1
|
Chen W, Wu Y, Li W, Song M, Xu K, Wu M, Lin L. Vericiguat improves cardiac remodelling and function in rats with doxorubicin-induced cardiomyopathy. ESC Heart Fail 2025; 12:1807-1817. [PMID: 39822085 PMCID: PMC12055379 DOI: 10.1002/ehf2.15186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
PURPOSE Vericiguat, a soluble guanylate cyclase (sGC) stimulator, has been demonstrated effective in improving prognosis of patients with heart failure with reduced ejection fraction. However, there are limited data concerning the effect of vericiguat in patients with doxorubicin (DOX)-induced cardiomyopathy (DIC). In this study, we investigated the effects of vericiguat on cardiac structure and function in rats with DIC as well as their potential mechanisms of action. METHODS DIC rats were established by intraperitoneal injection of DOX (1 mg/kg) twice a week for 6 weeks, followed by intragastric administration of vericiguat 1 mg/kg/day or an equal volume of normal saline for 8 weeks. Cardiac histology and function, circulating levels of amino-terminal pro-B-type natriuretic peptide (NT-proBNP), nitric oxide (NO), and oxidative indices, as well as myocardial cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signalling, oxidative and apoptosis-associated protein were measured. RESULTS Compared with the control group, rats treated with DOX exhibited significantly increased heart size, reduced systolic function and elevated plasma levels of NT-proBNP. Histological findings revealed myocardial cell atrophy, fibrosis and apoptosis. Vericiguat treatment effectively reversed DOX-induced cardiac remodelling and improved systolic function. Mechanistically, Vericiguat attenuated the inhibitory effects of DOX on the myocardial cGMP-PKG axis and nuclear factor erythroid 2-related factor 2 (Nrf2) protein, thereby alleviating oxidative stress and apoptosis. CONCLUSIONS Vericiguat improved cardiac remodelling and contractile function in rats with DIC through upregulation of cGMP-PKG signalling and inhibition of oxidative stress and myocardial apoptosis.
Collapse
Affiliation(s)
- Wen Chen
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Ying Wu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Wei Li
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Meiyan Song
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Kaizu Xu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Meifang Wu
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| | - Liming Lin
- School of Clinical Medicine, Fujian Medical University, Department of CardiologyAffiliated Hospital of Putian UniversityPutianChina
| |
Collapse
|
2
|
Gylten JD, Persons JE, Miller BJ, An Q, Tanas MR, Chen SJT. Lower Levels of TAZ Expression Associated with Post-Surgical Wound Healing Complications in Soft Tissue Sarcoma Patients Treated with Preoperative Radiation. Biomedicines 2025; 13:344. [PMID: 40002757 PMCID: PMC11853470 DOI: 10.3390/biomedicines13020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/13/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pre-operative radiation (Pre-RT) decreases local recurrence following soft tissue sarcoma (STS) resection but carries the risk of wound healing complications (WHCs). This study evaluated skin specimens and clinical characteristics of STS patients to (1) compare patients with and without Pre-RT, (2) compare Pre-RT patients with and without WHCs, and (3) explore associations between clinical characteristics and WHCs. Methods: This retrospective study included 54 adults who underwent STS resection with primary closure (Pre-RT n = 30). A pathologist who was blinded to the clinical outcomes evaluated the skin specimens microscopically. Results: Irradiated skin had lower vessel density and was more likely to lack hair follicles and sebaceous glands, consistent with the effects of radiation. Irradiated skin was also more likely to include plasma cells. Irradiated skin demonstrated higher mean TAZ H-scores; however, within the Pre-RT subset, those patients who developed WHCs demonstrated comparatively lower TAZ. Conclusions: This novel finding may suggest that higher TAZ in irradiated skin reflects a response to injury but that comparatively lower TAZ in irradiated skin might contribute to WHCs. Future studies should consider more focused evaluation of TAZ in STS resections with Pre-RT as they may help to predict WHCs when used in combination with other histologic factors and could suggest a therapeutic target.
Collapse
Affiliation(s)
- Jacob D. Gylten
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Jane E. Persons
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Benjamin J. Miller
- Department of Orthopedic Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Qiang An
- Department of Orthopedic Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Munir R. Tanas
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
3
|
Negrete-Hernandez IM, Lozano IB, Roman-Lopez J, Guzman-Castañeda JI. Implementation of OSL nanoDot dosimetry in different treatment techniques for head and neck cancer. RADIATION PROTECTION DOSIMETRY 2024; 201:70-77. [PMID: 39575905 DOI: 10.1093/rpd/ncae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/07/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025]
Abstract
In recent decades, technological advances have been made in the field of radiotherapy and with it the emergence of new dosimetric systems for their calibration and commissioning, among other uses. Such is the case of the measurement in the build-up region, where there is no charged-particle equilibrium, which is reflected in the increase in surface dose for patient treatments and potential skin toxicities as a secondary effect. This study utilizes optically stimulated dosemeters (nanoDot) and the radiochromic film (EBT3) to measure skin doses in patients with head and neck cancer who received radiotherapy. Accurately depicting 15 patients with different diagnoses from 3 linear accelerators using 3D, intensity modulated radiation therapy, or volumetric arc therapy/RapidArc technology, these results were compared with those calculated in the treatment planning system (TPS) and obtaining a percentage of variation for the EBT3 ranged from 0.30% to 6.15%, while that observed for the nanoDot was from 0.51% to 4.88%. This difference may be attributed to the reproducibility of placement in patients. Therefore, for clinical use, nanoDot dosemeters are a viable alternative for in vivo dosimetry where rapid validation of planning system results is required.
Collapse
Affiliation(s)
- Ingrid M Negrete-Hernandez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Av. Legaria 694,11500, Ciudad de México, México
| | - Ivonne B Lozano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Av. Legaria 694,11500, Ciudad de México, México
| | - Jesus Roman-Lopez
- CONAHCYT-Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito exterior S/N, A.P. 70-543, 04510 Ciudad de México, México
| | - Jesus I Guzman-Castañeda
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio 6, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, 07738 Ciudad de México, México
| |
Collapse
|
4
|
Liu X, Guo T, Huang Z, Chen S, Chen L, Li C, Tian T, Qian Y, Yang L, Xiang J, Liu Q, Liu P. Acellular dermal matrix hydrogels promote healing of radiation-induced skin injury in a rat model. J Mater Chem B 2024; 12:11218-11229. [PMID: 39373076 DOI: 10.1039/d4tb00941j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
BACKGROUND radiation-induced skin injury (RISI) is a common complication of radiotherapy, affecting 85-95% of patients. Current treatments lack sufficient evidence of efficacy. Acellular dermal matrix (ADM) hydrogels have shown promise in treating chronic wounds, burns, and ulcers, but their potential in RISI remains unexplored. METHODS ADM hydrogels were prepared from porcine dermis and characterized using histological staining, scanning electron microscopy (SEM), and rheological assessments. A rat model of RISI was established, and the therapeutic effects of the ADM hydrogel were evaluated by gross observation, histological analysis, and immunofluorescence staining. Oxidative stress, angiogenesis, apoptosis, macrophage infiltration, and inflammatory responses were also assessed. RESULTS ADM hydrogel treatment significantly reduced wound area, radiation injury scores, and apoptosis while increasing epithelial thickness and hair follicle regeneration compared to the control group. The hydrogel promoted angiogenesis, vascular maturation, and M2 macrophage polarization. It also decreased the expression of pro-inflammatory cytokines (IL-1β and IL-6) and increased the expression of the anti-inflammatory cytokine IL-10. No significant differences in antioxidant effects were observed between the groups. CONCLUSION The ADM hydrogel effectively promotes the healing of RISI in a rat model by modulating the inflammatory microenvironment and enhancing angiogenesis. These findings suggest that the ADM hydrogel could serve as a promising novel biomaterial for the management of RISI.
Collapse
Affiliation(s)
- Xin Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Department of Graduate School, Xi'an Medical University, Xi'an, China
| | - Tian Guo
- Department of Graduate School, Xi'an Medical University, Xi'an, China
| | - Zhifeng Huang
- Department of Graduate School, Xi'an Medical University, Xi'an, China
| | - Sen Chen
- Department of Graduate School, Xi'an Medical University, Xi'an, China
| | - Li Chen
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Chenyang Li
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Tian Tian
- Department of Radiotherapy, Baoji Hospital of Traditional Chinese Medicine, Baoji, China
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiufang Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
5
|
Lee SY, Hwang G, Choi M, Jo CH, Oh SJ, Jin YB, Lee WJ, Rho GJ, Lee HC, Lee SL, Hwang TS. Histological and Molecular Biological Changes in Canine Skin Following Acute Radiation Therapy-Induced Skin Injury. Animals (Basel) 2024; 14:2505. [PMID: 39272290 PMCID: PMC11394491 DOI: 10.3390/ani14172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Radiation therapy is a crucial cancer treatment, but it can damage healthy tissues, leading to side effects like skin injuries and molecular alterations. This study aimed to elucidate histological and molecular changes in canine skin post-radiation therapy (post-RT) over nine weeks, focusing on inflammation, stem cell activity, angiogenesis, keratinocyte regeneration, and apoptosis. Four male beagles received a cumulative radiation dose of 48 Gy, followed by clinical observations, histological examinations, and an RT-qPCR analysis of skin biopsies. Histological changes correlated with clinical recovery from inflammation. A post-RT analysis revealed a notable decrease in the mRNA levels of Oct4, Sox2, and Nanog from weeks 1 to 9. VEGF 188 levels initially saw a slight increase at week 1, but they had significantly declined by week 9. Both mRNA and protein levels of COX-2 and Keratin 10 significantly decreased over the 9 weeks following RT, although COX-2 expression surged in the first 2 weeks, and Keratin 10 levels increased at weeks 4 to 5 compared to normal skin. Apoptosis peaked at 2 weeks and diminished, nearing normal by 9 weeks. These findings offer insights into the mechanisms of radiation-induced skin injury and provide guidance for managing side effects in canine radiation therapy.
Collapse
Affiliation(s)
- Sang-Yun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gunha Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonyeong Choi
- Yangsan S Animal Cancer Center, Yangsan 50638, Republic of Korea
| | - Chan-Hee Jo
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seong-Ju Oh
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Jae Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hee Chun Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Sung Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Ma Z, Chen Y, Tang K, Yang H, Tian M, Xi X, Han S, Yang S, Ru L, Yu X. Highly efficient prevention of radiation dermatitis using a PEGylated superoxide dismutase dissolving microneedle patch. Eur J Pharm Biopharm 2024; 201:114347. [PMID: 38825168 DOI: 10.1016/j.ejpb.2024.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
PEGylated superoxide dismutase (PEG-SOD) is commonly used as a cytoprotective agent in radiotherapy. However, its effectiveness in preventing radiation dermatitis is limited owing to its poor skin permeability. To address this issue, a PEG-SOD-loaded dissolving microneedle (PSMN) patch was developed to effectively prevent radiation dermatitis. Initially, PSMN patches were fabricated using a template mold method with polyvinylpyrrolidone K90 as the matrix material. PSMNs exhibited a conical shape with adequate mechanical strength to penetrate the stratum corneum. More than 90 % of PEG-SOD was released from the PSMN patches within 30 min. Notably, the PSMN patches showed a significantly higher drug skin permeation than the PEG-SOD solutions, with a 500-fold increase. In silico simulations and experiments on skin pharmacokinetics confirmed that PSMN patches enhanced drug permeation and skin absorption, in contrast to PEG-SOD solutions. More importantly, PSMN patches efficiently mitigated ionizing radiation-induced skin damage, accelerated the healing process of radiation-affected skin tissues, and exhibited highly effective radioprotective activity for DNA in the skin tissue. Therefore, PSMN patches are promising topical remedy for the prevention of radiation dermatitis.
Collapse
Affiliation(s)
- Zhenchao Ma
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Yingrong Chen
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Kaixian Tang
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Hongxia Yang
- Huzhou Institute for Food and Drug Control, Huzhou 313002, Zhejiang, China
| | - Mengli Tian
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xiaoyuan Xi
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Shuwen Han
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Shuixin Yang
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Lixin Ru
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China
| | - Xiang Yu
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou 313000, Zhejiang, China; Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou 313000, Zhejiang, China.
| |
Collapse
|
7
|
Jin X, Song X. Autophagy Dysfunction: The Kernel of Hair Loss? Clin Cosmet Investig Dermatol 2024; 17:1165-1181. [PMID: 38800357 PMCID: PMC11122274 DOI: 10.2147/ccid.s462294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Autophagy is recognized as a crucial regulatory process, instrumental in the removal of senescent, dysfunctional, and damaged cells. Within the autophagic process, lysosomal digestion plays a critical role in the elimination of impaired organelles, thus preserving fundamental cellular metabolic functions and various biological processes. Mitophagy, a targeted autophagic process that specifically focuses on mitochondria, is essential for sustaining cellular health and energy balance. Therefore, a deep comprehension of the operational mechanisms and implications of autophagy and mitophagy is vital for disease prevention and treatment. In this context, we examine the role of autophagy and mitophagy during hair follicle cycles, closely scrutinizing their potential association with hair loss. We also conduct a thorough review of the regulatory mechanisms behind autophagy and mitophagy, highlighting their interaction with hair follicle stem cells and dermal papilla cells. In conclusion, we investigate the potential of manipulating autophagy and mitophagy pathways to develop innovative therapeutic strategies for hair loss.
Collapse
Affiliation(s)
- Xiaofan Jin
- Zhejiang University School of Medicine, Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Hangzhou, People’s Republic of China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
8
|
Binici S, Güven M, Özdemir A, İlik ZA, Demirhan B, Uygur S, İliklerden ÜH. Addressing radiotherapy-induced fibrosis: the potential of platelet-rich plasma and infliximab for improved breast cancer management. Histochem Cell Biol 2024:10.1007/s00418-024-02267-z. [PMID: 38282055 DOI: 10.1007/s00418-024-02267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Breast cancer treatment encompasses various therapeutic modalities, including surgery, radiotherapy, and chemotherapy. Breast-conserving surgery has been an integral part of breast cancer management. However, radiotherapy, an important component of breast cancer management, can lead to complications, particularly fibrosis, affecting reconstructive surgery outcomes. We conducted an in vivo study using 48 female Wistar Albino rats, employing segmental mastectomy and radiotherapy to simulate post-mastectomy conditions. The rats were divided into six groups: control, mastectomy, mastectomy + radiotherapy, mastectomy + platelet-rich plasma (PRP) + radiotherapy, mastectomy + infliximab + radiotherapy, and mastectomy + infliximab + PRP + radiotherapy. Edema, hyperemia, inflammation, and fibrosis were assessed as indicators of tissue response. Histopathological analysis revealed that mastectomy + infliximab and mastectomy + infliximab + PRP groups showed significant reductions in fibrosis compared to other groups. Edema, hyperemia, and inflammation were also less severe in these groups compared to the control group. Radiotherapy-induced fibrosis is a major concern in breast reconstruction. Our study suggests that local PRP application and systemic infliximab administration, either alone or in combination, could mitigate the adverse effects of radiotherapy. This approach has the potential to improve reconstructive outcomes in patients undergoing or having the possibility to undergo radiotherapy. This is the first study showing the effectiveness of infliximab and PRP combination on wound healing. The provided experimental rat model might offer guidance for further research. This study provides insights into optimizing outcomes in reconstructive breast surgery, paving the way for further research and clinical studies.
Collapse
Affiliation(s)
- Serhat Binici
- General Surgery Department, Şırnak State Hospital, Şırnak, Turkey.
| | - Mustafa Güven
- Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Abdulselam Özdemir
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey
| | - Zehra Akman İlik
- Department of Pathology, Van Education and Research Hospital, Van, Turkey
| | - Birhan Demirhan
- Faculty of Medicine, Department of Radiation Oncology, Van Yuzuncu Yıl University, Van, Turkey
| | - Serhat Uygur
- Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Ümit Haluk İliklerden
- Faculty of Medicine, Department of General Surgery, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
9
|
Hsieh CC, Yu CC, Chu CH, Chen WC, Chen MF. Radiation-induced skin and heart toxicity in patients with breast cancer treated with adjuvant proton radiotherapy: a comparison with photon radiotherapy. Am J Cancer Res 2023; 13:4783-4793. [PMID: 37970351 PMCID: PMC10636671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/27/2023] [Indexed: 11/17/2023] Open
Abstract
This study aimed to investigate the dose parameters and incidence of radiotherapy (RT)-associated toxicity in patients with left breast cancer (LBC) treated with proton-RT, compared with photon-RT. We collected data from 111 patients with LBC who received adjuvant RT in our department between August 2021 and March 2023. Among these patients, 24 underwent proton-RT and 87 underwent photon-RT. In addition to the dosimetric analysis for organs at risk (OARs), we measured NT-proBNP levels before and after RT. Our data showed that proton-RT improved dose conformity and reduced doses to the heart and lungs and was associated with a lower rate of increased NT-proBNP than did photon-RT. Regarding skin toxicity, the Dmax for 1 c.c. and 10 c.c. and the average dose to the skin-OAR had predictive roles in the risk of developing radiation-induced dermatitis. Although pencil beam proton-RT with skin optimization had a dose similar to that of skin-OAR compared with photon-RT, proton-RT still had a higher rate of radiation dermatitis (29%) than did photon RT (11%). Using mice 16 days after irradiation, we demonstrated that proton-RT induced a greater increase in interleukin 6 and transforming growth factor-β1 levels than did photon-RT. Furthermore, topical steroid ointment reduced the inflammatory response and severity of dermatitis induced by RT. In conclusion, we suggest that proton-RT with skin optimization spares high doses to OARs with acceptable skin toxicity. Furthermore, prophylactic topical steroid treatment may decrease radiation dermatitis by alleviating proton-induced inflammatory responses in vivo.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Department of General Surgery, Chang Gung Memorial HospitalChiayi, Taiwan
| | - Chi-Chang Yu
- Department of General Surgery, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Chia-Hui Chu
- Department of General Surgery, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Wen-Cheng Chen
- Department of Radiation Oncology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Miao-Fen Chen
- Department of Radiation Oncology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| |
Collapse
|
10
|
Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, Wu H. Tanshinone IIA inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023; 11:1252942. [PMID: 37766966 PMCID: PMC10520722 DOI: 10.3389/fcell.2023.1252942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Tanshinone IIA, derived from Radix Salviae Miltiorrhizae (Salvia miltiorrhiza Bunge), constitutes a significant component of this traditional Chinese medicine. Numerous studies have reported positive outcomes regarding its influence on cardiac function. However, a comprehensive comprehension of the intricate mechanisms responsible for its cardioprotective effects is still lacking. Methods: A rat model of heart failure (HF) induced by acute myocardial infarction (AMI) was established via ligation of the left anterior descending coronary artery. Rats received oral administration of tanshinone IIA (1.5 mg/kg) and captopril (10 mg/kg) for 8 weeks. Cardiac function was assessed through various evaluations. Histological changes in myocardial tissue were observed using staining techniques, including Hematoxylin and Eosin (HE), Masson, and transmission electron microscopy. Tunel staining was used to detect cell apoptosis. Serum levels of NT-pro-BNP, IL-1β, and IL-18 were quantified using enzyme-linked immunosorbent assay (ELISA). Expression levels of TLR4, NF-κB p65, and pyroptosis-related proteins were determined via western blotting (WB). H9C2 cardiomyocytes underwent hypoxia-reoxygenation (H/R) to simulate ischemia-reperfusion (I/R) injury, and cell viability and apoptosis were assessed post treatment with different tanshinone IIA concentrations (0.05 μg/ml, 0.1 μg/ml). ELISA measured IL-1β, IL-18, and LDH expression in the cell supernatant, while WB analysis evaluated TLR4, NF-κB p65, and pyroptosis-related protein levels. NF-κB p65 protein nuclear translocation was observed using laser confocal microscopy. Results: Tanshinone IIA treatment exhibited enhanced cardiac function, mitigated histological cardiac tissue damage, lowered serum levels of NT-pro-BNP, IL-1β, and IL-18, and suppressed myocardial cell apoptosis. Moreover, tanshinone IIA downregulated the expression of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in myocardial tissue. Additionally, it bolstered H/R H9C2 cardiomyocyte viability, curbed cardiomyocyte apoptosis, and reduced the levels of TLR4, NF-κB p65, IL-1β, pro-IL-1β, NLRP3, Caspase-1, and GSDMD-N pyroptosis-related proteins in H/R H9C2 cells. Furthermore, it hindered NF-κB p65 protein nuclear translocation. Conclusion: These findings indicate that tanshinone IIA enhances cardiac function and alleviates myocardial injury in HF rats following AMI. Moreover, tanshinone IIA demonstrates potential suppression of cardiomyocyte pyroptosis. These effects likely arise from the inhibition of the TLR4/NF-κB p65 signaling pathway, presenting a promising therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Yi Wei
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huaqin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Wang Y, Gao J, Sun L, Li Q, Kang N, Gao C, Li T. Jia-Wei-Si-Miao-Yong-An Fang stimulates the healing of acute radiation-induced cutaneous wounds through MAPK/ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116180. [PMID: 36693549 DOI: 10.1016/j.jep.2023.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A famous traditional oral Chinese medicine formula, Si-Miao-Yong-An decoction, has been used to treat thromboangiitis obliterans from the Qing Dynasty. Because its therapeutic principles including clearing away heat, detoxification, accelerating blood circulation and relieving pains are consistent with acute radiation-induced cutaneous wounds in traditional Chinese medicine, we tried to add herbs and improve them into an external dosage form, called Jia-Wei-Si-Miao-Yong-An Fang (JWSMYA). However, its mechanism on radiation-induced cutaneous wounds is still unknown. AIM OF THE STUDY This study evaluated the therapeutic effect of JWSMYA and investigated the mechanism of repair and anti-fibrosis on acute radiation-induced cutaneous wounds with JWSMYA. MATERIALS AND METHODS Firstly, we prepared JWSMYA, and determined the composition through UHPLC LC-MS/MS. Then we used ionizing radiation to make a cutaneous wound model of rats, and observed wound healing through their skin injury score, wound contraction percentage and histological staining. In addition, immunohistochemical staining, Western blot analysis, qRT-PCR and Elisa were used to explore wound rehabilitation and anti-fibrosis mechanisms. RESULTS An in vivo assay revealed that JWSMYA promoted the repairment of acute radiation-induced cutaneous wounds, facilitated MAPK/ERK phosphorylation, inhibited PI3K/AKT activation, reduced the level of alpha-smooth muscle actin (a-sma), collagen type-I alpha 2 (Col1a2) and transforming growth factor-beta 1 (TGF-β1) in cutaneous tissues. However, no statistical difference was found in vascular endothelial growth factor (VEGF). CONCLUSION JWSMYA accelerated the repair of acute radiation-induced cutaneous wounds, which might be associated with the MAPK/ERK pathway. In addition, PI3K/AKT might be associated with the inhibition of fibrosis and the promotion of high-quality wound healing.
Collapse
Affiliation(s)
- Yin Wang
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Junfeng Gao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, People's Republic of China
| | - Liqiao Sun
- Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Qi Li
- Department of Oncology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Ning Kang
- Department of Oncology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Chen Gao
- Department of Oncology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Tong Li
- Department of Oncology, Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
12
|
Wang T, Liao J, Zheng L, Zhou Y, Jin Q, Wu Y. Aloe vera for prevention of radiation-induced dermatitis: A systematic review and cumulative analysis of randomized controlled trials. Front Pharmacol 2022; 13:976698. [PMID: 36249738 PMCID: PMC9557187 DOI: 10.3389/fphar.2022.976698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/08/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Aloe vera were frequently reported to reduce the risk of radiation-induced dermatitis (RID), but the quantitative results from all the relevant studies were not presently available. This study sought to conduct a cumulative analysis to better clarify the preventive effects of aloe vera in RID. Methods: MEDLINE (PubMed), Cochrane, EMBASE, PsychINFO, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang Database were utilized for identifying the eligible randomized controlled trials (RCTs) without language restrictions, up to March 2022. The pooled incidence of RID was conducted by the Relative risk (RR) with its 95% confidence interval (CI) through the STATA software under a random-effects model. This systematic review and cumulative analysis were registered on PROSPERO (ID: CRD42022335188). Results: Fourteen RCTs met our predefined inclusion criteria, enrolling 1,572 participants (mean age: 46.5–56 years). The cumulative results revealed that patients pretreated with aloe vera were associated with a significantly lower risk of RID compared to those without aloe vera usage (RR = 0.76, 95% CI: 0.67–0.88, p < 0.001; heterogeneity: I2 = 79.8%, p < 0.001). In the subgroup analysis, the pooled incidence of Grade 2–4, Grade 2, and Grade 3 RID was also dramatically lower in the group of aloe vera as compared to the placebo group [RR = 0.44 (0.27, 0.74), 0.58 (0.36, 0.94), and 0.27 (0.12, 0.59) in Grade 2–4, Grade 2, and Grade 3, respectively]. However, in regard to Grade 4 RID, the combined RR indicated that the incidence of RID was comparable between aloe vera and the control group (RR = 0.13, 95% CI: 0.02–1.01, p = 0.051; heterogeneity: I2 = 0.0%, p = 0.741). The sensitivity analyses showed that there was no substantial change in the new pooled RR after eliminating anyone of the included study. Conclusion: The current cumulative analysis revealed that patients pretreated with aloe vera were less likely to suffer from RID than the controls without using aloe vera. Based on this finding, the prophylactic application of aloe vera might significantly reduce the incidence of RID, especially in Grade 2 and Grade 3 RID. Further large-sample multicenter RCTs are still warranted to confirm these findings and for better clinical application.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Integrated Traditional Chinese and Western Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Yi Zhou
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianru Jin
- Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yanjing Wu
- Department of Skin & Cosmetic, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hanzhou, Zhejiang, China
- *Correspondence: Yanjing Wu,
| |
Collapse
|
13
|
Adipose-derived stem cells alleviate radiation-induced dermatitis by suppressing apoptosis and downregulating cathepsin F expression. Stem Cell Res Ther 2021; 12:447. [PMID: 34372921 PMCID: PMC8351374 DOI: 10.1186/s13287-021-02516-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background Radiation-induced dermatitis is a serious side effect of radiotherapy, and very few effective treatments are currently available for this condition. We previously demonstrated that apoptosis is an important feature of radiation-induced dermatitis and adipose-derived stem cells (ADSCs) are one of the most promising types of stem cells that have a protective effect on acute radiation-induced dermatitis. Cathepsin F (CTSF) is a recently discovered protein that plays an important role in apoptosis. In this study, we investigated whether ADSCs affect chronic radiation-induced dermatitis, and the underlying mechanisms involved. Methods ADSCs were isolated from male Sprague-Dawley (SD) rats and characterized. For in vivo studies, rats were randomly divided into control and ADSC-treated groups, and cultured ADSCs were transplanted into radiation-induced dermatitis model rats. The effects of ADSC transplantation were determined by skin damage scoring, histopathological analysis, electron microscopy, immunohistochemical staining, and western blotting analysis of apoptosis-related proteins. To evaluate the effects of ADSCs in vitro, radiation-induced apoptotic cells were treated with ADSC culture supernatant, and apoptosis-related protein expression was investigated by TUNEL staining, flow cytometry, and western blotting. Results In the in vivo studies, skin damage, inflammation, fibrosis, and apoptosis were reduced and hair follicle and sebaceous gland regeneration were enhanced in the ADSC group compared with the control group. Further, CTSF and downstream pro-apoptotic proteins (Bid, BAX, and caspase 9) were downregulated, while anti-apoptotic proteins (Bcl-2 and Bcl-XL) were upregulated. In vitro, ADSCs markedly attenuated radiation-induced apoptosis, downregulated CTSF and downstream pro-apoptotic proteins, and upregulated anti-apoptotic proteins. Conclusion ADSCs protect against radiation-induced dermatitis by exerting an anti-apoptotic effect through inhibition of CTSF expression. ADSCs may be a good therapeutic candidate to prevent the development of radiation-induced dermatitis.
Collapse
|
14
|
Gupta V, Tyagi A, Bhatnagar A, Singh S, Gaidhani SN, Srikanth N. Topical application of Jatyadi Ghrita and Jatyadi Taila accelerates wound healing in Sprague-Dawley rats: a study in gamma-radiation-induced skin wound model. Int J Radiat Biol 2021; 97:1003-1019. [PMID: 33872127 DOI: 10.1080/09553002.2021.1913526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/09/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Radiation-induced skin wounds/dermatitis can occur due to therapeutic, occupational, or accidental exposure to ionizing radiation. This study investigated the therapeutic efficacy of standardized Ayurvedic formulations [Jatyadi ghrita (JG) and Jatyadi taila (JT)] against 60Co-γ-radiation-induced acute skin wounds in rats. MATERIAL AND METHODS Animal's [Sprague-Dawley rats (200 ± 20 g)] flanked skin was locally exposed to 45 Gy radiation (R45Gy) in Cobalt-60-teletherapy unit (Bhabhatron) to generate radiation wounds. JG and JT were applied topically twice daily on wounds from day 14 onwards after appearance of moist desquamation and wound healing efficacy was observed for a period of 42 days. RESULTS R45Gy induced significant time dependent changes in rat's skin with erythema on day 7 followed by dry and moist desquamation. JG and JT application significantly (p < .001) reduced skin damage score, wound area (92% and 97% respectively on day 42), and bacterial load, when compared with R45Gy and showed better efficacy than sucralfate and betamethasone (positive controls). Formulations significantly reduced lipid peroxidation and enhanced antioxidant defenses, reduced inflammatory infiltrates and collagen fibers deposition as evident by decreased myeloperoxidase and hydroxyproline levels, and also reduced transforming growth factor-beta 1 (TGF-β1) expression. Further, histology revealed reduced epidermal hyperplasia and dermal thinning with improved densities of hair follicles. Formulations were found to be nontoxic on 28 days application. CONCLUSIONS The results demonstrated that JG and JT accelerated wound healing in irradiated skin tissue by faster re-epithelialization; reducing inflammation, collagen fibers deposition, and TGF-β1 expression, indicated their potential human application in countering radiation wounds.
Collapse
Affiliation(s)
- Vanita Gupta
- Department of Drug Development, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Anuradha Tyagi
- Department of Drug Development, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Aseem Bhatnagar
- Department of Drug Development, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Sukhvir Singh
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Sudesh N Gaidhani
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, India
| | - Narayan Srikanth
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, New Delhi, India
| |
Collapse
|
15
|
Chu CN, Hu KC, Wu RSC, Bau DT. Radiation-irritated skin and hyperpigmentation may impact the quality of life of breast cancer patients after whole breast radiotherapy. BMC Cancer 2021; 21:330. [PMID: 33789613 PMCID: PMC8011219 DOI: 10.1186/s12885-021-08047-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND This study aimed to investigate skin condition, quality of life, and psychological impact of breast cancer patients after radiation therapy. We designed and administered a questionnaire to breast cancer survivors for better understanding the skin sequelae after radiation therapy. METHODS This study performed an anonymous online survey. Invitation join was posted in Facebook groups for Breast Cancer. Content of the questionnaire included basic information and a three-point scale on the degree of skin dryness, sweating, hotness sensation, itchy sensation, presence of pigment deposition, history of severe skin disorder, psychological impact, and quality of life after radiotherapy. Categorical variables were summarized using counts and percentages, and then Mantel-Haenszel chi-square tests, multiple correspondence analysis, Wald chi-square statistics, and logistic regression analyses were performed; P < 0.05 was considered statistically significant. RESULTS In total, 421 breast cancer survivors completed the questionnaire. Among them, 331 (78.62%) reported rarely sweating; 340 (80.76%) reported dry skin; 184 (43.71%) reported itchy skin in addition to dry skin; 336 (79.81%) had severe or mild skin color deposition; and 76 (18.05%) had eczema or contact dermatitis. Dry skin problems were caused by absent sweating and skin dryness in the irradiated skin area, post-RT severe skin disorders, and skin color deposition. Compared with patients sweating normally in the radiation field, patients with absent sweating and hotness sensation in the radiation field had a higher risk of depression. CONCLUSIONS This study showed that breast cancer patients after whole breast radiotherapy may experience skin dryness, hypersensitivity and hyper pigmentation in the irradiated skin area. These "radiation-irritated skin" lesions may induce depressive psychological status and impact the quality of life in breast cancer patients after whole breast radiotherapy.
Collapse
Affiliation(s)
- Chin-Nan Chu
- Graduatee Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, Taichung City, Taiwan
| | - Kai-Chieh Hu
- Management Office for Health Data, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Taichung City, Taiwan
| | - Rick Sai-Chuen Wu
- School of Medicine, China Medical University, Taichung City, Taiwan.
- Department of Anesthesiology, China Medical University Hospital, Taichung City, Taiwan.
| | - Da-Tian Bau
- Graduatee Institute of Clinical Medical Science, China Medical University, Taichung City, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|
16
|
Ionizing Radiation Mediates Dose Dependent Effects Affecting the Healing Kinetics of Wounds Created on Acute and Late Irradiated Skin. SURGERIES 2021. [DOI: 10.3390/surgeries2010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy for cancer treatment is often associated with skin damage that can lead to incapacitating hard-to-heal wounds. No permanent curative treatment has been identified for radiodermatitis. This study provides a detailed characterization of the dose-dependent impact of ionizing radiation on skin cells (45, 60, or 80 grays). We evaluated both early and late effects on murine dorsal skin with a focus on the healing process after two types of surgical challenge. The irradiated skin showed moderate to severe damage increasing with the dose. Four weeks after irradiation, the epidermis featured increased proliferation status while the dermis was hypovascular with abundant α-SMA intracellular expression. Excisional wounds created on these tissues exhibited delayed global wound closure. To assess potential long-lasting side effects of irradiation, radiodermatitis features were followed until macroscopic healing was notable (over 8 to 22 weeks depending on the dose), at which time incisional wounds were made. Severity scores and biomechanical analyses of the scar tissues revealed that seemingly healed irradiated skin still displayed altered functionality. Our detailed investigation of both the acute and chronic repercussions of radiotherapy on skin healing provides a relevant new in vivo model that will instruct future studies evaluating the efficacy of new treatments for radiodermatitis.
Collapse
|
17
|
Huth S, Marquardt Y, Huth L, Schmitt L, Prescher K, Winterhalder P, Steiner T, Hölzle F, Eble M, Malte Baron J. Molecular effects of photon irradiation and subsequent aftercare treatment with dexpanthenol-containing ointment or liquid in 3D models of human skin and non-keratinized oral mucosa. Exp Dermatol 2021; 30:745-750. [PMID: 33403711 DOI: 10.1111/exd.14266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022]
Abstract
This study aimed to investigate the molecular effects of radiation and subsequent aftercare treatment with dexpanthenol-containing ointment and liquid on established full-thickness 3D skin models depicting acute radiodermatitis and mucositis. To mimic radiomucositis and radiodermatitis, non-keratinized mucous membrane and normal human skin models were irradiated with 5 Gray. Afterwards, models were treated topically every second day with dexpanthenol-containing ointment or liquid in comparison with placebo and untreated controls. On day 7 after irradiation, histological examination showed impairments in irradiated models. In contrast, models treated with dexpanthenol-containing ointment or liquid showed a completely restored epidermal part. While gene expression profiling revealed an induction of genes related to a pro-inflammatory milieu, oxidative stress and an impaired epidermal differentiation after irradiation of the models, aftercare treatment with dexpanthenol-containing ointment or liquid revealed anti-oxidative and anti-inflammatory effects and had a positive effect on epidermal differentiation and structures important for physical and antimicrobial barrier function. Our findings confirm the potential of our established models as in vitro tools for the replacement of pharmacological in vivo studies regarding radiation-induced skin injuries and give indications of the positive effects of dexpanthenol-containing externals after radiation treatments as part of supportive tumor treatment.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Laurenz Schmitt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Kirsten Prescher
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Philipp Winterhalder
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Timm Steiner
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Frank Hölzle
- Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Department of Oral and Maxillofacial Surgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael Eble
- Department of Radiation Oncology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Interdisciplinary Center for Laser Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L, Zhuang Q. Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov 2020; 6:80. [PMID: 32963808 PMCID: PMC7474731 DOI: 10.1038/s41420-020-00316-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022] Open
Abstract
Although fibrosis is a common pathological feature of most end-stage organ diseases, its pathogenesis remains unclear. There is growing evidence that mitochondrial dysfunction contributes to the development and progression of fibrosis. The heart, liver, kidney and lung are highly oxygen-consuming organs that are sensitive to mitochondrial dysfunction. Moreover, the fibrotic process of skin and islet is closely related to mitochondrial dysfunction as well. This review summarized emerging mechanisms related to mitochondrial dysfunction in different fibrotic organs and tissues above. First, it highlighted the important elucidation of mitochondria morphological changes, mitochondrial membrane potential and structural damage, mitochondrial DNA (mtDNA) damage and reactive oxidative species (ROS) production, etc. Second, it introduced the abnormality of mitophagy and mitochondrial transfer also contributed to the fibrotic process. Therefore, with gaining the increasing knowledge of mitochondrial structure, function, and origin, we could kindle a new era for the diagnostic and therapeutic strategies of many fibrotic diseases based on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xinyu Li
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Wei Zhang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Qingtai Cao
- Hunan Normal University School of Medicine, 410013 Changsha, Hunan China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, 410013 Changsha, Hunan China
| | - Mingyi Zhao
- Pediatric Department of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
| | - Linyong Xu
- School of Life Science, Central South University, 410013 Changsha, Hunan China
| | - Quan Zhuang
- Transplantation Center of the 3rd Xiangya Hospital, Central South University, 410013 Changsha, Hunan China
- Research Center of National Health Ministry on Transplantation Medicine, 410013 Changsha, Hunan China
| |
Collapse
|
19
|
Xu A, Deng F, Chen Y, Kong Y, Pan L, Liao Q, Rao Z, Xie L, Yao C, Li S, Zeng X, Zhu X, Liu H, Gao N, Xue L, Chen F, Xu G, Wei D, Zhou X, Li Z, Sheng X. NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2020; 130:110525. [PMID: 32702633 DOI: 10.1016/j.biopha.2020.110525] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/08/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin is a commonly used anthracycline chemotherapeutic agent; however, its application is limited owing to its cardiotoxicity. Current clinical treatments cannot efficiently or fully prevent doxorubicin-induced toxicity, primarily because its pathogenesis and mechanisms of action remain unknown. In this study, we established a rat model of chronic doxorubicin-induced cardiotoxicity, in which the severity of cardiac fibrosis and hydroxyproline levels increased in a time-dependent manner. Doxorubicin damaged the mitochondria and blood vessels and induced autophagy. Cells undergoing endothelial-to-mesenchymal transition (EndoMT)and those expressing endothelial cell and myofibroblast markers were simultaneously observed in vitro and in rats treated with doxorubicin. The NF-κB pathway was activated during EndoMT, andp65 and p-p65 were strongly expressed in the nucleus of endothelial cells in vitro. Taken together, these results suggest that vascular injury and cardiac fibrosis are characteristic symptoms of doxorubicin-induced cardiotoxicity. The NF-κB pathway-associated EndoMT may influence the pathogenesis of doxorubicin-induced cardiotoxicity, and the constituents of this pathway may be potential therapeutic targets to prevent the development of this condition.
Collapse
Affiliation(s)
- Anji Xu
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Feiyan Deng
- College of Medical Imaging, Changsha Medical University, China.
| | - Yongyi Chen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China.
| | - Lijun Pan
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China.
| | - Qianjin Liao
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Zhen Rao
- Department of Head and Neck Surgery, The First People's Hospital of Changde City, Changde, Hunan Province, China.
| | - Luyuan Xie
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Chaoling Yao
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Sha Li
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Xiaoling Zeng
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Xiaomei Zhu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Huayun Liu
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Nina Gao
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Fen Chen
- Department of Cardiology, Union Hospital, Tongji Medial College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Guoxing Xu
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Di Wei
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China.
| | - Xiao Zhou
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Zan Li
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| | - Xiaowu Sheng
- Department of Head and Neck Surgery, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
20
|
Zhang Y, Liu J, Yu Y, Chen S, Huang F, Yang C, Chang J, Yang L, Fan S, Liu J. Enhanced radiotherapy using photothermal therapy based on dual-sensitizer of gold nanoparticles with acid-induced aggregation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102241. [PMID: 32565227 DOI: 10.1016/j.nano.2020.102241] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
Abstract
The damaged DNA strands caused by radiotherapy (RT) can repair by themselves. A gold nanoparticles (GNPs) system with acid-induced aggregation was developed into a dual sensitizer owing to its high radioactive rays attenuation ability and enhanced photothermal heating efficiency after GNPs aggregation to achieve a combination therapy of RT and photothermal therapy (PTT). In this combination therapy, the formed GNP aggregates firstly showed a higher sensitize enhancement ratio (SER) value (1.52). Importantly, the self-repair of damaged DNA strands was inhibited by mild PTT through down-regulating the expression of DNA repair protein, thus resulting in a much higher SER value (1.68). Anti-tumor studies further demonstrated that this combination therapy exhibited ideal anti-tumor efficacy. Furthermore, the imaging signals of GNPs in computed tomography and photoacoustic were significantly improved following the GNPs aggregation. Therefore, a dual sensitizer with multimodal imaging was successfully developed and can be further applied as a new anti-tumor therapy.
Collapse
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Ying Yu
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shizhu Chen
- Beijing General Pharmaceutical Corporation, Beijing, China; The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Jinglin Chang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Lijun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China.
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Nankai District, Tianjin, PR China.
| |
Collapse
|
21
|
da Silva Santin M, Koehler J, Rocha DM, Dos Reis CA, Omar NF, Fidler Y, de Miranda Soares MA, Gomes JR. Initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin. Eur Radiol Exp 2020; 4:32. [PMID: 32500235 PMCID: PMC7272528 DOI: 10.1186/s41747-020-00155-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calvaria skin has a reduced thickness, and its initial damage produced by irradiation was scarcely reported. We aimed to identify the initial effects of x-ray irradiation in the rat calvaria skin. METHODS After approval by the Animal Ethical Committee, calvaria skin sections of five Wistar rats per time point were evaluated on days 4, 9, 14, and 25 following a single 15-Gy x-ray irradiation of the head. The control group was composed of five rats and evaluated on day 4. Sections were assessed using hematoxylin-eosin and Masson's trichrome staining for morphology, inflammation, and fibrosis. Fibrosis was also evaluated by the collagen maturation index from Picrosirius red staining and by cell proliferation using the immunohistochemistry, after 5-bromo-2-deoxyuridine intraperitoneal injection. RESULTS In irradiated rats, we observed a reduction in epithelial cell proliferation (p = 0.004) and in matrix metalloproteinase-9 expression (p < 0.001), an increase in the maturation index, and with a predominance in the type I collagen fibers, on days 9 and 14 (1.19 and 1.17, respectively). A progressive disorganization in the morphology of the collagen fibers at all time points and changes in morphology of the sebaceous gland cells and hair follicle were present until day 14. CONCLUSIONS The initial damage produced by a single 15-Gy x-ray irradiation to the rat calvaria skin was a change in the normal morphology of collagen fibers to an amorphous aspect, a temporary absence of the sebaceous gland and hair follicles, and without a visible inflammatory process, cell proliferation, or fibrosis process in the dermis.
Collapse
Affiliation(s)
- Matheus da Silva Santin
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - José Koehler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.,Southern Paraná Oncology Institute (ISPON), Cel. Francisco Ribas, 638 - Ponta Grossa, Paraná, Brazil
| | - Danilo Massuia Rocha
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Camila Audrey Dos Reis
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Nadia Fayez Omar
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | - Yasmin Fidler
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil
| | | | - José Rosa Gomes
- Universidade Estadual de Ponta Grossa, DEBIOGEM, Carlos Cavalcanti, Campus Uvaranas, Ponta Grossa, Paraná, 84040060, Brazil.
| |
Collapse
|
22
|
Sheng X, Zhou Y, Wang H, Shen Y, Liao Q, Rao Z, Deng F, Xie L, Yao C, Mao H, Liu Z, Peng M, Long Y, Zeng Y, Xue L, Gao N, Kong Y, Zhou X. Establishment and characterization of a radiation-induced dermatitis rat model. J Cell Mol Med 2019; 23:3178-3189. [PMID: 30821089 PMCID: PMC6484338 DOI: 10.1111/jcmm.14174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022] Open
Abstract
Radiation‐induced dermatitis is a common and serious side effect after radiotherapy. Current clinical treatments cannot efficiently or fully prevent the occurrence of post‐irradiation dermatitis, which remains a significant clinical problem. Resolving this challenge requires gaining a better understanding of the precise pathophysiology, which in turn requires establishment of a suitable animal model that mimics the clinical condition, and can also be used to investigate the mechanism and explore effective treatment options. In this study, a single dose of 90 Gy irradiation to rats resulted in ulceration, dermal thickening, inflammation, hair follicle loss, and sebaceous glands loss, indicating successful establishment of the model. Few hair follicle cells migrated to form epidermal cells, and both the severity of skin fibrosis and hydroxyproline levels increased with time post‐irradiation. Radiation damaged the mitochondria and induced both apoptosis and autophagy of the skin cells. Therefore, irradiation of 90 Gy can be used to successfully establish a rat model of radiation‐induced dermatitis. This model will be helpful for developing new treatments and gaining a better understanding of the pathological mechanism of radiation‐induced dermatitis. Specifically, our results suggest autophagy regulation as a potentially effective therapeutic target.
Collapse
Affiliation(s)
- Xiaowu Sheng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yue Zhou
- Department of Radiation Oncology, Key Laboratory of Translational Radiation Oncology, Changsha, Hunan Province, China.,Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Radiation Oncology, Key Laboratory of Translational Radiation Oncology, Changsha, Hunan Province, China.,Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yongyi Shen
- Nursing Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Qianjin Liao
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhen Rao
- Department of Head and Neck Surgery, The First People's Hospital of Changde City, Changsha, Hunan Province, China
| | - Feiyan Deng
- University of South China, Hengyang, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Luyuan Xie
- University of South China, Hengyang, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Chaoling Yao
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Huangxing Mao
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Zhiyan Liu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Mingjing Peng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Ying Long
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yong Zeng
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Lei Xue
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Nina Gao
- Pathology Department, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| | - Yu Kong
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Zhou
- Hunan Branch Center, National Tissue Engineering Center of China, Translational Medical Center, Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.,Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan Province, China
| |
Collapse
|