulum (ER) stress involved in cardiac injury in OSA, we established a chronic intermittent hypoxia (CIH) rat model with a fraction of inspired O2 (FiO2) ranging from 21% to 9%, 20 times/h for 8 h/day, and the rats were treated with H2-O2 mixture (67% hydrogen and 33% oxygen) for 2 h/day for 35 days. Our results showed that H2-O2 mixture remarkably improved cardiac dysfunction and myocardial fibrosis. We found that H2-O2 mixture inhalation declined ER stress-induced apoptosis via three major response pathways: PERK-eIF2α-ATF4, IRE 1-XBP1, and ATF 6. Furthermore, we revealed that H2-O2 mixture blocked c-Jun N-terminal kinase- (JNK-) MAPK activation, increased the ratio of Bcl-2/Bax, and inhibited caspase 3 cleavage to protect against CIH-induced cardiac apoptosis. In addition, H2-O2 mixture considerably decreased ROS levels via upregulating superoxide dismutase (SOD) and glutathione (GSH) as well as downregulating NADPH oxidase (NOX 2) expression in the hearts of CIH rats. All the results demonstrated that H2-O2 mixture significantly reduced ER stress and apoptosis and that H2 might be an efficient antioxidant against the oxidative stress injury induced by CIH.
Collapse
|
27
|
Fang W, Wang G, Tang L, Su H, Chen H, Liao W, Xu J. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J Cell Mol Med 2018; 22:4243-4252. [PMID: 29921037 PMCID: PMC6111801 DOI: 10.1111/jcmm.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H2) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H2 inhalation on pressure ulcer and the underlying mechanisms. H2 inhalation significantly reduced wound area, 8‐oxo‐dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up‐regulating expression of Nrf2 and its downstream components in wound tissue and/or H2O2‐treated endothelia. Meanwhile, H2 inhibited the overexpression of MCP‐1, E‐selectin, P‐selectin and ICAM‐1 in oxidant‐induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF‐α, IL‐1, IL‐6 and IL‐8) production in the wound. Furthermore, H2 promoted the expression of pro‐healing factors (IL‐22, TGF‐β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti‐inflammatory, pro‐healing actions.
Collapse
Affiliation(s)
- Wei Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China.,Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Guizhen Wang
- Emergency room, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| | - Huilin Su
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|