1
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Hummel R, Dorochow E, Zander S, Ritter K, Hahnefeld L, Gurke R, Tegeder I, Schäfer MKE. Valproic Acid Treatment after Traumatic Brain Injury in Mice Alleviates Neuronal Death and Inflammation in Association with Increased Plasma Lysophosphatidylcholines. Cells 2024; 13:734. [PMID: 38727269 PMCID: PMC11083124 DOI: 10.3390/cells13090734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The histone deacetylase inhibitor (HDACi) valproic acid (VPA) has neuroprotective and anti-inflammatory effects in experimental traumatic brain injury (TBI), which have been partially attributed to the epigenetic disinhibition of the transcription repressor RE1-Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF). Additionally, VPA changes post-traumatic brain injury (TBI) brain metabolism to create a neuroprotective environment. To address the interconnection of neuroprotection, metabolism, inflammation and REST/NRSF after TBI, we subjected C57BL/6N mice to experimental TBI and intraperitoneal VPA administration or vehicle solution at 15 min, 1, 2, and 3 days post-injury (dpi). At 7 dpi, TBI-induced an up-regulation of REST/NRSF gene expression and HDACi function of VPA on histone H3 acetylation were confirmed. Neurological deficits, brain lesion size, blood-brain barrier permeability, or astrogliosis were not affected, and REST/NRSF target genes were only marginally influenced by VPA. However, VPA attenuated structural damage in the hippocampus, microgliosis and expression of the pro-inflammatory marker genes. Analyses of plasma lipidomic and polar metabolomic patterns revealed that VPA treatment increased lysophosphatidylcholines (LPCs), which were inversely associated with interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) gene expression in the brain. The results show that VPA has mild neuroprotective and anti-inflammatory effects likely originating from favorable systemic metabolic changes resulting in increased plasma LPCs that are known to be actively taken up by the brain and function as carriers for neuroprotective polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Erika Dorochow
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Sonja Zander
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Katharina Ritter
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune-Mediated Diseases, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, 60596 Frankfurt am Main, Germany; (E.D.); (L.H.); (R.G.)
| | - Michael K. E. Schäfer
- Department of Anesthesiology, University Medical Center Johannes Gutenberg-University Mainz, 55131 Mainz, Germany; (R.H.); (K.R.)
- Focus Program Translational Neurosciences (FTN), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Research Center for Immunotherapy (FZI), Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| |
Collapse
|
3
|
Liang T, Lin C, Ning H, Qin F, Zhang B, Zhao Y, Cao T, Jiao S, Chen H, He Y, Cai H. Pre-treatment risk predictors of valproic acid-induced dyslipidemia in pediatric patients with epilepsy. Front Pharmacol 2024; 15:1349043. [PMID: 38628642 PMCID: PMC11018995 DOI: 10.3389/fphar.2024.1349043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background: Valproic acid (VPA) stands as one of the most frequently prescribed medications in children with newly diagnosed epilepsy. Despite its infrequent adverse effects within therapeutic range, prolonged VPA usage may result in metabolic disturbances including insulin resistance and dyslipidemia. These metabolic dysregulations in childhood are notably linked to heightened cardiovascular risk in adulthood. Therefore, identification and effective management of dyslipidemia in children hold paramount significance. Methods: In this retrospective cohort study, we explored the potential associations between physiological factors, medication situation, biochemical parameters before the first dose of VPA (baseline) and VPA-induced dyslipidemia (VID) in pediatric patients. Binary logistic regression was utilized to construct a predictive model for blood lipid disorders, aiming to identify independent pre-treatment risk factors. Additionally, The Receiver Operating Characteristic (ROC) curve was used to evaluate the performance of the model. Results: Through binary logistic regression analysis, we identified for the first time that direct bilirubin (DBIL) (odds ratios (OR) = 0.511, p = 0.01), duration of medication (OR = 0.357, p = 0.009), serum albumin (ALB) (OR = 0.913, p = 0.043), BMI (OR = 1.140, p = 0.045), and aspartate aminotransferase (AST) (OR = 1.038, p = 0.026) at baseline were independent risk factors for VID in pediatric patients with epilepsy. Notably, the predictive ability of DBIL (AUC = 0.690, p < 0.0001) surpassed that of other individual factors. Furthermore, when combined into a predictive model, incorporating all five risk factors, the predictive capacity significantly increased (AUC = 0.777, p < 0.0001), enabling the forecast of 77.7% of dyslipidemia events. Conclusion: DBIL emerges as the most potent predictor, and in conjunction with the other four factors, can effectively forecast VID in pediatric patients with epilepsy. This insight can guide the formulation of individualized strategies for the clinical administration of VPA in children.
Collapse
Affiliation(s)
- Tiantian Liang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hong Ning
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Fuli Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Yichang Zhao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yifang He
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| |
Collapse
|
4
|
Cui Y, Zhai Y, Yuan Y, Wang X, Xu Q, Wu X, Xu L, Ren T, Wang Q, Sun H. Inhibition of PTEN-induced kinase 1 autophosphorylation may assist in preventing epileptogenesis induced by pentylenetetrazol. Neurochem Int 2024; 172:105644. [PMID: 38029887 DOI: 10.1016/j.neuint.2023.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
PTEN-induced kinase 1 (PINK1) autophosphorylation-triggered mitophagy is the main mitophagic pathway in the nervous system. Moreover, multiple studies have confirmed that mitophagy is closely related to the occurrence and development of epilepsy. Therefore, we speculated that the PINK1 autophosphorylation may be involved in epileptogenesis by mediating mitophagic pathway. This study aimed to explore the contribution of activated PINK1 to epileptogenesis induced by pentylenetetrazol (PTZ) in Sprague‒Dawley rats. During PTZ-induced epileptogenesis, the levels of phosphorylated PINK1 were increased, accompanied by elevated mitophagy, mitochondria oxidative stress and neuronal damage. After microRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7) or overlapping with the m-AAA protease 1 homolog (OMA1), the levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal injury were observed in the rats with induced epileptogenesis. Furthermore, inhibiting of the expression of TOM7, a positive regulator of PINK1 autophosphorylation, reversed the increase in PINK1 phosphorylation and alleviated mitophagy, neuronal injury, thereby preventing epileptogenesis. In contrast, reducing the levels of OMA1, a negative regulator of PINK1 autophosphorylation, led to increased phosphorylation of PINK1, accompanied by aggravated neuronal injury and ultimately, epileptogenesis. This study confirmed the contribution of activated PINK1 to PTZ-induced epileptogenesis and suggested that the inhibition of PINK1 autophosphorylation may assist in preventing epileptogenesis.
Collapse
Affiliation(s)
- Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yi Yuan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaoqian Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qianqian Xu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Linlin Xu
- Department of Neurology, The Second Hospital of Shandong University, Jinan, 250033, China
| | - Tianpu Ren
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
5
|
Araújo COD, Pedroso AP, Boldarine VT, Fernandes AMAP, Perez JJM, Montenegro RM, Montenegro APDR, de Carvalho AB, Fernandes VO, Oyama LM, Carvalho PO, Maia CSC, Bueno AA, Ribeiro EB, Telles MM. Plasma signatures of Congenital Generalized Lipodystrophy patients identified by untargeted lipidomic profiling are not changed after a fat-containing breakfast meal. Prostaglandins Leukot Essent Fatty Acids 2023; 196:102584. [PMID: 37573715 DOI: 10.1016/j.plefa.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The incapacity to store lipids in adipose tissue in Congenital Generalized Lipodystrophy (CGL) causes hypoleptinemia, increased appetite, ectopic fat deposition and lipotoxicity. CGL patients experience shortened life expectancy. The plasma lipidomic profile has not been characterized fully in CGL, nor has the extent of dietary intake in its modulation. The present work investigated the plasma lipidomic profile of CGL patients in comparison to eutrophic individuals at the fasted state and after a breakfast meal. METHOD Blood samples from 11 CGL patients and 10 eutrophic controls were collected after 12 h fasting (T0) and 90 min after an ad libitum fat-containing breakfast (T90). The lipidomic profile of extracted plasma lipids was characterized by non-target liquid chromatography mass spectrometry. RESULTS Important differences between groups were observed at T0 and at T90. Several molecular species of fatty acyls, glycerolipids, sphingolipids and glycerophospholipids were altered in CGL. All the detected fatty acyl molecular species, several diacylglycerols and one triacylglycerol species were upregulated in CGL. Among sphingolipids, one sphingomyelin and one glycosphingolipid species showed downregulation in CGL. Alterations in the glycerophospholipids glycerophosphoethanolamines, glycerophosphoserines and cardiolipins were more complex. Interestingly, when comparing T90 versus T0, the lipidomic profile in CGL did not change as intensely as it did for control participants. CONCLUSIONS The present study found profound alterations in the plasma lipidomic profile of complex lipids in CGL patients as compared to control subjects. A fat-containing breakfast meal did not appear to significantly influence the CGL profile observed in the fasted state. Our study may have implications for clinical practice, also aiding to a deeper comprehension of the role of complex lipids in CGL in view of novel therapeutic strategies.
Collapse
Affiliation(s)
- Camilla O D Araújo
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Amanda P Pedroso
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Valter T Boldarine
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Anna Maria A P Fernandes
- Postgraduate Program of Health Sciences, São Francisco University, Bragança Paulista, SP, Brazil
| | - José J M Perez
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Renan M Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Ana Paula D R Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Annelise B de Carvalho
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Virgínia O Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies - Hospital Universitário Walter Cantídio, Departamento de Medicina Clínica e Departamento de Saúde Comunitária, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza-Ceará, Brazil
| | - Lila M Oyama
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Patrícia O Carvalho
- Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, SP, Brazil
| | - Carla S C Maia
- Departamento de Nutrição, Universidade Estadual do Ceará (UECE), Campus do Itaperi, Fortaleza, CE, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Worcester WR2 6AJ, United Kingdom.
| | - Eliane B Ribeiro
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| | - Mônica M Telles
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, Departamento de Fisiologia, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Shnayder NA, Grechkina VV, Trefilova VV, Efremov IS, Dontceva EA, Narodova EA, Petrova MM, Soloveva IA, Tepnadze LE, Reznichenko PA, Al-Zamil M, Altynbekova GI, Strelnik AI, Nasyrova RF. Valproate-Induced Metabolic Syndrome. Biomedicines 2023; 11:biomedicines11051499. [PMID: 37239168 DOI: 10.3390/biomedicines11051499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Valproic acid (VPA) and its salts (sodium calcium magnesium and orotic) are psychotropic drugs that are widely used in neurology and psychiatry. The long-term use of VPA increases the risk of developing adverse drug reactions (ADRs), among which metabolic syndrome (MetS) plays a special role. MetS belongs to a cluster of metabolic conditions such as abdominal obesity, high blood pressure, high blood glucose, high serum triglycerides, and low serum high-density lipoprotein. Valproate-induced MetS (VPA-MetS) is a common ADR that needs an updated multidisciplinary approach to its prevention and diagnosis. In this review, we consider the results of studies of blood (serum and plasma) and the urinary biomarkers of VPA-MetS. These metabolic biomarkers may provide the key to the development of a new multidisciplinary personalized strategy for the prevention and diagnosis of VPA-MetS in patients with neurological diseases, psychiatric disorders, and addiction diseases.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Violetta V Grechkina
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Ilya S Efremov
- Department of Psychiatry and Narcology, Bashkir State Medical University, 450008 Ufa, Russia
| | - Evgenia A Dontceva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
- Federal Centre for Neurosurgery, 630087 Novosibirsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Irina A Soloveva
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Liia E Tepnadze
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Polina A Reznichenko
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Gulnara I Altynbekova
- Department of Psychiatry and Narcology, S.D. Asfendiarov Kazakh National Medical University, Almaty 050022, Kazakhstan
| | - Anna I Strelnik
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
7
|
Oja KT, Ilisson M, Reinson K, Muru K, Reimand T, Peterson H, Fishman D, Esko T, Haller T, Kronberg J, Wojcik MH, Kennedy A, Michelotti G, O’Donnell-Luria A, Õiglane-Šlik E, Pajusalu S, Õunap K. Untargeted metabolomics profiling in pediatric patients and adult populations indicates a connection between lipid imbalance and epilepsy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.29.23287640. [PMID: 37034709 PMCID: PMC10081398 DOI: 10.1101/2023.03.29.23287640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Introduction Epilepsy is a common central nervous system disorder characterized by abnormal brain electrical activity. We aimed to compare the metabolic profiles of plasma from patients with epilepsy across different etiologies, seizure frequency, seizure type, and patient age to try to identify common disrupted pathways. Material and methods We used data from three separate cohorts. The first cohort (PED-C) consisted of 31 pediatric patients with suspicion of a genetic disorder with unclear etiology; the second cohort (AD-C) consisted of 250 adults from the Estonian Biobank (EstBB), and the third cohort consisted of 583 adults ≥ 69 years of age from the EstBB (ELD-C). We compared untargeted metabolomics and lipidomics data between individuals with and without epilepsy in each cohort. Results In the PED-C, significant alterations (p-value <0.05) were detected in sixteen different glycerophosphatidylcholines (GPC), dimethylglycine and eicosanedioate (C20-DC). In the AD-C, nine significantly altered metabolites were found, mainly triacylglycerides (TAG), which are also precursors in the GPC synthesis pathway. In the ELD-C, significant changes in twenty metabolites including multiple TAGs were observed in the metabolic profile of participants with previously diagnosed epilepsy. Pathway analysis revealed that among the metabolites that differ significantly between epilepsy-positive and epilepsy-negative patients in the PED-C, the lipid superpathway (p = 3.2*10-4) and phosphatidylcholine (p = 9.3*10-8) and lysophospholipid (p = 5.9*10-3) subpathways are statistically overrepresented. Analogously, in the AD-C, the triacylglyceride subclass turned out to be statistically overrepresented (p = 8.5*10-5) with the lipid superpathway (p = 1.4*10-2). The presented p-values are FDR-corrected. Conclusion Our results suggest that cell membrane fluidity may have a significant role in the mechanism of epilepsy, and changes in lipid balance may indicate epilepsy. However, further studies are needed to evaluate whether untargeted metabolomics analysis could prove helpful in diagnosing epilepsy earlier.
Collapse
Affiliation(s)
- Kaisa Teele Oja
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Mihkel Ilisson
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Hedi Peterson
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Dmytro Fishman
- Institute of Computer Science, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Monica H. Wojcik
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Adam Kennedy
- Metabolon, 615 Davis Drive, Suite 100, Morrisville, NC, USA
| | | | - Anne O’Donnell-Luria
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Eve Õiglane-Šlik
- Department of Pediatrics, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu
- Children’s Clinic of Tartu University Hospital, Tartu University Hospital
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
8
|
Gong T, Zhou Y, Zhang L, Wang H, Zhang M, Liu X. Capsaicin combined with dietary fiber prevents high-fat diet associated aberrant lipid metabolism by improving the structure of intestinal flora. Food Sci Nutr 2023; 11:114-125. [PMID: 36655087 PMCID: PMC9834886 DOI: 10.1002/fsn3.3043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
Capsaicin (CAP) and dietary fibers are natural active ingredients that given separately do positively affect obesity and metabolic diseases. However, it was unknown whether their combined administration might further improve blood lipids and gut flora composition. To test this hypothesis we administered capsaicin plus dietary fibers (CAP + DFs) to male rats on a high-fat diet and analyzed any changes in the intestinal microbiota make up, metabolites, and blood indexes. Our results showed that combining CAP with dietary fibers more intensely reduced total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). CAP + DFs also increased gut bacteria variety, and the abundance of several beneficial bacterial strains, including Allobaculum and Akkermansia, while reducing harmful strains such as Desulfovibrio. Additionally, CAP + DFs significantly increased arginine levels and caused short-chain fatty acids accumulation in the contents of the cecal portion of rats' gut. In conclusion, notwithstanding the rats were kept on a high-fat diet, adding CAP + DFs to the chow further improved, as compared with CAP alone, the lipidemia and increased the gut beneficial bacterial strains, while reducing the harmful ones.
Collapse
Affiliation(s)
- Ting Gong
- College of Food ScienceSouthwest UniversityChongqingPeople's Republic of China
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Yujing Zhou
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Lei Zhang
- College of Life ScienceChongqing Normal UniversityChongqingPeople's Republic of China
| | - Haizhu Wang
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Min Zhang
- Chongqing Medical and Pharmaceutical CollegeChongqingPeople's Republic of China
| | - Xiong Liu
- College of Food ScienceSouthwest UniversityChongqingPeople's Republic of China
| |
Collapse
|
9
|
Liu J, Meng Y, Li B, Wang P, Wan X, Huang W, Li R. Ferroptosis-related biotargets and network mechanisms of fucoidan against colorectal cancer: An integrated bioinformatic and experimental approach. Int J Biol Macromol 2022; 222:1522-1530. [DOI: 10.1016/j.ijbiomac.2022.09.255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
10
|
Chen Y, Guan S, Guan Y, Tang S, Zhou Y, Wang X, Bi H, Huang M. Novel Clinical Biomarkers for Drug-Induced Liver Injury. Drug Metab Dispos 2022; 50:671-684. [PMID: 34903588 DOI: 10.1124/dmd.121.000732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a critical clinical issue and has been a treatment challenge today as it was in the past. However, the traditional biomarkers or indicators are insufficient to predict the risks and outcome of patients with DILI due to its poor specificity and sensitivity. Recently, the development of high-throughput technologies, especially omics and multiomics has sparked growing interests in identification of novel clinical DILI biomarkers, many of which also provide a mechanistic insight. Accordingly, in this minireview, we summarize recent advances in novel clinical biomarkers for DILI prediction, diagnosis, and prognosis and highlight the limitations or challenges involved in biomarker discovery or its clinical translation. Although huge work has been done, most reported biomarkers lack comprehensive information and more specific DILI biomarkers are still needed to complement the traditional biomarkers such as alanine aminotransferase (ALT) or aspartate transaminase (AST) in clinical decision-making. SIGNIFICANCE STATEMENT: This current review outlines an overview of novel clinical biomarkers for drug-induced liver injury (DILI) identified in clinical retrospective or prospective clinical analysis. Many of these biomarkers provide a mechanistic insight and are promising to complement the traditional DILI biomarkers. This work also highlights the limitations or challenges involved in biomarker discovery or its clinical translation.
Collapse
Affiliation(s)
- Youhao Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Shaoxing Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanping Guan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Siyuan Tang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Yanying Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Xueding Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Huichang Bi
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| | - Min Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou 510006, China (Y.C., S.G., Y.G., S.T., Y.Z., X.W., H.B., M.H.)., School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China (H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou, Guangdong Provincial Key Laboratory of New Drug Screening; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China (H.B.), Beijing, China (H.B.)
| |
Collapse
|
11
|
Lai W, Du D, Chen L. Metabolomics Provides Novel Insights into Epilepsy Diagnosis and Treatment: A Review. Neurochem Res 2022; 47:844-859. [PMID: 35067830 DOI: 10.1007/s11064-021-03510-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023]
Abstract
Epilepsy is one of the most common diseases of the central nervous system. The diagnosis of epilepsy mainly depends on electroencephalograms and symptomatology, while diagnostic biofluid markers are still lacking. In addition, approximately 30% of patients with epilepsy (PWE) show a poor response to the currently available anti-seizure medicines. An increasing number of studies have reported alterations in the blood, brain tissue, cerebrospinal fluid and urine metabolome in PWE and animal models of epilepsy. The aim of this review was to identify potential metabolic biomarkers and pathways that might facilitate diagnostic, therapeutic and prognostic determination in PWE and the understanding of the pathogenesis of the disease. The PubMed and Embase databases were searched for metabolomic studies of PWE and epileptic models published before December 2020. The study objectives, types of models and reported differentially altered metabolites were examined and compared. Pathway analyses were performed using MetaboAnalyst 5.0 online software. Thirty-five studies were included in this review. Metabolites such as glutamate, lactate and citrate were disturbed in both PWE and epileptic models, which might be potential biomarkers of epilepsy. Metabolic pathways including alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; glycerophospholipid metabolism; glyoxylate and dicarboxylate metabolism; and arginine and proline metabolism were involved in epilepsy. These pathways might play important roles in the pathogenesis of the disease. This review summarizes metabolites and metabolic pathways related to epilepsy and provides a novel perspective for the identification of potential biomarkers and therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Wanlin Lai
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Center, Advanced Mass Spectrometry Centre, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China
| | - Lei Chen
- Department of Neurology, West China Hospital of Sichuan University, No.37 Guoxue Alley, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
12
|
Li R, Guo C, Lin X, Chan TF, Su M, Zhang Z, Lai KP. Integrative omics analysis reveals the protective role of vitamin C on perfluorooctanoic acid-induced hepatoxicity. J Adv Res 2022; 35:279-294. [PMID: 35024202 PMCID: PMC8721266 DOI: 10.1016/j.jare.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/09/2023] Open
Abstract
Introduction Perfluorooctanoic acid (PFOA) is a compound used as an industrial surfactant in chemical processes worldwide. Population and cross-sectional studies have demonstrated positive correlations between PFOA levels and human health problems. Objectives Many studies have focused on the hepatotoxicity and liver problems caused by PFOA, with little attention to remediation of these problems. As an antioxidant, vitamin C is frequently utilized as a supplement for hepatic detoxification. Methods In this study, we use a mouse model to study the possible role of vitamin C in reducing PFOA-induced liver damage. Based on comparative transcriptomic and metabolomic analysis, we elucidate the mechanisms underlying the protective effect of vitamin C. Results Our results show that vitamin C supplementation reduces signs of PFOA-induced liver damage including total cholesterol and triglyceride levels increase, liver damage markers aspartate, transaminase, and alanine aminotransferase elevation, and liver enlargement. Further, we show that the protective role of vitamin C is associated with signaling networks control, suppressing linoleic acid metabolism, reducing thiodiglycolic acid, and elevating glutathione in the liver. Conclusion The findings in this study demonstrate, for the first time, the utility of vitamin C for preventing PFOA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Rong Li
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Min Su
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | | | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| |
Collapse
|
13
|
Zhou C, Hu S, Botchway BOA, Zhang Y, Liu X. Valproic Acid: A Potential Therapeutic for Spinal Cord Injury. Cell Mol Neurobiol 2021; 41:1441-1452. [PMID: 32725456 PMCID: PMC11448682 DOI: 10.1007/s10571-020-00929-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
The lack of an effective pharmaceutical agent for spinal cord injury (SCI) is a current problematic situation for clinicians, as the rate of motor vehicle accidents among young adults is on the rise. SCI contributes to the high disability rate. Presently, evidences detailing the precise pathological mechanisms in SCI are limited, compounding to the unavailability of an effective treatment method. Surgery, though not a complete curative method, is useful in managing some of the associated symptoms of secondary SCI. Autophagy and inflammation are contributive factors to both exacerbation and improvement of SCI. The mammalian target of rapamycin (mTOR) signaling pathway is a key player in the regulation of inflammatory response and autophagy. Valproic acid (VPA), a clinically used antiepileptic drug, has been suggested to improve neurological conditions, including SCI. This report reviewed the correlation between mTOR and autophagy, as well as autophagy's role and the therapeutic effects of VPA in SCI. VPA regulates autophagy by potentially inhibiting mTORC1, a complex of mTOR, while also hindering inflammatory response. Conclusively, an effective treatment for SCI could lie in the timely regulation of mTOR signaling pathway, and VPA could be the potential drug that improves SCI owing to its propensity to regulate the mTOR signaling pathway.
Collapse
Affiliation(s)
- Conghui Zhou
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Songfeng Hu
- Department of Orthopedics, Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
14
|
Mass spectrometry-based lipidomic analysis reveals altered lipid profile in brain tissues resected from patients with focal cortical dysplasia (FCD). Epilepsy Res 2021; 177:106773. [PMID: 34564036 DOI: 10.1016/j.eplepsyres.2021.106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 11/21/2022]
Abstract
Focal cortical dysplasia (FCD) is a common pathology responsible for drug-resistant epilepsy (DRE). Failure to precisely localize the epileptogenic zones (EZs) is a major reason for poor surgical outcome in FCD. Currently, there are no molecular or cellular biomarkers available which can aid in defining the EZs in FCD. Phospholipid alterations between healthy and malignant tumor tissues are reported and have been used for marking tumor margins. In this study, we utilize liquid chromatography and tandem mass spectrometry to identify altered lipids in resected brain specimens from FCD patients compared to non-epileptic controls. Based on these results, we propose that a similar approach utilizing unique lipid mass spectra can be used for defining the EZs in FCD. The observed distinct lipid mass spectra of cortical tissues from FCD patients could be used for real-time guidance during surgery as well as for ex vivo examination of resected tissues for diagnostic purposes.
Collapse
|
15
|
Zhang L, Zhang J, Gong Y, Lv L. Systematic and experimental investigations of the anti-colorectal cancer mediated by genistein. Biofactors 2020; 46:974-982. [PMID: 32951326 DOI: 10.1002/biof.1677] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
Recent evidences have suggested that genistein, a beneficial isoflavonoid, exerts marked anti-proliferative action on colorectal cancer (CRC) cells. However, the exact molecular mechanisms behind anti-CRC effect of genistein have not been elucidated. In current report, a systemic pharmacology analysis was used to disclose the anti-CRC mechanism of genistein prior to performing experimentative certification. As shown in network pharmacology findings, a total of 189 common targets and 9 hard-core targets of genistein-anti-CRC were collected and identified. And the detailed anti-CRC functions and pathways mediated by genistein were uncovered. In further certification, human CRC samples resulted in elevated protein and mRNA expressions of myeloid leukemia cell differentiation protein (MCL1), beta amyloid A4 protein (APP), and vascular endothelial growth factor receptor 2 (KDR). In animal experiment, genistein-treated tumor-transplanted nude mice exhibited reduced tumor growth, accompanied with dose-dependent down-regulations of MCL1, APP, and KDR proteins and mRNAs. Taken together, the integrated bioinformatic and experimental findings uncover the anti-CRC mechanisms and targets mediated by genistein. Significantly, parts of hard-core biotargets were experimentally verified before clinical application, including MCL1, APP, and KDR.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Junzhi Zhang
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yizhen Gong
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lv Lv
- Department of Emergency and Trauma Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
16
|
Li R, Guo C, Lin X, Chan TF, Lai KP, Chen J. Integrative omics analyses uncover the mechanism underlying the immunotoxicity of perfluorooctanesulfonate in human lymphocytes. CHEMOSPHERE 2020; 256:127062. [PMID: 32434090 DOI: 10.1016/j.chemosphere.2020.127062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a man-made chemical widely used in industrial products. Due to its high persistence, PFOS has been detected in most animal species including the human population, wild animals, and aquatic organisms. Both cross-sectional studies and laboratory animal studies have shown hepatotoxicity, renal toxicity, and reproductive toxicity caused by PFOS exposure. Recently, a limited number of PFOS studies have raised concerns about its potential immune system effects. However, the molecular mechanism underlying the immunotoxicity of PFOS remains unknown. In this study, we used primary human lymphocytes as a model, together with integrative omics analyses, including the transcriptome and lipidome, and bioinformatics analysis, to resolve the immune toxicity effects of PFOS. Our results demonstrated that PFOS could alter the production of interleukins in human lymphocytes. Additionally, PFOS exposure could dysregulate clusters of genes and lipids that play important roles in immune functions, such as lymphocyte differentiation, inflammatory response, and immune response. The findings of this study offer novel insight into the molecular mechanisms underlying the immunotoxicity of PFOS, and open the potential of using the identified PFOS-responsive genes and lipids as biomarkers for risk assessment.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China
| | - Chao Guo
- Department of Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, 541004, PR China.
| |
Collapse
|
17
|
Li R, Huang X, Liang X, Su M, Lai KP, Chen J. Integrated omics analysis reveals the alteration of gut microbe-metabolites in obese adults. Brief Bioinform 2020; 22:5882185. [PMID: 32770198 DOI: 10.1093/bib/bbaa165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, a risk to health, is a global problem in modern society. The prevalence of obesity was approximately 13% among world's adult population. Recently, several reports suggested that the interference of gut microbiota composition and function is associated with metabolic disorders, including obesity. Gut microbiota produce a board range of metabolites involved in energy and glucose homeostasis, leading to the alteration in host metabolism. However, systematic evaluation of the relationship between gut microbiota, gut metabolite and host metabolite profiles in obese adults is still lacking. In this study, we used comparative metagenomics and metabolomics analysis to determine the gut microbiota and gut-host metabolite profiles in six normal and obese adults of Chinese origin, respectively. Following the functional and pathway analysis, we aimed to understand the possible impact of gut microbiota on the host metabolites via the change in gut metabolites. The result showed that the change in gut microbiota may result in the modulation of gut metabolites contributing to glycolysis, tricarboxylic acid cycle and homolactic fermentation. Furthermore, integrated metabolomic analysis demonstrated a possible positive correlation of dysregulated metabolites in the gut and host, including l-phenylalanine, l-tyrosine, uric acid, kynurenic acid, cholesterol sulfate and glucosamine, which were reported to contribute to metabolic disorders such as obesity and diabetes. The findings of this study provide the possible association between gut microbiota-metabolites and host metabolism in obese adults. The identified metabolite changes could serve as biomarkers for the evaluation of obesity and metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Min Su
- Guilin Medical University
| | | | | |
Collapse
|
18
|
Cheng X, Liu N, Liu H, Huang N, Sun X, Zhang G. Bioinformatic and biochemical findings disclosed anti-hepatic steatosis mechanism of calycosin. Bioorg Chem 2020; 100:103914. [PMID: 32417523 DOI: 10.1016/j.bioorg.2020.103914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
As revealed in previous reports, calycosin is a functional flavonoid characterized with identified pharmacological activities. Most of evidences are used to demonstrate the anti-cancer benefits of calycosin, however, the existing study of anti-fatty liver medicated by calycosin is limitedly reported. Recently, an emerging avenue based on network pharmacology may contribute to excavate the biological targets and molecular mechanisms of calycosin for anti-fatty liver. In confirmatory experiments, the human and animal studies were subjected to verify some of bioinformatic results. Accordingly, bioinformatic data based on network pharmacology suggested that discoverable biotargets of calycosin for anti-fatty liver were aldehyde dehydrogenase (ALDH2), Niemann pick C1 (NPC1), high mobility group protein 1 (HMGB1), bilirubin UDP glucuronosyltransferase 1 (UGT1A1), mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), hydroxytryptamine receptor 2 (HTR2), migration inhibitory factor (MIF), cytochrome P450, family 19A1 (CYP19A1). Furthermore, all significant biological characteristics and mechanisms of to treat fatty liver were revealed in several. In human findings, the blood tests showed changed glucose and lipid contents, elevated insulin resistance and inflammatory stress. And fatty liver sections from patients resulted in negative expressions of ALDH2, NPC1, and positive HMGB1 expression. In a study in vivo, calycosin-treated high fat diet (HFD)-fed mice exhibited reduced liver weights, decreased fasting serum glucose and insulin, liver functional transaminases, blood lipids, metabolic enzymes, and inflammatory cytokines. And the data in gene tests displayed up-regulations of ALDH2, NPC1 mRNAs, and down-regulation of HMGB1 mRNA in calycosin-treated liver samples. Together, the current bioinformatic data demonstrate biological targets, functions and mechanisms of calycosin for anti-fatty liver. Interestingly, these bioinformatic findings can be partially verified with clinical and animal samples.
Collapse
Affiliation(s)
- Xuebing Cheng
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | | | - Na Huang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
19
|
Chen X, Wu Y, Gu J, Liang P, Shen M, Xi J, Qin J. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer. Biofactors 2020; 46:620-628. [PMID: 32078221 DOI: 10.1002/biof.1627] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) refers to a deadly carcinoma following potent invasiveness and metastasis in advanced stage. Unfortunately, existing anti-CRC medicine is insufficient for chemotherapy in addition to adverse effects. Consequently, the candidate natural ingredient for treating CRC needs to be further developed. Our previous experiments report that genistein exerts beneficial effects to inhibit CRC cells via an antiproliferative mechanism. Based on the metastatic characteristics of staging CRC, anti-invasive and antimetastatic pharmacological activities using genistein remain uninvestigated. The scientific purpose of this study was to disclose the antimetastatic mechanism by using human and cell culture/nude mice samples, followed by biochemical tests and immunoassays. In human study, these CRC cases resulted in increased transforming growth factor beta-1 (TGF-β1) levels, long noncoding RNA (lncRNA) TTTY18 expressions, followed with up-regulated Ki-67, serum and glucocorticoid regulated kinase 1 (SGK1), AktSer473 expressions. In a study in vitro, genistein-dosed CRC cells showed suppressed cell viability, promoted cell apoptosis, reduced Ki-67 positive cells, reduced cellular migration, down-regulated expressions of TTTY18, SGK1, AktSer473 , p38 MAPKTyr323 . In a further study in vivo, genistein-dosed tumor-bearing nude mice exhibited visibly reduced body mass, lowered tumorous TGF-β1 and TTTY18 contents. In addition, intracellular numbers of SGK1, AktSer473 , p38 MAPKTyr323 positive cells were reduced dose-dependently. Collectively, these human and experimentative findings reveal that genistein pharmacologically exerts the potential antimetastatic CRC effects, possibly through a molecular mechanism of inhibiting TTTY18/Akt pathway in CRC cells.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Youjun Wu
- Department of Radiation Oncology of the Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Junzhao Gu
- Department of Radiation Oncology of the Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Ping Liang
- Department of Radiation Oncology of the Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Meizhen Shen
- Department of Radiation Oncology of the Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jiaxi Xi
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jian Qin
- Department of Radiation Oncology of the Clinical Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| |
Collapse
|
20
|
Liu F, Pan Q, Wang L, Yi S, Liu P, Huang W. Anticancer targets and mechanisms of calycosin to treat nasopharyngeal carcinoma. Biofactors 2020; 46:675-684. [PMID: 32449282 DOI: 10.1002/biof.1639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Calycosin is a naturally occurring phytoestrogen, and it has the anti-nasopharyngeal carcinoma (NPC) action played by calycosin. However, the elaborate mechanisms of calycosin treating NPC remain to be unrevealed. In current report, a promising tool of network pharmacology method was used to uncover the anti-NPC targets and therapeutic mechanisms played by calycosin. Furthermore, were conducted to validate the bioinformatic findings in human and preclinical studies. As results, the bioinformatic findings showed the core anti-NPC targets played by calycosin included tumor protein p53 (TP53), mitogen-activated protein kinase 14 (MAPK14), caspase 8 (CASP8), mitogen-activated protein kinase 3 (MAPK3), caspase 3 (CASP3), receptor interacting protein kinase 1 (RIPK1), proto-oncogene c (JUN), and estrogen receptor 1 (ESR1). Concurrently, the top 20 biological processes and top 20 pharmacological pathways of calycosin treating NPC were identified and illustrated. In clinical data, NPC samples showed up-regulated expression of MAPK14, reduced TP53, and CASP8 expressions in comparison with those in non-NPC controls. As revealed in experimental data, calycosin-treated NPC cells resulted in reduced cell survival rate, increased cell apoptosis. In apoptosis-specific staining, calycosin-treated NPC cells exhibited elevated apoptotic cell number. Following the immunostaining assays, the results indicated increased TP53-, CASP8-positive cells, and reduced MAPK14-positive cells in calycosin-treated NPC cells and xenograft tumor sections. Altogether, the bioinformatic findings from network pharmacology reveal all core targets and mechanisms of calycosin treating NPC, and some of bioinformatic findings are identified using human and preclinical experiments. Notably, the screened biotargets may be potentially used to clinically treat NPC.
Collapse
Affiliation(s)
- Fangxian Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qijin Pan
- Department of Oncology, Guigang City Peoples' Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, China
| | - Liangliang Wang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shijiang Yi
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Peng Liu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Wenjun Huang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
21
|
Wu Z, Bagarolo GI, Thoröe-Boveleth S, Jankowski J. "Lipidomics": Mass spectrometric and chemometric analyses of lipids. Adv Drug Deliv Rev 2020; 159:294-307. [PMID: 32553782 DOI: 10.1016/j.addr.2020.06.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 01/01/2023]
Abstract
Lipids are ubiquitous in the human organism and play essential roles as components of cell membranes and hormones, for energy storage or as mediators of cell signaling pathways. As crucial mediators of the human metabolism, lipids are also involved in metabolic diseases, cardiovascular and renal diseases, cancer and/or hepatological and neurological disorders. With rapidly growing evidence supporting the impact of lipids on both the genesis and progression of these diseases as well as patient wellbeing, the characterization of the human lipidome has gained high interest and importance in life sciences and clinical diagnostics within the last 15 years. This is mostly due to technically advanced molecular identification and quantification methods, mainly based on mass spectrometry. Mass spectrometry has become one of the most powerful tools for the identification of lipids. New lipidic mediators or biomarkers of diseases can be analysed by state-of-the art mass spectrometry techniques supported by sophisticated bioinformatics and biostatistics. The lipidomic approach has developed dramatically in the realm of life sciences and clinical diagnostics due to the available mass spectrometric methods and in particular due to the adaptation of biostatistical methods in recent years. Therefore, the current knowledge of lipid extraction methods, mass-spectrometric approaches, biostatistical data analysis, including workflows for the interpretation of lipidomic high-throughput data, are reviewed in this manuscript.
Collapse
Affiliation(s)
- Zhuojun Wu
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Giulia Ilaria Bagarolo
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sven Thoröe-Boveleth
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Liang Y, Zhou R, Liang X, Kong X, Yang B. Pharmacological targets and molecular mechanisms of plumbagin to treat colorectal cancer: A systematic pharmacology study. Eur J Pharmacol 2020; 881:173227. [PMID: 32505664 DOI: 10.1016/j.ejphar.2020.173227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/14/2022]
Abstract
Plumbagin (PL) pharmacologically plays the anti-proliferative effects in cancer cells, including effective suppression of colorectal cancer (CRC). However, the exact molecular mechanism of PL to treat CRC remains unclear. Using available SwissTargetPrediction and SuperPred databases, the anti-cancer biotargets of PL were identified, and the CRC-diseased targets were obtained through a DisGeNET database. The biological processes, and signaling pathways of PL to treat CRC were identified and visualized. Further, clinical and cell culture data were used to validate some bioinformatic findings. As shown in bioinformatics findings, 64 predictive biotargets of PL to treat CRC were collected, and 7 most important biotargets of tumor protein p53 (TP53), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), mitogen-activated protein kinase 1 (MAPK1), E1A-associated protein p300 (EP300), poly (ADP-ribose) polymerase 1 (PARP1), nuclear factor kappa p65 protein (RELA), Bcl-2 like protein 1 (BCL2L1) were identified respectively. In addition, top 20 functional biological processes, signaling pathways of PL to treat CRC were screened and prioritized. In human study, CRC samples showed elevated expressions of neoplastic MAPK1, PARP1 mRNAs and reduced EP300 mRNA level. In cell culture study, PL-treated CRC cells resulted in down-regulated MAPK1, PARP1 mRNA expressions and up-regulation of EP300 mRNA level, characterized with suppressed cell proliferation. Taken together, the therapeutic biotargets and molecular mechanisms of PL to treat CRC were screened and identified by using a systematic pharmacology analysis, and some bioinformatic findings were validated in clinical and cell line experiments. Potentially, these hub biotargets may be the biomarkers for CRC detection and treatment.
Collapse
Affiliation(s)
- Yujia Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China
| | - Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China
| | - Xiaolong Kong
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China.
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Guangxi, Nanning, PR China.
| |
Collapse
|
23
|
Tan J, Qin X, Liu B, Mo H, Wu Z, Yuan Z. Integrative findings indicate anti-tumor biotargets and molecular mechanisms of calycosin against osteosarcoma. Biomed Pharmacother 2020; 126:110096. [PMID: 32179199 DOI: 10.1016/j.biopha.2020.110096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
Calycosin is reportedly evidenced with pharmacologically treating bone cells. However, the comprehensive anti-osteosarcoma (OS) mechanisms of calycosin have not been uncovered. By using a systemic method of network pharmacology, the present study aimed to reveal potential anti-OS biotargets and molecular mechanisms played by calycosin. Moreover, human and animal experiments were conducted to verify the core biotargets of calycosin against OS. As results, all primary and core biotargets, biological processes, molecular pathways of calycosin against OS were revealed. Additionally, top 20 biological processes and pathways of calycosin against OS were identified. In human study, the OS sections resulted in reduced expressions of tumor protein p53 (TP53), Caspase-3 (CASP3), and elevated X-linked inhibitor of apoptosis protein (XIAP) expression in comparison with OS-free controls. As shown in cell culture study, calycosin-treated OS cells showed reduced cell proliferation, and promoted cell apoptosis. In TUNEL stains, calycosin resulted in elevated apoptotic cells. As showed in immunostaining, calycosin-treated OS cells exhibited intracellular up-regulation of TP53, CASP3 expressions, and decreased XIAP expressions. Taken together, the biological informational findings manifest the candidate and core biotargets, molecular functions and pathways of calycosin against OS. Attractively, these core biotargets may be used for effectively detecting and treating human OS.
Collapse
Affiliation(s)
- Jiachang Tan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Xiong Qin
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Bin Liu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Hao Mo
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Zhenjie Wu
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China.
| | - Zhenchao Yuan
- Department of Bone and Soft Tissue Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China.
| |
Collapse
|
24
|
Clinical characteristics of colorectal cancer patients and anti-neoplasm activity of genistein. Biomed Pharmacother 2020; 124:109835. [PMID: 31958764 DOI: 10.1016/j.biopha.2020.109835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Accepted: 01/06/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Epidemiologically, the disease incidence of colorectal cancer (CRC) ranks the third among all malignant tumors, and its mortality is the second following lung cancer. If unmanaged, CRC will develop fatal invasiveness and metastasis. However, existing chemotherapy is limitedly effective to treat metastatic CRC. Genistein, a functional phytoestrogen, is found with potent pharmacological activity against cancer cells. Therefore, this study was designed to characterize the clinical signatures of human CRC and to conduct anti-CRC experiments using genistein. METHODS Briefly, the plasma, tumor, non-tumor samples of CRC patients were harvested for biological experiments, followed by analysis of clinical data. A pharmacological study in vitro of genistein for treating CRC cells was conducted accordingly. RESULTS In diagnostic data, molecular tumor biomarkers in CRC patients were detected in plasma samples, consistent with pathological and imaging diagnoses of CRC. Notably, carcinomatous expressions of miR-95, serum glucocorticoid kinase 1 (SGK1), B-cell lymphoma-2 (Bcl-2), extracellular regulated protein kinase 1 (Erk1) in human CRC were notably elevated when compared to those in non-tumor controls. In pharmacological experiments using cell culture model, genistein-treated CRC cells resulted in reduced cellular viability, elevated lactate dehydrogenase (LDH) content, increased apoptotic cells and TdT mediated dUTP nick end labeling (TUNEL)-positive cells following a dose-dependent manner. Interestingly, down-regulated expressions of endogenous miR-95, SGK1, Bcl-2, Erk1 were observed after genistein treatments in a dose-dependent way. CONCLUSIONS Collectively, the current clinical data indicate pathological markers of miR-95, SGK1, Erk1 in human CRC cases, and further experimental findings reveal that anti-CRC pharmacological mechanism using genistein was implicated in suppression of cellular miR-95, SGK1, Erk1 expressions. Together, genistein may be a promising bioactive compound for treating CRC.
Collapse
|
25
|
Li R, Song Y, Ji Z, Li L, Zhou L. Pharmacological biotargets and the molecular mechanisms of oxyresveratrol treating colorectal cancer: Network and experimental analyses. Biofactors 2020; 46:158-167. [PMID: 31647596 DOI: 10.1002/biof.1583] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
This article was designed by using a network pharmacological approach to reveal the therapeutic targets and molecular mechanisms of oxyresveratrol (Oxyres) treating colorectal cancer (CRC). Furthermore, several bioinformatic findings would be validated. Pathogenetic targets of CRC and pharmacological targets of Oxyres were identified by web-available databases. All identifiable biotargets were collected for functional enrichment analyses to reveal the biological processes and signaling pathways of Oxyres treating CRC. In addition, human CRC, non-CRC samples, and cell line study were used to validate the predictive biotargets of Oxyres treating CRC. In network pharmacological analyses, top therapeutic targets of mitogen-activated protein kinase 1 (MAPK1), insulin growth factor 1 (IGF1), hematopoietic prostaglandin D synthase (HPGDS), GTPase HRas (HRAS), and cytochrome P450 2C9 (CYP2C9) in Oxyres treating CRC were identified, respectively. As shown in functional analysis, biological processes of Oxyres treating CRC were mainly involved in modulating cell communication, signal transduction, apoptosis, cell motility, cell proliferation, and lipid metabolism. Furthermore, top 10 signaling pathways of Oxyres treating CRC were identified, respectively. In human study, CRC samples resulted in increased neoplastic expressions of Ki-67, MAPK1, IGF1, characterized with clinical imaging inspection, pathological diagnosis, and altered blood lipids in these CRC cases. In cell culture study, Oxyres-dosed CRC cells exhibited reduced cell proliferation, promoted cellular apoptosis. Furthermore, significantly decreased proteins of intracellular Ki-67, MAPK1, and IGF1 were observed in Oxyres-dosed cells when compared to those in controls. Collectively, anti-CRC pharmacological activity of Oxyres may be mainly associated with induction of apoptosis and suppression of cell proliferation as revealed in bioinformatic findings. In addition, all core biotargets and molecular mechanisms of Oxyres treating CRC are unveiled respectively. Interestingly, the identifiable MAPK1, IGF1 biotargets may be potential molecules for treating and screening CRC.
Collapse
Affiliation(s)
- Rong Li
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingqi Song
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhenni Ji
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Li Li
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Li R, Qin X, Liang X, Liu M, Zhang X. Lipidomic characteristics and clinical findings of epileptic patients treated with valproic acid. J Cell Mol Med 2019; 23:6017-6023. [PMID: 31162795 PMCID: PMC6714506 DOI: 10.1111/jcmm.14464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Our early study has found valproic acid (VPA)-induced lipid dysmetabolism in animal model, however, the details of lipid profiling of VPA-treated epileptic patients remain unknown. Therefore, in this study, the blood samples of VPA-treated epileptic patients and VPA-free controls were collected for lipidomic and biochemical assays. As results, clinical data showed the changes of some blood lipid molecules in VPA-treated epileptic patients. In lipidomic assays, all 3797 annotated positive ions were identified prior to the data validation. In addition, the number of differentially expressed lipids were identified. And the 133 lipid molecules in VPA-treated cases were significantly up-regulated when compared to those in controls, while other 250 lipid metabolites were down-regulated. Further, these lipid metabolites were mainly constituted with glycerolipids, glycerophopholipids, fatty acyls, sterol lipids. In addition, the most significant elevations of metabolite molecules of triglyceride, sphingomyelin, phosphorylcholine, ceramides, phenolic phthiocerol, as well as topped reductions of phosphoethanolamines, diradylglycerols, 1α,25-dihydroxy-24-oxo-22-oxavitamin D3, 2-deoxy-20-hydroxy-5alpha-ecdysone 3-acetate, dolichyl-4 phosphate were identified respectively. Taken together, these clinical findings demonstrate that negative impacts of exposure to VPA on expression of lipid mediators, progressively disrupting the functions of lipid molecules. Interestingly, these differentially expressed metabolites may be potential biomarkers for screening VPA-induced dyslipidemia.
Collapse
Affiliation(s)
- Rong Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Xingyue Qin
- Department of Neurology (Area Two), Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, PR China
| | - Xiaoliu Liang
- College of Pharmacy, Guangxi Medical University, Nanning, PR China
| | - Meizhen Liu
- College of Pharmacy, Guangxi Medical University, Nanning, PR China
| | - Xiaoxi Zhang
- Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| |
Collapse
|