1
|
Liu G, Song Y, Li C, Liu R, Chen Y, Yu L, Huang Q, Zhu D, Lu C, Yu X, Xiao C, Liu Y. Arsenic compounds: The wide application and mechanisms applied in acute promyelocytic leukemia and carcinogenic toxicology. Eur J Med Chem 2021; 221:113519. [PMID: 33984805 DOI: 10.1016/j.ejmech.2021.113519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Arsenic (As), as well as its various compounds have been widely used for nearly 4000 years either as drugs or poisons. These compounds are valuable in the treatment of various diseases ranging from dermatosis to cancer, thereby emphasizing their important roles as therapeutic agents. The ability of As compounds, especially arsenic trioxide (ATO) in the treatment of acute promyelocytic leukemia (APL), has fundamentally altered people's understanding of the poison, and has become a major factor in the re-emergence of Western medicine candidates to treat leukemia and other solid tumors. However, long-term exposure to As has been correlated with numerous disadvantageous influences on health, particularly carcinogenesis. Importantly, accumulating evidence suggests that biotransformation of As, as a step to eliminate As from the human body, can induce alterations at the genetic and epigenetic levels, resulting in therapeutic effects or carcinogenesis. In this article, we aimed to provide a systematic overview of the primary contributions associated with As and its compounds, as well as the detailed mechanisms applied in APL cells and carcinogenic toxicology. This review may help to understand the underlying mechanisms and safe wide clinical applications of medicinal As along with its compounds.
Collapse
Affiliation(s)
- Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Yu X, Weng T, Gu C, Yang H. Comparison of gene regulatory networks to identify pathogenic genes for lymphoma. J Bioinform Comput Biol 2020; 18:2050029. [PMID: 33131362 DOI: 10.1142/s0219720020500298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lymphoma is the most complicated cancer that can be divided into several tens of subtypes. It may occur in any part of body that has lymphocytes, and is closely correlated with diverse environmental factors such as the ionizing radiation, chemocarcinogenesis, and virus infection. All the environmental factors affect the lymphoma through genes. Identifying pathogenic genes for lymphoma is consequently an essential task to understand its complexity in a unified framework. In this paper, we propose a new method to expose high-confident edges in gene regulatory networks (GRNs) for a total of 32 organs, called Filtered GRNs (f-GRNs), comparison of which gives us a proper reference for the Lymphoma, i.e. the B-lymphocytes cells, whose f-GRN is closest with that for the Lymphoma. By using the Gene Ontology and Biological Process analysis we display the differences of the two networks' hubs in biological functions. Matching with the Genecards shows that most of the hubs take part in the genetic information transmission and expression, except a specific gene of Retinoic Acid Receptor Alpha (RARA) that encodes the retinoic acid receptor. In the lymphoma, the genes in the RARA ego-network are involved in two cancer pathways, and the RARA is present only in these cancer pathways. For the lymphoid B cells, however, the genes in the RARA ego-network do not participate in cancer-related pathways.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Tongfeng Weng
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Changgui Gu
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| | - Huijie Yang
- Department of Systems Science, University of Shanghai for Science and Technology, Jungong Road No. 516, Shanghai 200093, P. R. China
| |
Collapse
|
3
|
Yang X, Tan Y, Wang P, Zhang H, Zhao M, Zhao X, Wang K. PML-RARα interferes with erythropoiesis by repressing LMO2 in acute promyelocytic leukaemia. J Cell Mol Med 2018; 22:6275-6284. [PMID: 30320491 PMCID: PMC6237603 DOI: 10.1111/jcmm.13917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/06/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
The PML‐RARα fusion gene, generated by the t(15;17) chromosome translocation, is regarded as the initiating factor of acute promyelocytic leukaemia (APL). In addition to the well‐known effects on blocking myeloid differentiation at the promyelocytic stage, promyelocytic leukaemia‐retinoic acid receptor α (PML‐RARα) has also been reported to interfere with multiple differentiation processes, including erythroid differentiation. However, the detailed molecular mechanism by which PML‐RARα impairs erythropoiesis has not yet been fully addressed. By chromatin immunoprecipitation‐PCR assay, we found that PML‐RARα bound to the distal promoter region of LMO2 (LIM‐only protein 2), a critical erythroid‐specific transcription factor. Luciferase reporter assays and qRT‐PCR results demonstrated that PML‐RARα down‐regulated the expression of the LMO2 distal transcript through transrepressing its promoter activity. Analysis of gene expression profiling data from large cohorts of acute myeloid leukaemia (AML) patients confirmed that LMO2 expressed at a markedly lower level in APL patients in comparison to non‐APL AML patients. Further flow cytometry analysis demonstrated that PML‐RARα inhibited erythropoietin‐induced erythroid differentiation by down‐regulating LMO2 expression. Our findings reveal a previously unidentified mechanism, by which PML‐RARα interferes with erythropoiesis through directly targeting and transrepressing LMO2 expression in the development of APL.
Collapse
Affiliation(s)
- Xianwen Yang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Tan
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xujie Zhao
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|