1
|
Zeng C, Gao Y, Lan B, Wang J, Ma F. Metabolic Reprogramming in Cancer Therapy-Related Cardiovascular Toxicity: Mechanisms and Intervention Strategies. Semin Cancer Biol 2025:S1044-579X(25)00071-9. [PMID: 40349808 DOI: 10.1016/j.semcancer.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/20/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Cancer therapy-related cardiovascular toxicity (CTR-CVT) poses a major challenge in managing cancer patients, contributing significantly to morbidity and mortality among survivors. CTR-CVT includes various cardiovascular issues, such as cardiomyopathy, myocardial ischemia, arrhythmias, and vascular dysfunction, which significantly impact patient prognosis and quality of life. Metabolic reprogramming, characterized by disruptions in glucose, lipid, and amino acid metabolism, represents a shared pathophysiological feature of cancer and cardiovascular diseases; however, the precise mechanisms underlying CTR-CVT remain inadequately understood. In recent years, strategies targeting metabolic pathways have shown promise in reducing cardiovascular risks while optimizing cancer treatment efficacy. This review systematically summarizes metabolic reprogramming characteristics in both cancer and cardiovascular diseases, analyzes how anticancer therapies induce cardiovascular toxicity through metabolic alterations, and explores emerging therapeutic strategies targeting metabolic dysregulation. By integrating current research advancements, this review aims to enhance the understanding of CTR-CVT and provide groundwork for the development of safer and more effective cancer approaches.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310000, China.
| | - Bo Lan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Wan J, Tian P, Liu X, Zhang H. Analysis of the Changes in Physicochemical Properties and Microbial Communities During Fermentation of Sweet Fermented Rice. Foods 2025; 14:1121. [PMID: 40238242 PMCID: PMC11988636 DOI: 10.3390/foods14071121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
As a traditional rice wine, sweet fermented rice (SFR) is widely loved because of its unique flavor and high nutritional value. However, the physicochemical properties, microbial community composition, and metabolic pathway changes during the fermentation process of sweet wine have not been evaluated, and these changes can lead to unstable SFR quality. In this study, we used high-throughput sequencing technology to analyze and elucidate the dynamic changes in the microbial community, metabolic pathways, and carbohydrate enzyme functions in traditional SFR fermentation broth. The results revealed that Rhizopus abundance = 160,943.659 and Wickerhamomyces abundance = 241,660.954 were the predominant fungal genera in the fermentation process from the beginning (A0) to the end (A43) of SFR fermentation. The results of the diversity analysis revealed that the structure and composition of the microbial communities first increased but then decreased. Metabolic pathway analysis showed that energy production and conversion, carbohydrate transport, and amino acid transport were the most active metabolic pathways in fermentation. Moreover, the three primary functions of glycosyltransferases (GTs), glycoside hydrolases (GHs), and carbohydrate-binding modules (CBMs) in carbohydrate enzyme analysis were involved in the whole fermentation process. This study only provides some insight into the dynamic changes in the microbial population of SFR single samples prepared under fixed conditions. It provides a reference for optimizing the physicochemical properties of SFR fermentation broth, controlling the microbial community structure, optimizing fermentation conditions, and improving product quality.
Collapse
Affiliation(s)
| | | | | | - Hanyao Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; (J.W.); (P.T.); (X.L.)
| |
Collapse
|
3
|
Wan B, Tian T, Xiong Y, Wang S, Luo X, Liao W, Liu P, Miao L, Gao R. Isolation and Evaluation of Rhizopus arrhizus Strains from Traditional Rice Wine Starters ( Jiuqu): Enzyme Activities, Antioxidant Capacity, and Flavour Compounds. Foods 2025; 14:312. [PMID: 39856978 PMCID: PMC11765298 DOI: 10.3390/foods14020312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Seventy-eight autochthonous strains of Rhizopus arrhizus were isolated from rice wine starter samples across twenty-nine regions in China to evaluate their potential in traditional rice wine fermentation. Strains were assessed for enzyme activity, antioxidant properties, amino acid production, and volatile flavour compounds. Significant variation in enzyme activities was observed, with acidic protease activity ranging from 280 to 1023 U/g, amylase from 557 to 1681 U/g, and esterase from 370 to 2949 U/g. Strains W17 and W42 exhibited the highest enzyme activities and antioxidant capacities, with a total phenolic content of 828 mg/L, total flavonoids of 215 μg/L, and an ABTS scavenging rate of 96.3%. They also produced high levels of glutamic acid (up to 3083 mg/L), enhancing the flavour profile. Histamine levels were low, ranging from 8 to 205 μg/L, ensuring product safety. Analysis of volatile compounds identified 80 substances, including 16 key aroma-active compounds, contributing to a complex flavour profile. These results provide a basis for selecting R. arrhizus strains to optimise rice wine fermentation, addressing market demand for diverse and functional products.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lihong Miao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (B.W.); (T.T.); (Y.X.); (S.W.); (X.L.); (W.L.); (P.L.)
| | - Ruijie Gao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China; (B.W.); (T.T.); (Y.X.); (S.W.); (X.L.); (W.L.); (P.L.)
| |
Collapse
|
4
|
Lian J, Lin H, Zhong Z, Song Y, Shao X, Zhou J, Xu L, Sun Z, Yang Y, Chi J, Wang P, Meng L. Indole-3-Lactic Acid Inhibits Doxorubicin-Induced Ferroptosis Through Activating Aryl Hydrocarbon Receptor/Nrf2 Signalling Pathway. J Cell Mol Med 2025; 29:e70358. [PMID: 39854052 PMCID: PMC11756996 DOI: 10.1111/jcmm.70358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
The clinical application of doxorubicin (DOX) is limited due to its cardiotoxicity, which is primarily attributed to its interaction with iron in mitochondria, leading to lipid peroxidation and myocardial ferroptosis. This study aimed to investigate the role of the gut microbiota-derived metabolite, indole-3-lactic acid (ILA), in mitigating DOX-induced cardiotoxicity (DIC). Cardiac function, pathological changes, and myocardial ferroptosis were assessed in vivo. The cardioprotective effects and mechanisms of ILA were explored using multi-omics approaches, including single-nucleus RNA sequencing (snRNA-seq) and bulk RNA-seq, and were further validated in Nrf2 knockout mice. The findings revealed that DOX treatment disrupted gut microbiota, significantly reducing the levels of the tryptophan metabolite ILA. In DIC models, ILA supplementation markedly improved cardiac function, reduced collagen deposition, and mitigated cardiac atrophy. The bulk and snRNA-seq analyses indicated that myocardial ferroptosis played a crucial role in the cardioprotective effects of ILA. Experimental data demonstrated that ILA decreased DOX-induced ferroptosis in both DIC mice and DOX-treated H9C2 cells, evidenced by restoration of GPX4 and SLC7A11 levels and reduction of ACSL4. Mechanistically, ILA functions as a ligand for the aryl hydrocarbon receptor (AhR), leading to the upregulation of Nrf2 expression. The protective effects of ILA against ferroptosis were abolished by silencing AhR. Moreover, the beneficial effects of ILA on DIC were eliminated in Nrf2-deficient mice. In conclusion, ILA exerts therapeutic effects against DIC by inhibiting ferroptosis through activation of the AhR/Nrf2 signalling pathway. Identifying the cardioprotective role of the microbial metabolite ILA could offer viable therapeutic strategies for DIC.
Collapse
Affiliation(s)
- Jiangfang Lian
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Hui Lin
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Zuoquan Zhong
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Yongfei Song
- Department of CardiologyThe Affiliated Lihuili Hospital of Ningbo UniversityZhejiangChina
| | - Xian Shao
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Jiedong Zhou
- College of MedicineShaoxing UniversityShaoxingChina
| | - Lili Xu
- Central Laboratory of MedicineShaoxing People's HospitalShaoxingChina
| | - Zhenzhu Sun
- Department of Cardiology, Enze Medical Research CenterTaizhou Hospital Affiliated to Wenzhou Medical UniversityLinhaiChina
| | - Yongyi Yang
- Department of Gynaecology, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital of Zhejiang ProvinceZhuji Affiliated Hospital of Wenzhou Medical UniversityZhujiChina
| | - Ping Wang
- Department of CardiologyShaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of MedicineShaoxingChina
| | - Liping Meng
- Department of CardiologyShaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of MedicineShaoxingChina
| |
Collapse
|
5
|
Mohamad EA, Ahmed SM, Masoud MA, Mohamed FA, Mohammed HS. Cardioprotective Potential of Moringa Oleifera Leaf Extract Loaded Niosomes Nanoparticles - Against Doxorubicin Toxicity In Rats. Curr Pharm Biotechnol 2025; 26:289-301. [PMID: 38918977 DOI: 10.2174/0113892010303097240605105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Doxorubicin (DOX) is one of the most potent anticancer drugs that has ubiquitous usage in oncology; however, its marked adverse effects, such as cardiotoxicity, are still a major clinical issue. Plant extracts have shown cardioprotective effects and reduced the risk of cardiovascular diseases. METHOD The current study is intended to explore the cardioprotective effect of ethanolic Moringa Oleifera extracts (MOE) leaves loaded into niosomes (MOE-NIO) against DOXinduced cardiotoxicity in rats. MOE niosomes nanoparticles (NIO-NPs) were prepared and characterized by TEM. Seventy male Wistar rats were randomly divided into seven groups: control, NIO, DOX, DOX+MOE, DOX+MOE-NIO, MOE+DOX, and MOE-NIO+DOX. DOX (4 mg/kg, IP) was injected once per week for 4 weeks with daily administration of MOE or MOENIO (250 mg/kg, PO) for 4 weeks; in the sixth and seventh groups, MOE or MOE-NIO (250 mg/kg, PO) was administered one week before DOX injection. Various parameters were assessed in serum and cardiac tissue. Pre and co-treatment with MOE-NIO have mitigated the cardiotoxicity induced by DOX as indicated by serum aspartate aminotransferase (AST), creatine kinase - MB(CK-MB) and lactate dehydrogenase (LDH), cardiac Troponin 1(cTn1) and lipid profile. MOE-NIO also alleviated lipid peroxidation (MDA), nitrosative status (NO), and inflammatory markers levels; myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-α) obtained in DOX-treated animals. Additionally, ameliorated effects have been recorded in glutathione content and superoxide dismutase activity. MOE-NIO effectively neutralized the DOXupregulated nuclear factor kappa B (NF-kB) and p38 mitogen-activated protein kinases (p38 MAPK), and DOX-downregulated nuclear factor-erythroid 2-related factor 2 (Nrf2) expressions in the heart. RESULTS It is concluded that pre and co-treatment with MOE-NIO could protect the heart against DOX-induced cardiotoxicity by suppressing numerous pathways including oxidative stress, inflammation, and apoptosis and by the elevation of tissue antioxidant status. CONCLUSION Thus, it may be reasonable to suggest that pre and co-treatment with MOE-NIO can provide a potential cardioprotective effect when doxorubicin is used in the management of carcinoma.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj 11942, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Samya Mahmoud Ahmed
- Biochemistry Departement, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Marwa A Masoud
- Pharmacology Department, National Organization for Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Fatma Adel Mohamed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Gao Y, Ling Y, Wu H, Zhang P, Zhou J, Gu H, Yang J, Zhou Y, Zhong Z, Chi J. Swimming training attenuates doxorubicin induced cardiomyopathy by targeting the mir-17-3p/KEAP1/NRF2 axis. Biochem Biophys Res Commun 2024; 739:150568. [PMID: 39178797 DOI: 10.1016/j.bbrc.2024.150568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/24/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Doxorubicin (DOX), as a first-line anticancer drug, is widely used in the treatment of various cancers. However, its clinical application is restricted due to its severe cardiac toxicity. Previous studies have indicated exercise training can alleviate the DOX-induced cardiotoxicity (DIC), but the underlying mechanism remains unclear. Our research has discovered, post-exercise, an elevated expression level of mir-17-3p, but in DIC its level decreases. Therefore, we further studied the effect of exercise mir-17-3p axis on DIC. In vivo, we simulated DIC mouse model, followed by an intervention using swimming and adenovirus to inhibit mir-17-3p. We found that inhibition of mir-17-3p can weaken the protection of exercise against DIC, presenting as weakened heart function. Besides, the levels of Malondialdehyde and Fe2+ in the cardiac tissue increased, along with diminished glutathione peroxidase 4 and Solute Carrier Family 7 Member 11 levels, and a decline in the concentration of glutathione, causing an increase in ferroptosis. Moreover, in vitro, we used dual-luciferase assay to confirm that Kelch Like ECH Associated Protein 1 (KEAP1) can be a target gene of mir-17-3p. We used Keap1/NFE2 Like BZIP Transcription Factor 2 (NRF2) inhibitor brusatol and Stimulator of Interferon Response CGAMP Interactor 1 (STING) agonist SR-717 to verify the mir-17-3p/KEAP1 axis can affect the Cyclic GMP-AMP Synthase (CGAS)/STING pathway, leading to further ferroptosis in DIC. This manifested as a reduction in ferroptosis. In summary, our research suggests swimming training enhances the levels of mir-17-3p, thereby activating the KEAP1/NRF2 pathway, and weakening the CGAS/STING pathway, improving ferroptosis in DIC.
Collapse
Affiliation(s)
- Yefei Gao
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Ling
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haowei Wu
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Peipei Zhang
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Jiedong Zhou
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haodi Gu
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Juntao Yang
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yan Zhou
- Department of Cardiology, The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Zuoquan Zhong
- The First Affiliated Hospital of ShaoXing University, Shaoxing University, Shaoxing, 312000, Zhejiang, China.
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Zhejiang, China.
| |
Collapse
|
7
|
He Z, Zhou Y, Li S, Li W, Zhang Y, Guo C, Guo Z, Wei B, Bi Y. Bioactive Peptides and Evaluation of Cardiac Cytoprotective Effects of Red Millet Yellow Wine as Functional Food. Foods 2024; 13:4111. [PMID: 39767056 PMCID: PMC11675123 DOI: 10.3390/foods13244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Red millet yellow wine, a functional beverage fermented from grain, has physiological functions including relieving cardiovascular diseases. However, the active components and mechanism of red millet yellow wine largely remain to be elucidated. In this study, bioactive peptides in red millet yellow wine and the cardiac cytoprotective effects were first investigated. A single-factor test and response surface method were used to optimize the solvent precipitation method to purify bioactive peptides. The final peptide content was up to 72.23%. Analysis of liquid chromatography-tandem mass spectrometry indicated a high antioxidative potential of the identified peptides. Multiple activity assays in vitro revealed that red millet yellow wine (1 mg/mL), particularly peptides (0.1 mg/mL), could protect H9c2 cells from H2O2-induced oxidative damage, thereby improving cell viability. At the mechanistic level, the antioxidant effect of bioactive peptides was achieved through strengthening antioxidative stress capacity and attributed to the activation of the Sirt1/Nrf2 pathway, indicating that peptides may be the main active components responsible for the cardiac cytoprotective effects of red millet yellow wine. These results are expected to provide a reference for further exploration of the health benefits of red millet yellow wine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Wei
- School of Pharmaceutic Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.H.); (Y.Z.); (S.L.)
| | - Yuefeng Bi
- School of Pharmaceutic Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.H.); (Y.Z.); (S.L.)
| |
Collapse
|
8
|
Mohammadpour YH, Khodayar MJ, Khorsandi L, Kalantar H. Betaine alleviates doxorubicin-related cardiotoxicity via suppressing oxidative stress and inflammation via the NLRP3/SIRT1 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9981-9990. [PMID: 38953971 DOI: 10.1007/s00210-024-03261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1β, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1β expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Yasaman Hamidavi Mohammadpour
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Lin X, Liu W, Hu X, Liu Z, Wang F, Wang J. The role of polyphenols in modulating mitophagy: Implications for therapeutic interventions. Pharmacol Res 2024; 207:107324. [PMID: 39059613 DOI: 10.1016/j.phrs.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Collapse
Affiliation(s)
- Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenkai Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Fang Wang
- Chengdu First People's Hospital, Sichuan, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
10
|
Yang JZ, Zhang KK, Hsu C, Miao L, Chen LJ, Liu JL, Li JH, Li XW, Zeng JH, Chen L, Li JH, Xie XL, Wang Q. Polystyrene nanoplastics induce cardiotoxicity by upregulating HIPK2 and activating the P53 and TGF-β1/Smad3 pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134823. [PMID: 38852254 DOI: 10.1016/j.jhazmat.2024.134823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Nanoplastics (NPs) pollution has become a global environmental problem, raising numerous health concerns. However, the cardiotoxicity of NPs exposure and the underlying mechanisms have been understudied to date. To address this issue, we comprehensively evaluated the cardiotoxicity of polystyrene nanoplastics (PS-NPs) in both healthy and pathological states. Briefly, mice were orally exposed to four different concentrations (0 mg/day, 0.1 mg/day, 0.5 mg/day, and 2.5 mg/day) of 100-nm PS-NPs for 6 weeks to assess their cardiotoxicity in a healthy state. Considering that individuals with underlying health conditions are more vulnerable to the adverse effects of pollution, we further investigated the cardiotoxic effects of PS-NPs on pathological states induced by isoprenaline. Results showed that PS-NPs induced cardiomyocyte apoptosis, cardiac fibrosis, and myocardial dysfunction in healthy mice and exacerbated cardiac remodeling in pathological states. RNA sequencing revealed that PS-NPs significantly upregulated homeodomain interacting protein kinase 2 (HIPK2) in the heart and activated the P53 and TGF-beta signaling pathways. Pharmacological inhibition of HIPK2 reduced P53 phosphorylation and inhibited the activation of the TGF-β1/Smad3 pathway, which in turn decreased PS-NPs-induced cardiotoxicity. This study elucidated the potential mechanisms underlying PS-NPs-induced cardiotoxicity and underscored the importance of evaluating nanoplastics safety, particularly for individuals with pre-existing heart conditions.
Collapse
Affiliation(s)
- Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Kai-Kai Zhang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lin Miao
- School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ji-Hui Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
11
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effect of a New Fermentation Strain Combination on the Fermentation Process and Quality of Highland Barley Yellow Wine. Foods 2024; 13:2193. [PMID: 39063277 PMCID: PMC11276116 DOI: 10.3390/foods13142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
12
|
Tian W, Zhang P, Yang L, Song P, Zhao J, Wang H, Zhao Y, Cao L. Astragaloside IV Alleviates Doxorubicin-Induced Cardiotoxicity by Inhibiting Cardiomyocyte Pyroptosis through the SIRT1/NLRP3 Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:453-469. [PMID: 38490806 DOI: 10.1142/s0192415x24500198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug used to treat a wide spectrum of tumors. However, its clinical application is limited due to cardiotoxic side effects. Astragaloside IV (AS IV), one of the major compounds present in aqueous extracts of Astragalus membranaceus, possesses potent cardiovascular protective properties, but the underlying molecular mechanisms are unclear. Thus, the aim of this study was to investigate the effect of AS IV on DOX-induced cardiotoxicity (DIC). Our findings revealed that DOX induced pyroptosis through the caspase-1/gasdermin D (GSDMD) and caspase-3/gasdermin E (GSDME) pathways. AS IV treatment significantly improved the cardiac function and alleviated myocardial injury in DOX-exposed mice by regulating intestinal flora and inhibiting pyroptosis; markedly suppressed the levels of cleaved caspase-1, N-GSDMD, cleaved caspase-3, and N-GSDME; and reversed DOX-induced downregulation of silent information regulator 1 (SIRT1) and activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in mice. The SIRT1 inhibitor EX527 significantly blocked the protective effects of AS IV. Collectively, our results suggest that AS IV protects against DIC by inhibiting pyroptosis through the SIRT1/NLRP3 pathway.
Collapse
Affiliation(s)
- Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Ping Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin 300100, P. R. China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated, Organ Injury and ITCWM Repair, Tianjin Nankai Hospital, Tianjin 300100, P. R. China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Hongzhi Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin 300122, P. R. China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, P. R. China
| |
Collapse
|
13
|
Hu S, Zhou J, Hao J, Zhong Z, Wu H, Zhang P, Yang J, Guo H, Chi J. Emodin ameliorates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis through the remodeling of gut microbiota composition. Am J Physiol Cell Physiol 2024; 326:C161-C176. [PMID: 38009195 DOI: 10.1152/ajpcell.00477.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
The relationship between gut microbiota and doxorubicin-induced cardiotoxicity (DIC) is becoming increasingly clear. Emodin (EMO), a naturally occurring anthraquinone, exerts cardioprotective effects and plays a protective role by regulating gut microbiota composition. Therefore, the protective effect of EMO against DIC injury and its underlying mechanisms are worth investigating. In this study, we analyzed the differences in the gut microbiota in recipient mice transplanted with different flora using 16S-rDNA sequencing, analyzed the differences in serum metabolites among groups of mice using a nontargeted gas chromatography-mass spectrometry coupling system, and assessed cardiac function based on cardiac morphological staining, cardiac injury markers, and ferroptosis indicator assays. We found EMO ameliorated DIC and ferroptosis, as evidenced by decreased myocardial fibrosis, cardiomyocyte hypertrophy, and myocardial disorganization; improved ferroptosis indicators; and the maintenance of normal mitochondrial morphology. The protective effect of EMO was eliminated by the scavenging effect of antibiotics on the gut microbiota. Through fecal microbiota transplantation (FMT), we found that EMO restored the gut microbiota disrupted by doxorubicin (DOX) to near-normal levels. This was evidenced by an increased proportion of Bacteroidota and a decreased proportion of Verrucomicrobiota. FMT resulted in changes in the composition of serum metabolites. Mice transplanted with EMO-improved gut microbiota showed better cardiac function and ferroptosis indices; however, these beneficial effects were not observed in Nrf2 (Nfe2l2)-/- mice. Overall, EMO exerted a protective effect against DIC by attenuating ferroptosis, and the above effects occurred by remodeling the composition of gut microbiota perturbed by DOX and required Nrf2 mediation.NEW & NOTEWORTHY This study demonstrated for the first time the protective effect of emodin against DIC and verified by FMT that its cardioprotective effect was achieved by remodeling gut microbiota composition, resulting in attenuation of ferroptosis. Furthermore, we demonstrated that these effects were mediated by the redox-related gene Nrf2.
Collapse
Affiliation(s)
- Songqing Hu
- Department of Cardiology, Zhuji People's Hospital, Shaoxing, People's Republic of China
- School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiedong Zhou
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Jinjin Hao
- School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Haowei Wu
- School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Peipei Zhang
- Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Juntao Yang
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Hangyuan Guo
- School of Medicine, Shaoxing University, Shaoxing, People's Republic of China
| | - Jufang Chi
- Department of Cardiology, Zhuji People's Hospital, Shaoxing, People's Republic of China
| |
Collapse
|
14
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
15
|
Monteiro-Alfredo T, dos Santos JM, Antunes KÁ, Cunha J, da Silva Baldivia D, Pires AS, Marques I, Abrantes AM, Botelho MF, Monteiro L, Gonçalves AC, Botelho WH, Paula de Araújo Boleti A, Cabral C, Oliveira PJ, Lucas dos Santos E, Matafome P, de Picoli Souza K. Acrocomia aculeata associated with doxorubicin: cardioprotection and anticancer activity. Front Pharmacol 2023; 14:1223933. [PMID: 37654604 PMCID: PMC10466431 DOI: 10.3389/fphar.2023.1223933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used in the clinic, whose side effects include cardiotoxicity, associated with decreased antioxidant defenses and increased oxidative stress. The association of Dox with natural antioxidants can extend its use if not interfering with its pharmacological potential. In this study, we aimed to understand the effects and mechanisms of the aqueous extract of Acrocomia aculeata leaves (EA-Aa) in cancer cells and the co-treatment with Dox, in in vitro and in vivo models. It was found that EA-Aa showed a relevant decrease in the viability of cancer cells (K562 and MCF-7) and increased apoptosis and death. The Dox cytotoxic effect in co-treatment with EA-Aa was increased in cancer cells. The therapeutic association also promoted a change in cell death, leading to a higher rate of apoptosis compared to the Dox group, which induced necrosis. In addition, in non-cancer cells, EA-Aa enhanced red blood cell (RBC) redox state with lower hemolysis and malondialdehyde (MDA) content and had no in vitro nor in vivo toxicity. Furthermore, EA-Aa showed antioxidant protection against Dox-induced cytotoxicity in H9c2 cells (cardiomyoblast), partially mediated by the NRF2 pathway. In vivo, EA-Aa treatment showed a relevant decrease in MDA levels in the heart, kidney, and brain, evaluated in C57Bl/6 mice induced to cardiotoxicity by Dox. Together, our results proved the effectiveness of EA-Aa in potentiating Dox anticancer effects, with antioxidant and cardioprotective activity, suggesting EA-Aa as a potential Dox pharmacological adjuvant.
Collapse
Affiliation(s)
- Tamaeh Monteiro-Alfredo
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
| | - Jéssica Maurino dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Kátia Ávila Antunes
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Janielle Cunha
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Debora da Silva Baldivia
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Salomé Pires
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Inês Marques
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Margarida Abrantes
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Maria Filomena Botelho
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Lúcia Monteiro
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, University Coimbra, Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University Coimbra, Coimbra, Portugal
| | - Wellington Henrique Botelho
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Ana Paula de Araújo Boleti
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Célia Cabral
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Paulo J. Oliveira
- CNC—Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| | - Paulo Matafome
- Faculty of Medicine, Institute of Physiology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), University of Coimbra, Coimbra, Portugal
- Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospection Applied to Metabolism and Cancer (GEBBAM), Federal University of Grande Dourados, Dourados, Brazil
| |
Collapse
|
16
|
Zhao X, Tian Z, Sun M, Dong D. Nrf2: a dark horse in doxorubicin-induced cardiotoxicity. Cell Death Discov 2023; 9:261. [PMID: 37495572 PMCID: PMC10372151 DOI: 10.1038/s41420-023-01565-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Being a broad-spectrum anticancer drug, doxorubicin is indispensable for clinical treatment. Unexpectedly, its cardiotoxic side effects have proven to be a formidable obstacle. Numerous studies are currently devoted to elucidating the pathological mechanisms underlying doxorubicin-induced cardiotoxicity. Nrf2 has always played a crucial role in oxidative stress, but numerous studies have demonstrated that it also plays a vital part in pathological mechanisms like cell death and inflammation. Numerous studies on the pathological mechanisms associated with doxorubicin-induced cardiotoxicity demonstrate this. Several clinical drugs, natural and synthetic compounds, as well as small molecule RNAs have been demonstrated to prevent doxorubicin-induced cardiotoxicity by activating Nrf2. Consequently, this study emphasizes the introduction of Nrf2, discusses the role of Nrf2 in doxorubicin-induced cardiotoxicity, and concludes with a summary of the therapeutic modalities targeting Nrf2 to ameliorate doxorubicin-induced cardiotoxicity, highlighting the potential value of Nrf2 in doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Zheng Tian
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, 110102, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
17
|
Xia D, Tan X, Wang L, Li Z, Hou A, Zhu Y, Lai L, Wang Y. GC-MS Coupled with Rate-All-That-Apply (RATA) to Analyse the Volatile Flavor Substances of Yellow Wine during Fermentation. Foods 2023; 12:foods12101992. [PMID: 37238809 DOI: 10.3390/foods12101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/30/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Yellow glutinous rice wine is a traditional Chinese beverage created by soaking, boiling, and fermenting glutinous rice. The majority of current studies on the flavor of yellow glutinous rice wine are based on instrumental analysis, with sensory analysis being overlooked. In this study, 36 volatile chemicals in the fermentation process of yellow wine were annotated by GC-MS and then an OPLS-DA model was built to screen out 13 distinctive substances (VIP > 1, p < 0.01). The relative odor activity value (ROAV) was calculated using the threshold values of these chemicals and 10 substances, including alcohols, esters, and aldehydes, were found as key contributors to the overall flavor of yellow wine. Following that, consumers quantified the sensory descriptors of yellow wine using rate-all-that-apply (RATA), and correspondence analysis revealed three groups of characteristic flavors and odors. Alcohols and esters were found to be key producers of flowery and fruity scents in yellow wine, according to correlation analysis. We discovered two alcohols that are rarely found in yellow wine: [R,R]-2,3-butanediol and 1-phenylethanol. The former was found to be favorably connected with wine scent and pungent odor, and its specific effect on flavor should be researched further.
Collapse
Affiliation(s)
- Di Xia
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Xu Tan
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Li Wang
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Aixiang Hou
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| | - Yan Zhu
- Tianjin of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqi Road, Tianjin 300308, China
| | - Ling Lai
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, 1 Nongda Road, Changsha 410128, China
| |
Collapse
|
18
|
Sun J, Zhou J, Sun S, Lin H, Zhang H, Zhong Z, Chi J, Guo H. Protective effect of urotensin II receptor antagonist urantide and exercise training on doxorubicin-induced cardiotoxicity. Sci Rep 2023; 13:1279. [PMID: 36690700 PMCID: PMC9870887 DOI: 10.1038/s41598-023-28437-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Doxorubicin (DOX) has a wide antitumor spectrum, but its adverse cardiotoxicity may lead to heart failure. Urotensin II (UII) is the most potent vasoconstrictor in mammals. It plays a role by activating the UII receptor (UT), the orphan G protein-coupled receptor (GPR14), collectively referred to as the UII/UT system. In the new version of "Chinese expert consensus on cardiac rehabilitation of chronic heart failure," it is pointed out that exercise rehabilitation is the cornerstone of cardiac rehabilitation. In this study, in vitro and in vivo assessments were performed using DOX-treated H9C2 cells and rats. It was found that the UT antagonist Urantide and exercise training improved DOX-induced cardiac insufficiency, reduced DOX-induced cardiomyocyte apoptosis, improved the structural disorder of myocardial fibers, and inhibited DOX-induced myocardial fibrosis. Further studies showed that Urantide alleviated DOX-induced cardiotoxicity by downregulating the expression levels of the p38 mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Jing Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Shimin Sun
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hanlin Zhang
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zuoquan Zhong
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| | - HangYuan Guo
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.
| |
Collapse
|
19
|
Sun X, Zhou L, Han Y, Yang Q, Li X, Xin B, Chi M, Wang Y, Guo C. Scutellarin Attenuates Doxorubicin-Induced Cardiotoxicity by Inhibiting Myocardial Fibrosis, Apoptosis and Autophagy in Rats. Chem Biodivers 2023; 20:e202200450. [PMID: 36419360 DOI: 10.1002/cbdv.202200450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
The anthracycline antibiotic doxorubicin (DOX) is an effective anticancer agent, but its clinical use is limited by dose-dependent cardiotoxicity. Scutellarin (SCU), a natural polyphenolic flavonoid, is used as a cardioprotective agent for infarction and ischemia-reperfusion injury. This study investigated the beneficial effect of SCU on DOX-induced chronic cardiotoxicity. Rats were injected intraperitoneally (i. p.) with DOX (2.5 mg/kg) twice a week for four weeks and then allowed to rest for two weeks to establish the chronic cardiotoxicity animal model. A dose of 10 mg/kg/day SCU was injected i. p. daily for six weeks to attenuate cardiotoxicity. SCU attenuated DOX-induced elevated oxidative stress levels and cardiac troponin T (cTnT), decreased left ventricular ejection fraction (LVEF) and fractional shortening (LVFS), elevated isovolumic relaxation time (IVRT), electrophysiology and histopathological alterations. In addition, SCU significantly attenuated DOX-induced cardiac fibrosis and reduced extracellular matrix (ECM) accumulation by inhibiting the TGF-β1/Smad2 signaling pathway. Furthermore, SCU also prevented against DOX-induced apoptosis and autophagy as evidenced by upregulation of Bcl-2, downregulation of Bax and cleaved caspase-3, inhibited the AMPK/mTOR pathway. These results revealed that the cardioprotective effect of SCU on DOX-induced chronic cardiotoxicity may be attributed to reducing oxidative stress, myocardial fibrosis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Li Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yonglong Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xingxia Li
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
20
|
Hwang S, Kim SH, Yoo KH, Chung MH, Lee JW, Son KH. Exogenous 8-hydroxydeoxyguanosine attenuates doxorubicin-induced cardiotoxicity by decreasing pyroptosis in H9c2 cardiomyocytes. BMC Mol Cell Biol 2022; 23:55. [DOI: 10.1186/s12860-022-00454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractDoxorubicin (DOX), which is widely used in cancer treatment, can induce cardiomyopathy. One of the main mechanisms whereby DOX induces cardiotoxicity involves pyroptosis through the NLR family pyrin domain containing 3 (NLRP3) inflammasome and gasdermin D (GSDMD). Increased NAPDH oxidase (NOX) and oxidative stress trigger pyroptosis. Exogenous 8-hydroxydeoxyguanosine (8-OHdG) decreases reactive oxygen species (ROS) production by inactivating NOX. Here, we examined whether 8-OHdG treatment can attenuate DOX-induced pyroptosis in H9c2 cardiomyocytes. Exposure to DOX increased the peroxidative glutathione redox status and NOX1/2/4, toll-like receptor (TLR)2/4, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) expression, while an additional 8-OHdG treatment attenuated these effects. Furthermore, DOX induced higher expression of NLRP3 inflammasome components, including NLRP3, apoptosis-associated speck-like protein containing a c-terminal caspase recruitment domain (ASC), and pro-caspase-1. Moreover, it increased caspase-1 activity, a marker of pyroptosis, and interleukin (IL)-1β expression. All these effects were attenuated by 8-OHdG treatment. In addition, the expression of the cardiotoxicity markers, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) was increased by DOX, whereas the increase of ANP and BNP induced by DOX treatment was reversed by 8-OHdG. In conclusion, exogenous 8-OHdG attenuated DOX-induced pyroptosis by decreasing the expression of NOX1/2/3, TLR2/4, and NF-κB. Thus, 8-OHdG may attenuate DOX-induced cardiotoxicity through the inhibition of pyroptosis.
Collapse
|
21
|
Krejbich P, Birringer M. The Self-Administered Use of Complementary and Alternative Medicine (CAM) Supplements and Antioxidants in Cancer Therapy and the Critical Role of Nrf-2-A Systematic Review. Antioxidants (Basel) 2022; 11:2149. [PMID: 36358521 PMCID: PMC9686580 DOI: 10.3390/antiox11112149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Complementary and alternative medicine (CAM) supplements are widely used by cancer patients. Dietary supplements, vitamins and minerals, herbal remedies, and antioxidants are especially popular. In a systematic literature review, 37 studies, each including more than 1000 participants, on CAM, dietary supplement, and vitamin use among cancer patients were identified. Accordingly, cancer patients use antioxidants such as vitamin C (from 2.6% (United Kingdom) to 41.6% (United States)) and vitamin E (from 2.9% (China) to 48% (United States)). Dietary supplements and vitamins are taken for different reasons, but often during conventional cancer treatment involving chemotherapy or radiotherapy and in a self-decided manner without seeking medical advice from healthcare professionals. Drug-drug interactions with dietary supplements or vitamins involving multiple signaling pathways are well described. Since most of the anticancer drugs generate reactive oxygen species (ROS), an adaptive stress response of healthy and malignant cells, mainly driven by the Nrf-2-Keap I network, can be observed. On the one hand, healthy cells should be protected from ROS-overproducing chemotherapy and radiotherapy; on the other hand, ROS production in cancer cells is a "desirable side effect" during anticancer drug treatment. We here describe the paradoxical use of antioxidants and supplements during cancer therapy, possible interactions with anticancer drugs, and the involvement of the Nrf-2 transcription factor.
Collapse
Affiliation(s)
- Paula Krejbich
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| | - Marc Birringer
- Department of Nutritional, Food and Consumer Sciences, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Wissenschaftliches Zentrum für Ernährung, Lebensmittel und Nachhaltige Versorgungssysteme (ELVe), Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
- Public Health Zentrum Fulda, Fulda University of Applied Sciences, Leipziger Straße 123, 36037 Fulda, Germany
| |
Collapse
|
22
|
Ling G, Wang X, Tan N, Cao J, Li W, Zhang Y, Jiang J, Sun Q, Jiang Y, Wang W, Wang Y. Mechanisms and Drug Intervention for Doxorubicin-Induced Cardiotoxicity Based on Mitochondrial Bioenergetics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7176282. [PMID: 36275901 PMCID: PMC9586735 DOI: 10.1155/2022/7176282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/17/2022] [Accepted: 09/10/2022] [Indexed: 11/18/2022]
Abstract
Doxorubicin (DOX) is an anthracycline chemotherapy drug, which is indispensable in antitumor therapy. However, its subsequent induction of cardiovascular disease (CVD) has become the primary cause of mortality in cancer survivors. Accumulating evidence has demonstrated that cardiac mitochondrial bioenergetics changes have become a significant marker for doxorubicin-induced cardiotoxicity (DIC). Here, we mainly summarize the related mechanisms of DOX-induced cardiac mitochondrial bioenergetics disorders reported in recent years, including mitochondrial substrate metabolism, the mitochondrial respiratory chain, myocardial ATP storage and utilization, and other mechanisms affecting mitochondrial bioenergetics. In addition, intervention for DOX-induced cardiac mitochondrial bioenergetics disorders using chemical drugs and traditional herbal medicine is also summarized, which will provide a comprehensive process to study and develop more appropriate therapeutic strategies for DIC.
Collapse
Affiliation(s)
- Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jing Cao
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanyan Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China
- Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| |
Collapse
|
23
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
24
|
Yang J, Song J, Zhou J, Lin H, Wu Z, Liu N, Xie W, Guo H, Chi J. Functional components of Chinese rice wine can ameliorate diabetic cardiomyopathy through the modulation of autophagy, apoptosis, gut microbiota, and metabolites. Front Cardiovasc Med 2022; 9:940663. [PMID: 36186976 PMCID: PMC9515449 DOI: 10.3389/fcvm.2022.940663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Background Dietary polyphenols, polypeptides, and oligosaccharides modulate inflammation and immunity by altering the composition of gut microbiota. The polyphenols and polypeptides in Chinese rice wine have protective effects against cardiovascular disease. In this study, we hypothesized that the polyphenols, polypeptides, and oligosaccharides in Chinese rice wine can ameliorate diabetic cardiomyopathy (DCM) by altering gut microbiota and metabolites. Methods Mice with DCM and high glucose cells were treated with rice wine polyphenols (RWPH), rice wine polypeptides (RWPE), and rice wine oligosaccharides. Cardiac function was evaluated by echocardiography and detection of myocardial injury markers. We observed the pathological structures using hematoxylin and eosin staining, Masson's trichrome staining, and transmission electron microscopy. The expression levels of autophagy-related proteins and stubRFP-sensGFP-LC3 fluorescence were measured to evaluate autophagy. We performed TUNEL staining and measured the levels of Bax, Bcl-2, and p53 to assess apoptosis. To analyze the effects of the rice wine functional components on the gut microbiota and metabolites of DCM mice, we performed fecal 16S-rDNA gene sequencing and serum untargeted metabolomics. Results Our results showed an increase in cardiac and mitochondrial function, promotion of autophagy, and inhibition of cardiomyocyte apoptosis, which indicates that RWPH and RWPE can ameliorate DCM. The abundance of Akkermansia and Desulfovibrio were reduced by the presence of RWPH and RWPE. The growth of the Lachnospiraceae_NK4A136_group and Clostridiales-unclassified were promoted by the presence of RWPH. Tryptophan metabolism-associated metabolites were increased and phenylalanine levels were reduced by the presence of RWPH and RWPE. The biosynthesis of primary bile acids was enhanced by the presence of RWPH. Conclusion Both RWPH and RWPE provided a protective effect against DCM by promoting autophagy, inhibiting apoptosis, and reversing both gut microbiota dysbiosis and metabolic dysregulation.
Collapse
Affiliation(s)
- Jinjin Yang
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jiaoying Song
- Medical College of Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- Medical College of Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Zhuonan Wu
- Medical College of Shaoxing University, Shaoxing, China
| | - Nan Liu
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenqing Xie
- Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangyuan Guo
- Medical College of Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Jufang Chi
| |
Collapse
|
25
|
Zhong Z, Sun S, Weng J, Zhang H, Lin H, Sun J, Pan M, Guo H, Chi J. Machine learning algorithms identifying the risk of new-onset ACS in patients with type 2 diabetes mellitus: A retrospective cohort study. Front Public Health 2022; 10:947204. [PMID: 36148336 PMCID: PMC9486471 DOI: 10.3389/fpubh.2022.947204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023] Open
Abstract
Background In recent years, the prevalence of type 2 diabetes mellitus (T2DM) has increased annually. The major complication of T2DM is cardiovascular disease (CVD). CVD is the main cause of death in T2DM patients, particularly those with comorbid acute coronary syndrome (ACS). Although risk prediction models using multivariate logistic regression are available to assess the probability of new-onset ACS development in T2DM patients, none have been established using machine learning (ML). Methods Between January 2019 and January 2020, we enrolled 521 T2DM patients with new-onset ACS or no ACS from our institution's medical information recording system and divided them into a training dataset and a testing dataset. Seven ML algorithms were used to establish models to assess the probability of ACS coupled with 5-cross validation. Results We established a nomogram to assess the probability of newly diagnosed ACS in T2DM patients with an area under the curve (AUC) of 0.80 in the testing dataset and identified some key features: family history of CVD, history of smoking and drinking, aspartate aminotransferase level, age, neutrophil count, and Killip grade, which accelerated the development of ACS in patients with T2DM. The AUC values of the seven ML models were 0.70-0.96, and random forest model had the best performance (accuracy, 0.89; AUC, 0.96; recall, 0.83; precision, 0.91; F1 score, 0.87). Conclusion ML algorithms, especially random forest model (AUC, 0.961), had higher performance than conventional logistic regression (AUC, 0.801) for assessing new-onset ACS probability in T2DM patients with excellent clinical and diagnostic value.
Collapse
Affiliation(s)
- Zuoquan Zhong
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jingfan Weng
- Department of Cardiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Jing Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Miaohong Pan
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, China,*Correspondence: Hangyuan Guo
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China,Jufang Chi
| |
Collapse
|
26
|
Combination of nicotinamide mononucleotide and troxerutin induces full protection against doxorubicin-induced cardiotoxicity by modulating mitochondrial biogenesis and inflammatory response. Mol Biol Rep 2022; 49:8209-8218. [DOI: 10.1007/s11033-022-07390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 12/06/2022]
|
27
|
Zhang XY, Yang KL, Li Y, Zhao Y, Jiang KW, Wang Q, Liu XN. Can Dietary Nutrients Prevent Cancer Chemotherapy-Induced Cardiotoxicity? An Evidence Mapping of Human Studies and Animal Models. Front Cardiovasc Med 2022; 9:921609. [PMID: 35845064 PMCID: PMC9277029 DOI: 10.3389/fcvm.2022.921609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Chemotherapy has significantly improved cancer survival rates at the cost of irreversible and frequent cardiovascular toxicity. As the main dose-dependent adverse effect, cardiotoxic effects not only limit the usage of chemotherapeutic agents, but also cause the high risk of severe poor prognoses for cancer survivors. Therefore, it is of great significance to seek more effective cardioprotective strategies. Some nutrients have been reported to diminish cardiac oxidative damage associated with chemotherapy. However, the currently available evidence is unclear, which requires a rigorous summary. As such, we conducted a systematic review of all available evidence and demonstrated whether nutrients derived from food could prevent cardiotoxicity caused by chemotherapy. Methods We searched Medline (via PubMed), Embase and the Cochrane Library from inception to Nov 9, 2021 to identify studies reporting dietary nutrients against cancer chemotherapy-related cardiotoxicity. We performed descriptive summaries on the included studies, and used forest plots to demonstrate the effects of various dietary nutrients. Results Fifty-seven eligible studies were identified, involving 53 animal studies carried on rats or mice and four human studies in cancer patients. Seven types of dietary nutrients were recognized including polyphenols (mainly extracted from grapes, grape seeds, and tea), allicin (mainly extracted form garlic), lycopene (mainly extracted from tomatoes), polyunsaturated fatty acids, amino acids (mainly referring to glutamine), coenzyme Q10, and trace elements (mainly referring to zinc and selenium). Dietary nutrients ameliorated left ventricular dysfunctions and myocardial oxidative stress at varying degrees, which were caused by chemotherapy. The overall risk of bias of included studies was at moderate to high risk. Conclusion The results indicated that dietary nutrients might be a potential strategy to protect cardiovascular system exposed to the chemotherapeutic agents, but more human studies are urged in this field.Systematic Review Registration: https://inplasy.com/inplasy-2022-3-0015/.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
- Nursing Department, Chengdu BOE Hospital, Chengdu, China
| | - Ke-Lu Yang
- Academic Center for Nursing and Midwifery, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Leuven, Belgium
| | - Yang Li
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Yang Zhao
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Ke-Wei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, China
| | - Quan Wang
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - Xiao-Nan Liu
- Ambulatory Surgery Center, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
29
|
Yang Y, Zhong H, Yang N, Xu S, Yang T. Quality improvement of sweet rice wine fermented with Rhizopus delemar on key aroma compounds content, phenolic composition, and antioxidant capacity compared to Rhizopus oryzae. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2339-2350. [PMID: 35602453 PMCID: PMC9114276 DOI: 10.1007/s13197-021-05250-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 06/03/2023]
Abstract
The pure culture fermentation has led to less flavorful rice wine and relatively lower bioactive substance level compared to traditional mixed culture fermentation; however, a pure strain is easily controlled by industrialized producers. The purpose of the present research was to screen a species of Rhizopus for improving the flavor deficiency and antioxidant function of sweet rice wine. Seven rice wine samples fermented with isolated strains were analyzed for their total phenolics, total flavonoids, peptide and antioxidant activity using spectrophotometry, as well as ethanol, ethyl acetate, β-phenethyl alcohol, and volatile alcohol contents measured by headspace gas chromatography (HS-GC), the further principal component analysis determined Rhizopus delemar rice wine better on aroma and antioxidant capacity. A comparison of phenolics profile between R. delemar and R. oryzae rice wines was made based on the measurement data of ultrahigh-performance liquid chromatography coupled with Q-exactive orbitrap mass spectrometry (UHPLC-QE-MS) data. Thirty-two phenolics were identified in sweet rice wine. Overall, the results presented in this study showed that a strain of R. delemar is available for the improvement of flavor and antioxidant activity in sweet rice wine, which has the great potential to be applied to industrialized products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05250-x.
Collapse
Affiliation(s)
- Yurong Yang
- National Engineering Laboratory for Rice and by-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Haiyan Zhong
- National Engineering Laboratory for Rice and by-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Ning Yang
- National Engineering Laboratory for Rice and by-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Shuaizhe Xu
- National Engineering Laboratory for Rice and by-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| | - Tao Yang
- National Engineering Laboratory for Rice and by-Product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004 Hunan China
| |
Collapse
|
30
|
Hydroxytyrosol Prevents Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes. Antioxidants (Basel) 2022; 11:antiox11061087. [PMID: 35739984 PMCID: PMC9220035 DOI: 10.3390/antiox11061087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (Dox) is a highly effective chemotherapeutic agent employed in the handling of hematological and solid tumors. The effective use of Dox in cancer therapy has been seriously limited due to its well-known cardiotoxic side effects, mainly mediated by oxidative damage. Therefore, the identification of an effective and safe antagonist against Dox-induced cardiotoxicity remains a challenge. In this respect, as plant polyphenols have attracted considerable interest due to their antioxidant properties and good safety profile, hydroxytyrosol (HT), the major phenolic compound in olive oil, could be a potential candidate due to its remarkable antioxidant and anticancer powers. In this study, the effect of HT was tested on Dox-induced cardiotoxicity by using a combination of biochemical and cellular biology techniques. Interestingly, HT was able to counteract Dox-induced cytotoxicity in cardiomyocytes by acting on the SOD2 level and the oxidative response, as well as on apoptotic mechanisms mediated by Bcl-2/Bax. At the same time, HT did not to interfere with the antitumorigenic properties of Dox in osteosarcoma cells. This study identifies new, beneficial properties for HT and suggests that it might be a promising molecule for the development of additional therapeutic approaches aimed at preventing anthracycline-related cardiotoxicity and improving long-term outcomes in antineoplastic treatments.
Collapse
|
31
|
Zhou L, Han Y, Yang Q, Xin B, Chi M, Huo Y, Guo C, Sun X. Scutellarin attenuates doxorubicin-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy in H9c2 cells, cardiac fibroblasts and HUVECs. Toxicol In Vitro 2022; 82:105366. [PMID: 35470029 DOI: 10.1016/j.tiv.2022.105366] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/03/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Studies on doxorubicin (DOX)-induced cardiotoxicity have mainly focused on cardiomyocytes (CMs), but it is unclear whether there are differences in the toxicity degree of DOX to CMs, cardiac fibroblasts (CFs) and endothelial cells (ECs). We used H9c2 cells, rat primary isolated CFs and human umbilical vein endothelial cells (HUVECs) to systematically research the cytotoxicity of DOX. Scutellarin (SCU) is a natural polyphenolic flavonoid that exerts a cardioprotective effect. In the present study, we explored the protective effects of SCU on DOX-induced cytotoxicity in H9c2 cells, CFs and HUVECs. The results showed that DOX decreased cell viability and increased the apoptosis rate, whereas DOX had a greater killing effect on H9c2 cells compared to CFs and HUVECs. DOX significantly elevated oxidative stress, but the malondialdehyde (MDA) levels in H9c2 cells were higher after DOX treatment. In all three cell types, DOX induced DNA damage and mitochondrial dysfunction, it activated apoptosis by activation of Bax/ Bcl-2 and it induced autophagy by inhibiting the Akt/ mTOR pathway. Pretreatment with different concentrations of SCU reversed these phenomena in a dose-dependent manner. Collectively, these results revealed that there were slight differences in DOX-induced cytotoxicity among H9c2 cells, CFs and HUVECs. Furthermore, the cardioprotective effect of SCU may be attributed to attenuation of DOX-induced oxidative stress, DNA damage, mitochondrial dysfunction, apoptosis and autophagy.
Collapse
|
32
|
Zhu Y, Wu F, Yang Q, Feng H, Xu D. Resveratrol Inhibits High Glucose-Induced H9c2 Cardiomyocyte Hypertrophy and Damage via RAGE-Dependent Inhibition of the NF- κB and TGF- β1/Smad3 Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7781910. [PMID: 35251212 PMCID: PMC8896917 DOI: 10.1155/2022/7781910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Hyperglycaemia is associated with the development of cardiac vascular disease. Resveratrol (RES) is a naturally occurring polyphenolic compound that possesses many biological properties, including anti-inflammatory properties and antioxidation functions. Our study aimed to explore the RES's protective roles on high glucose (HG)-induced H9c2 cells and the underlying mechanisms. Small-molecule inhibitors, western blotting (WB), as well as reverse-transcription PCR (RT-PCR) were employed to investigate the mechanisms underlying HG-induced damage in H9c2 cells. RES (40 μg/mL) treatment significantly alleviated HG-induced cardiac hypertrophy and cardiac dysfunction. RES abated the HG-induced increase in the levels of extracellular matrix (ECM) components and inflammatory cytokines, reducing ECM accumulation and inflammatory responses. Additionally, RES administration prevented HG-induced mitochondrion-mediated cardiac apoptosis of myocardial cells. In terms of mechanisms, we demonstrated that RES ameliorated the HG-induced overexpression of receptor for advanced glycation endproducts (RAGE) and downregulation of NF-κB signalling. Moreover, RES inhibited HG-induced cardiac fibrosis by inhibiting transforming growth factor beta 1 (TGF-β1)/Smad3-mediated ECM synthesis in cultured H9c2 cardiomyocytes. Further studies revealed that the effects of RES against HG-induced upregulation of NF-κB and TGF-β1/Smad3 pathways were similar to those of FPS-ZM1, a RAGE inhibitor. Collectively, the results implied that RES might help alleviate HG-induced cardiotoxicity via RAGE-dependent downregulation of the NF-κB and TGF-β/Smad3 pathways. This study provided evidence that RES can be developed as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Yanzhou Zhu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
33
|
Lin H, Meng L, Sun Z, Sun S, Huang X, Lin N, Zhang J, Lu W, Yang Q, Chi J, Guo H. Yellow Wine Polyphenolic Compound Protects Against Doxorubicin-Induced Cardiotoxicity by Modulating the Composition and Metabolic Function of the Gut Microbiota. Circ Heart Fail 2021; 14:e008220. [PMID: 34665676 DOI: 10.1161/circheartfailure.120.008220] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dietary polyphenols help to prevent cardiovascular diseases, and interactions between polyphenols and gut microbiota are known to exist. In this study, we speculated that gut microbiota-mediated metabolite regulation might contribute to the anticardiotoxic effects of yellow wine polyphenolic compound (YWPC) in doxorubicin (DOX)-treated rats. METHODS 16S-rDNA sequencing was performed to analyze the effects of YWPC on the gut microbiota in DOX-treated rats (n=6). Antibiotics were used to investigate the contribution of the altered microbiome to the role of YWPC (n=6). Plasma metabolomics were also analyzed by untargeted gas chromatography-mass spectrometry systems. RESULTS YWPC ameliorated DOX-mediated cardiotoxicity, as evidenced by increased cardiac and mitochondrial function and reduced levels of inflammation and myocardial apoptosis (P<0.05 for all). The low abundance of Escherichia-Shigella, Dubosiella, and Allobaculum, along with enrichment of Muribaculaceae_unclassified, Ralstonia, and Rikenellaceae_RC9_gut_group in the gut, suggested that YWPC ameliorated DOX-induced microbial dysbiosis. YWPC also influenced the levels of metabolites altered by DOX, resulting in lower arachidonic acid and linoleic acid metabolism and higher tryptophan metabolite levels (P<0.05 for all). Correlational studies indicated that YWPC alleviated DOX-induced inflammation and mitochondrial dysfunction by modulating the gut microbial community and its associated metabolites. Antibiotic treatment exacerbated cardiotoxicity in DOX-treated rats, and its effect on the gut microbiota partly abolished the anticardiotoxic effects of YWPC, suggesting that the microbiota is required for the cardioprotective role of YWPC. CONCLUSIONS YWPC protected against DOX-induced cardiotoxicity in a gut microbiota-dependent manner. This supports the use of dietary polyphenols as a therapeutic approach for the treatment of cardiovascular diseases via microbiota regulation.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, China (H.L., L.M., J.Z., J.C.)
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, China (H.L., L.M., J.Z., J.C.)
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Zhejiang Provence, China (Z.S.)
| | - Shiming Sun
- The First Clinical Medical College, Wenzhou Medical University, Zhejiang, China (S.S.)
| | - Xingxiao Huang
- Zhejiang University School of Medicine, Hangzhou, China (X.H., W.L.)
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China (N.L., Q.Y.)
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, China (H.L., L.M., J.Z., J.C.)
| | - Wenqiang Lu
- Zhejiang University School of Medicine, Hangzhou, China (X.H., W.L.)
| | - Qi Yang
- Zhejiang Chinese Medical University, Hangzhou, China (N.L., Q.Y.)
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, China (H.L., L.M., J.Z., J.C.)
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Zhejiang, China (H.G.)
| |
Collapse
|
34
|
Protective Effects and Mechanisms of Recombinant Human Glutathione Peroxidase 4 on Isoproterenol-Induced Myocardial Ischemia Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6632813. [PMID: 34539971 PMCID: PMC8443360 DOI: 10.1155/2021/6632813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 01/15/2023]
Abstract
Ischemic heart disease (IHD) is a cardiovascular disease with high fatality rate, and its pathogenesis is closely related to oxidative stress. Reactive oxygen species (ROS) in oxidative stress can lead to myocardial ischemia (MI) injury in many ways. Therefore, the application of antioxidants may be an effective way to prevent IHD. In recent years, glutathione peroxidase 4 (GPx4) has received increasing attention due to its antioxidant effect. In a previous study, we used the new chimeric tRNAUTuT6 to express highly active recombinant human GPx4 (rhGPx4) in amber-less Escherichia coli. In this study, we established an isoproterenol- (ISO-) induced MI injury model in rats and an in vitro model to research the protective effect and mechanism of rhGPx4 on MI injury. The results showed that rhGPx4 could reduce the area of myocardial infarction and ameliorate the pathological injury of heart tissue, significantly reduce ISO-induced abnormalities on electrocardiogram (ECG) and cardiac serum biomarkers, protect mitochondrial function, and attenuate cardiac oxidative stress injury. In an in vitro model, the results also confirmed that rhGPx4 could inhibit ISO-induced oxidative stress injury and cardiomyocyte apoptosis. The mechanism of action of rhGPx4 involves not only the inhibition of lipid peroxidation by eliminating ROS but also keeping a normal level of endogenous antioxidant enzymes by eliminating ROS, thereby preventing oxidative stress injury in cardiomyocytes. Additionally, rhGPx4 could inhibit cardiomyocyte apoptosis through a mitochondria-dependent pathway. In short, rhGPx4, a recombinant antioxidant enzyme, can play an important role in the prevention of IHD and may have great potential for application.
Collapse
|
35
|
Koss-Mikołajczyk I, Todorovic V, Sobajic S, Mahajna J, Gerić M, Tur JA, Bartoszek A. Natural Products Counteracting Cardiotoxicity during Cancer Chemotherapy: The Special Case of Doxorubicin, a Comprehensive Review. Int J Mol Sci 2021; 22:10037. [PMID: 34576204 PMCID: PMC8467966 DOI: 10.3390/ijms221810037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiotoxicity is a frequent undesirable phenomenon observed during oncological treatment that limits the therapeutic dose of antitumor drugs and thus may decrease the effectiveness of cancer eradication. Almost all antitumor drugs exhibit toxic properties towards cardiac muscle. One of the underlying causes of cardiotoxicity is the stimulation of oxidative stress by chemotherapy. This suggests that an appropriately designed diet or dietary supplements based on edible plants rich in antioxidants could decrease the toxicity of antitumor drugs and diminish the risk of cardiac failure. This comprehensive review compares the cardioprotective efficacy of edible plant extracts and foodborne phytochemicals whose beneficial activity was demonstrated in various models in vivo and in vitro. The studies selected for this review concentrated on a therapy frequently applied in cancer, anthracycline antibiotic-doxorubicin-as the oxidative stress- and cardiotoxicity-inducing agent.
Collapse
Affiliation(s)
- Izabela Koss-Mikołajczyk
- Department of Food Chemistry, Technology and Biotechnology, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland;
| | - Vanja Todorovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (V.T.); (S.S.)
| | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (V.T.); (S.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Nutritional Sciences, Tel-Hai College, Qiryat Shemona 1220800, Israel
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Josep A. Tur
- Research Group on Community Nutrition & Oxidative Stress, University of Balearic Islands—IUNICS, IDISBA & CIBEROBN (Physiopathology of Obesity and Nutrition), 07122 Palma de Mallorca, Spain;
| | - Agnieszka Bartoszek
- Department of Food Chemistry, Technology and Biotechnology, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland;
| |
Collapse
|
36
|
Lin H, Guan L, Meng L, Uzui H, Guo H. SGLT1 Knockdown Attenuates Cardiac Fibroblast Activation in Diabetic Cardiac Fibrosis. Front Pharmacol 2021; 12:700366. [PMID: 34248645 PMCID: PMC8265780 DOI: 10.3389/fphar.2021.700366] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Cardiac fibroblast (CF) activation is a hallmark feature of cardiac fibrosis in diabetic cardiomyopathy (DCM). Inhibition of the sodium-dependent glucose transporter 1 (SGLT1) attenuates cardiomyocyte apoptosis and delays the development of DCM. However, the role of SGLT1 in CF activation remains unclear. Methods: A rat model of DCM was established and treated with si‐SGLT1 to examine cardiac fibrosis. In addition, in vitro experiments were conducted to verify the regulatory role of SGLT1 in proliferation and collagen secretion in high-glucose– (HG–) treated CFs. Results: SGLT1 was found to be upregulated in diabetic cardiac tissues and HG-induced CFs. HG stimulation resulted in increased proliferation and migration, increased the expression of transforming growth factor-β1 and collagen I and collagen III, and increased phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) 1/2. These trends in HG-treated CFs were significantly reversed by si-SGLT1. Moreover, the overexpression of SGLT1 promoted CF proliferation and collagen synthesis and increased phosphorylation of p38 mitogen-activated protein kinase and ERK1/2. SGLT1 silencing significantly alleviated cardiac fibrosis, but had no effect on cardiac hypertrophy in diabetic hearts. Conclusion: These findings provide new information on the role of SGLT1 in CF activation, suggesting a novel therapeutic strategy for the treatment of DCM fibrosis.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Le Guan
- Department of Radiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Hiroyasu Uzui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hangyuan Guo
- College of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
37
|
Meng XW, He CX, Chen X, Yang XS, Liu C. The extract of Gnaphalium affine D. Don protects against H 2O 2-induced apoptosis by targeting PI3K/AKT/GSK-3β signaling pathway in cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113579. [PMID: 33189844 DOI: 10.1016/j.jep.2020.113579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gnaphalium affine D. Don is an important Traditional Chinese herbal Medicine (TCM) used to treat hyperuricemia, asthma, rheumatic arthritis, antitussive, expectorant and cardiovascular in folk medicine because of anti-inflammatory and anti-oxidant activity. The aim of this study was to investigate the potential beneficial effect of G. affine extract (GAE) on hydrogen peroxide (H2O2)-induced apoptosis and explore the possible underlying mechanism in cardiomyocyte. MATERIALS AND METHODS The ingredients of GAE were isolated and tentatively identified by HPLC-ESI-Q-Qribatrip-MS/MS. The cardioprotective and anti-oxidant effects of GAE were evaluated in the experimental model with H2O2 induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 3 h with or without GAE or with GAE plus PX866 (PI3K inhibitor), then exposed to H2O2 for 6 h, H9c2 cells viability were detected by CCK8 kit, the content of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and intracellular superoxide dismutase (SOD) activity were measured by the commercial biochemical kits, western blotting, immunohistochemical (IHC), immunofluorescence (IF) and reverse transcription-polymerase chain reaction (RT-PCR) assays were performed to evaluate the proteins and mRNA expression, propidium iodide (PI) staining was adopted to indicate H9c2 cells apoptosis. RESULTS Firstly, seventeen polyphenols and flavonoids compounds with the characteristics of anti-inflammatory and anti-oxidant in GAE were tentatively identified by HPLC-ESI-Q-Qribatrip-MS/MS. In the experimental model, GAE not only significantly improved cells viability, but also showed anti-oxidant effects through improving SOD activity, up-regulating nuclear factor E2-related factor 2 (Nrf2), and decreasing intracellular concentration of ROS and MDA and the proteins expression of p47phox, p67phox and gp91phox. On the other hand, GAE revealed anti-apoptotic effect through up-regulating the expression of B-cell lymphoma-2 (Bcl-2), down-regulating Bcl2-associated X (BAX) and cleaved-caspase 3. Furthermore, GAE significantly facilitated phosphorylation of AKT and glycogen synthase kinase-3 beta (GSK-3β) but not AMPK, while the effects were blocked by PX866 (PI3K inhibitor). CONCLUSIONS Our data suggested that GAE showed strong anti-oxidant effect to ameliorate oxidative stress and attenuate apoptosis induced by H2O2 in H9c2 cells by targeting PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xiang-Wen Meng
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Can-Xia He
- Institute of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Xiao Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xiao-Song Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
38
|
Elblehi SS, El-Sayed YS, Soliman MM, Shukry M. Date Palm Pollen Extract Avert Doxorubicin-Induced Cardiomyopathy Fibrosis and Associated Oxidative/Nitrosative Stress, Inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 Signaling Pathways. Animals (Basel) 2021; 11:ani11030886. [PMID: 33804672 PMCID: PMC8003775 DOI: 10.3390/ani11030886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The use of date palm pollen ethanolic extract (DPPE) is a conventional approach in improving the side-effects induced by Doxorubicin (DOX).DPPE mitigated DOX-induced body and heart weight changes and ameliorated DOX-induced elevated cardiac injury markers. In addition, serum cardiac troponin I concentrations (cTnI), troponin T (cTnT), and N-terminal NBP and cytosolic (Ca+2) were amplified by alleviating the inflammatory and oxidative injury markers and decreasing histopathological lesions severity. DPPE decreased DOX-induced heart injuries by mitigating inflammation, fibrosis, and apoptosis through its antioxidant effect. To reduce DOX-induced oxidative stress injuries and other detrimental effects, a combined treatment of DPPE is advocated. Abstract Doxorubicin (DOX) has a potent antineoplastic efficacy and is considered a cornerstone of chemotherapy. However, it causes several dose-dependent cardiotoxic results, which has substantially restricted its clinical application. This study was intended to explore the potential ameliorative effect of date palm pollen ethanolic extract (DPPE) against DOX-induced cardiotoxicity and the mechanisms underlying it. Forty male Wistar albino rats were equally allocated into Control (CTR), DPPE (500 mg/kg bw for 4 weeks), DOX (2.5 mg/kg bw, intraperitoneally six times over 2 weeks), and DPPE + DOX-treated groups. Pre-coadministration of DPPE with DOX partially ameliorated DOX-induced cardiotoxicity as DPPE improved DOX-induced body and heart weight changes and mitigated the elevated cardiac injury markers activities of serum aminotransferases, lactate dehydrogenase, creatine kinase, and creatine kinase-cardiac type isoenzyme. Additionally, the concentration of serum cardiac troponin I (cTnI), troponin T (cTnT), N-terminal pro-brain natriuretic peptide (NT-pro BNP), and cytosolic calcium (Ca+2) were amplified. DPPE also alleviated nitrosative status (nitric oxide) in DOX-treated animals, lipid peroxidation and antioxidant molecules as glutathione content, and glutathione peroxidase, catalase, and superoxide dismutase activities and inflammatory markers levels; NF-κB p65, TNF-α, IL-1β, and IL-6. As well, it ameliorated the severity of histopathological lesions, histomorphometric alteration and improved the immune-staining of the pro-fibrotic (TGF-β1), pro-apoptotic (caspase-3 and Bax), and anti-apoptotic (Bcl-2) proteins in cardiac tissues. Collectively, pre-coadministration of DPPE partially mitigated DOX-induced cardiac injuries via its antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Samar S. Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Edfina 22758, Egypt
- Correspondence: (S.S.E.); (M.S.)
| | - Yasser S. El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (S.S.E.); (M.S.)
| |
Collapse
|
39
|
Cheng X, Liu D, Song H, Tian X, Yan C, Han Y. Overexpression of Kininogen-1 aggravates oxidative stress and mitochondrial dysfunction in DOX-induced cardiotoxicity. Biochem Biophys Res Commun 2021; 550:142-150. [PMID: 33706097 DOI: 10.1016/j.bbrc.2021.02.104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a widely used cancer chemotherapeutic drug with cardiotoxicity effect limiting its clinical use. DOX induced cardiotoxicity is mediated by oxidative stress and mitochondrial damage. Kininogen-1(KNG1) is an important pro-inflammatory and pro-oxidant factor, and studies have found that it can aggravate lung and brain damage. However, it has not been known in terms of cardiotoxicity. Therefore, the purpose of this study is to understand the mechanism of KNG1 in DOX-induced heart injury. METHODS C57 mice were selected for intraperitoneal injection of DOX. The model was successfully established, and fresh ventricular tissues were isolated from the ctrl group and the DOX group for mass spectrometry analysis to screen for differentially expressed proteins. Nuclear Factor-Like 2 (Nrf2), Heme Oxygenase 1 (HO-1), 4-Hydroxynonenal (4-HNE) were used to evaluate oxidative stress level, Cytochrome C Oxidase Subunit 4 (COX4) was used to evaluate mitochondria function. Mitochondrial inner membrane potential (ΔΨm) was monitored with JC-1 fluorescence. RESULTS KNG1 was identified as a core gene which was highly expressed in the DOX myocardial injury model. Following this, an overexpression adenovirus was constructed, and KNG1 was overexpressed in vivo (mice) and in vitro (neonatal mouse cardiomyocytes (NMCMs)). It was found that overexpression of KNG1 can aggravate heart oxidative stress and mitochondrial damage. Besides, a knockdown KNG1 model was constructed, and the low expression of KNG1 was performed in cytology. It was found that knockdown of KNG1 can improve cardiomyocyte oxidative stress and mitochondrial damage caused by DOX. Nrf2 is an important antioxidant factor. Further, following KNG1 knock down, Nrf2 was also knocked down, and found that its cardiomyocyte protective effect was weakened. CONCLUSION The overexpression of KNG1 aggravates the oxidative stress and mitochondrial damage of the heart in vivo and in vitro, which might play a role by regulating Nrf2, providing a therapeutic target for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xiaoli Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Dan Liu
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Haixu Song
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Xiaoxiang Tian
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province, 110016, China
| | - Yaling Han
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
40
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
41
|
Abstract
Juices, wine, coffee, and cocoa are rich sources of natural polyphenolic compounds that have potent antioxidant activities proven by in vitro and in vivo studies. These polyphenolic compounds quench reactive oxygen and nitrogen species (RONS) or reactive free radicals and act as natural antioxidants which are also able to protect against reactive oxygen species (ROS)-mediated oxidative damage, which elevates cellular antioxidant capacity to induce antioxidant defense mechanisms by modulating transcription factors. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcription factor encoded in humans. It is activated as a result of oxidative stress and induces the expression of its target genes. This is one of the most important cellular defense mechanisms against oxidative stress. However, the oxidative stress alone is not enough to activate Nrf2. Hence phytochemicals, especially polyphenolics, act as natural Nrf2 activators. Herein, this review discusses the natural products identified in juices, coffee, cocoa and wines that modulate Nrf2 activity in cellular systems.
Collapse
|
42
|
Orosomucoid 1 Attenuates Doxorubicin-Induced Oxidative Stress and Apoptosis in Cardiomyocytes via Nrf2 Signaling. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5923572. [PMID: 33134382 PMCID: PMC7591952 DOI: 10.1155/2020/5923572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/22/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer drug, but its therapeutic use is limited by its cardiotoxicity. The principal mechanisms of DOX-induced cardiotoxicity are oxidative stress and apoptosis in cardiomyocytes. Orosomucoid 1 (ORM1), an acute-phase protein, plays important roles in inflammation and ischemic stroke; however, the roles and mechanisms of ORM1 in DOX-induced cardiotoxicity remain unknown. Therefore, in the present study, we aimed to investigate the function of ORM1 in cardiomyocytes experiencing DOX-induced oxidative stress and apoptosis. A DOX-induced cardiotoxicity animal model was established in C57BL/6 mice by administering an intraperitoneal injection of DOX (20 mg/kg), and the control group was intraperitoneally injected with the same volume of sterilized saline. The effects were assessed after 7 d. Additionally, H9c2 cells were stimulated with DOX (10 μM) for 24 h. The results showed decreased ORM1 and increased oxidative stress and apoptosis after DOX stimulation in vivo and in vitro. ORM1 overexpression significantly reduced DOX-induced oxidative stress and apoptosis in H9c2 cells. ORM1 significantly increased the expression of nuclear factor-like 2 (Nrf2) and its downstream protein heme oxygenase 1 (HO-1) and reduced the expression of the lipid peroxidation end product 4-hydroxynonenal (4-HNE) and the level of cleaved caspase-3. In addition, Nrf2 silencing reversed the effects of ORM1 on DOX-induced oxidative stress and apoptosis in cardiomyocytes. In conclusion, ORM1 inhibited DOX-induced oxidative stress and apoptosis in cardiomyocytes by regulating the Nrf2/HO-1 pathway, which might provide a new treatment strategy for DOX-induced cardiotoxicity.
Collapse
|
43
|
Sirangelo I, Sapio L, Ragone A, Naviglio S, Iannuzzi C, Barone D, Giordano A, Borriello M. Vanillin Prevents Doxorubicin-Induced Apoptosis and Oxidative Stress in Rat H9c2 Cardiomyocytes. Nutrients 2020; 12:2317. [PMID: 32752227 PMCID: PMC7468857 DOI: 10.3390/nu12082317] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (doxo) is an effective anticancer compound in several tumor types. However, as a consequence of oxidative stress induction and ROS overproduction, its high cardiotoxicity demands urgent attention. Vanillin possesses antioxidant, antiproliferative, antidepressant and anti-glycating properties. Therefore, we investigated the potential vanillin protective effects against doxo-induced cardiotoxicity in H9c2 cells. Using multiparametric approach, we demonstrated that vanillin restored both cell viability and damage in response to doxo exposure. Contextually, vanillin decreased sub-G1 appearance and caspase-3 and PARP1 activation, reducing the doxo-related apoptosis induction. From a mechanistic point of view, vanillin hindered doxo-induced ROS accumulation and impaired the ERK phosphorylation. Notably, besides the cardioprotective effects, vanillin did not counteract the doxo effectiveness in osteosarcoma cells. Taken together, our results suggest that vanillin ameliorates doxo-induced toxicity in H9c2 cells, opening new avenues for developing alternative therapeutic approaches to prevent the anthracycline-related cardiotoxicity and to improve the long-term outcome of antineoplastic treatment.
Collapse
Affiliation(s)
- Ivana Sirangelo
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Angela Ragone
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Clara Iannuzzi
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| | - Daniela Barone
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy;
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Margherita Borriello
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (L.S.); (A.R.); (S.N.); (C.I.); (M.B.)
| |
Collapse
|
44
|
Sun Z, Lu W, Lin N, Lin H, Zhang J, Ni T, Meng L, Zhang C, Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem Pharmacol 2020; 175:113888. [PMID: 32112883 DOI: 10.1016/j.bcp.2020.113888] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022]
Abstract
Doxorubicin (DOX) is a powerful anthracycline antineoplastic drug whose clinical application is limited by serious cardiotoxic side effects. Dihydromyricetin (DHM), a flavonoid compound extracted from the Japanese raisin tree (Hovenia dulcis), is cardioprotective in patients with heart failure; however, the underlying mechanisms are poorly understood. The aim of this study was to assess the possible anti-inflammatory properties of DHM in a rat model of DOX-induced cardiotoxicity and DOX-treated H9C2 cells, and gain insights into the molecular mechanisms that mediate these effects. The results showed that DHM treatment significantly improved the myocardial structure and function in DOX-exposed rats by alleviating NLRP3 inflammasome-mediated inflammation. DHM also inhibited DOX-induced activation of the NLRP3 inflammasome in H9C2 cells. This effect was mediated by inhibition of caspase-1 activity, suppression of IL-1β and IL-18 release, and upregulation of SIRT1 protein levels in vivo and in vitro. Moreover, selective inhibition of SIRT1 blocked the protective effects of DHM. Collectively, our findings indicate that DHM protects against DOX-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation via stimulation of the SIRT1 pathway.
Collapse
Affiliation(s)
- Zhenzhu Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Wenqiang Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | | | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|
45
|
Lin H, Zhang J, Ni T, Lin N, Meng L, Gao F, Luo H, Liu X, Chi J, Guo H. Yellow Wine Polyphenolic Compounds prevents Doxorubicin-induced cardiotoxicity through activation of the Nrf2 signalling pathway. J Cell Mol Med 2019; 23:6034-6047. [PMID: 31225944 PMCID: PMC6714138 DOI: 10.1111/jcmm.14466] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/08/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Doxorubicin (DOX) is considered as the major culprit in chemotherapy‐induced cardiotoxicity. Yellow wine polyphenolic compounds (YWPC), which are full of polyphenols, have beneficial effects on cardiovascular disease. However, their role in DOX‐induced cardiotoxicity is poorly understood. Due to their antioxidant property, we have been suggested that YWPC could prevent DOX‐induced cardiotoxicity. In this study, we found that YWPC treatment (30 mg/kg/day) significantly improved DOX‐induced cardiac hypertrophy and cardiac dysfunction. YWPC alleviated DOX‐induced increase in oxidative stress levels, reduction in endogenous antioxidant enzyme activities and inflammatory response. Besides, administration of YWPC could prevent DOX‐induced mitochondria‐mediated cardiac apoptosis. Mechanistically, we found that YWPC attenuated DOX‐induced reactive oxygen species (ROS) and down‐regulation of transforming growth factor beta 1 (TGF‐β1)/smad3 pathway by promoting nuclear factor (erythroid‐derived 2)‐like 2 (Nrf2) nucleus translocation in cultured H9C2 cardiomyocytes. Additionally, YWPC against DOX‐induced TGF‐β1 up‐regulation were abolished by Nrf2 knockdown. Further studies revealed that YWPC could inhibit DOX‐induced cardiac fibrosis through inhibiting TGF‐β/smad3‐mediated ECM synthesis. Collectively, our results revealed that YWPC might be effective in mitigating DOX‐induced cardiotoxicity by Nrf2‐dependent down‐regulation of the TGF‐β/smad3 pathway.
Collapse
Affiliation(s)
- Hui Lin
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China.,The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Tingjuan Ni
- Zhejiang University School of Medicine, Hangzhou, China
| | - Na Lin
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Liping Meng
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Feidan Gao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangqi Luo
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiatian Liu
- Department of Ultrasound, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| |
Collapse
|