1
|
Alharbi KS. Non-coding RNAs as therapeutic targets in Parkinson's Disease: A focus on dopamine. Pathol Res Pract 2024; 263:155641. [PMID: 39395297 DOI: 10.1016/j.prp.2024.155641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Parkinson's Disease is a highly complicated neurological disorder, with a key manifestation of loss of dopaminergic neurons. Despite the plethora of medicines that alleviate the symptoms, there is an urgent need for new treatments acting on the fundamental pathology of PD. Non-coding RNAs are becoming increasingly important in gene regulation and various cellular processes and are found to play a role in PD pathophysiology. This review analyzes the cross-talk of distinct ncRNAs with dopamine signaling. We attempt to constrain the various ncRNA networks that can activate dopamine production. First, we describe the deregulation of miRNAs that target dopamine receptors and have been implicated in PD. Next, we turn to the functions of lncRNAs in dopaminergic neurons and the connections to susceptibility genes for PD. Finally, we will analyze the novel circRNAs, such as ciRS-7, which may modulate dopamine-linked processes and serve as possible PD biomarkers. In this review, we describe recent progress in dopamine neuron revival to treat PD and the therapeutic potential of ncRNA. This review critically evaluates the available data, and we predict the role of some ncRNAs, such as PTBP1, to become candidate treatment targets in the future. Thus, this review aims to summarize the molecular causes for the deficit in dopamine signaling in PD and point to novel ncRNAs-linked therapeutic directions in neuroscience.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, AL Qassim 51452, Saudi Arabia.
| |
Collapse
|
2
|
Lam F, Leisegang MS, Brandes RP. LncRNAs Are Key Regulators of Transcription Factor-Mediated Endothelial Stress Responses. Int J Mol Sci 2024; 25:9726. [PMID: 39273673 PMCID: PMC11395311 DOI: 10.3390/ijms25179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions. The focus is on transcription factors critical for the endothelial response to external stressors, such as hypoxia, inflammation, and shear stress, and their lncRNA interactors. These regulatory interactions will be exemplified by a selected number of lncRNAs that have been identified in the endothelium under physiological and pathological conditions that are influencing the activity or protein stability of important transcription factors. Thus, lncRNAs can add a layer of cell type-specific function to transcription factors. Understanding the interaction of lncRNAs with transcription factors will contribute to elucidating cardiovascular disease pathologies and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Frederike Lam
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
3
|
Pan J, Wang B, Pu X, Qiu C, Li D, Wu Z, Zhang H, He Y. lncRNA GAPLINC regulates vascular endothelial cell apoptosis in atherosclerosis. Arch Med Sci 2023; 20:216-232. [PMID: 38414459 PMCID: PMC10895973 DOI: 10.5114/aoms/169383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/08/2023] [Indexed: 02/29/2024] Open
Abstract
Introduction In this study, we investigated the role of the long non-coding RNA GAPLINC in atherosclerosis under oxidized low-density lipoprotein (ox-LDL) treatment. Material and methods We utilized ox-LDL exposed human aortic endothelial cells as an in-vitro model. The expression level of GAPLINC was quantified by qPCR in different times and concentrations of ox-LDL treatment conditions. Cell apoptosis rate and cell cycle profiles were assessed by flow cytometry and TUNEL assay. The target association was confirmed using a luciferase reporter assay and Western blot. Results We found that GAPLINC expression was induced by ox-LDL treatment, but cell proliferation ability was significantly inhibited. We further confirmed that overexpressing of lncRNA GAPLINC in ox-LDL-exposed HAECs decreased cell proliferation by increasing cell apoptosis and arresting cell cycle in G2/M and S phase. Importantly, the detailed mechanistic analysis elucidated that LncRNA GAPLINC acts as a decoy to sequester miR-183-5p to prevent it from binding to target PDCD4. MiR-183-5p targets GAPLINC, and PDCD4 is a downstream target of miR-183-5p, and the cellular effects of this direct interaction were confirmed by a rescue assay experiment. Conclusions The present study demonstrates that upregulation of lncRNA GAPLINC represses the binding of miR-183-5p to the PDCD4 promoter region and then promotes PDCD4 expression, thereby inducing cell apoptosis and suppressing endothelial cell proliferation.
Collapse
Affiliation(s)
- Jun Pan
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xibin Pu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of General Surgery, Haiyan People's Hospital. Haiyan, China
| | - Chenyang Qiu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donglin Li
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziheng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honkun Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangyan He
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Tang Y, Yan JH, Ge ZW, Fei AH, Zhang YC. LncRNA Gaplinc promotes the pyroptosis of vascular endothelial cells through SP1 binding to enhance NLRP3 transcription in atherosclerosis. Cell Signal 2022; 99:110420. [PMID: 35901931 DOI: 10.1016/j.cellsig.2022.110420] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Pyroptosis, characterized by activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effector inflammatory factors, has been shown to play a crucial role in atherosclerosis development. Long noncoding RNAs (lncRNAs) are involved in the progression of pyroptosis. However, the role and mechanism of the novel lncRNA gastric adenocarcinoma associated, positive CD44 regulator (Gaplinc), in endothelial cell pyroptosis during atherosclerosis development remain unexplored. Bioinformatics was performed to evaluate dysregulated lncRNAs in atherosclerotic mice fed a high-fat diet. The effect of Gaplinc on atherosclerosis progression in vivo was assessed via Oil Red O staining and fluorescence in situ hybridization. Its function in oxidized low-density lipoprotein (ox-LDL)-induced pyroptosis of endothelial cells was determined through ectopic expression. Additionally, RNA pull-down and immunoprecipitation (RIP) assays were performed to determine Gaplinc and transcription factor SP1 interactions. Then the pyroptosis pathway proteins were analyzed via immunofluorescence and western blotting. We found that lncRNA Gaplinc was highly expressed in ox-LDL-induced endothelial cells as well as in the plaque and plasma of high-fat diet-treated ApoE-/- mice. Gaplinc silencing significantly inhibited endothelial cell pyroptosis and atherosclerotic plaque formation. Mechanistically, Gaplinc could interact with SP1 to bind to the NLRP3 promoter and upregulate the target gene expression of NLRP3, facilitating endothelial cell pyroptosis and atherosclerotic plaque enlargement in high- fat diet-fed mice. In conclusion, our results revealed the underlying mechanism of the lncRNA Gaplinc /SP1/NLRP3 axis in endothelial cell pyroptosis, which may provide new potential targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-Hua Yan
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuo-Wang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ai-Hua Fei
- Department of General Family Medicine, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ya-Chen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Wu W, Wang M, Li C, Zhu Z, Zhang Y, Wu D, Ou Z, Liu Z. LncRNA Snhg1 Plays an Important Role via Sequestering rno-miR-139-5p to Function as a ceRNA in Acute Rejection After Rat Liver Transplantation Based on the Bioinformatics Analysis. Front Genet 2022; 13:827193. [PMID: 35719364 PMCID: PMC9203122 DOI: 10.3389/fgene.2022.827193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
In order to explore the molecular mechanism of acute rejection after liver transplantation (ARLT) in rats, we employed the GSE36798 data set in the Gene Expression Omnibust (GEO) database to construct a related ceRNA network. This dataset contained a total of 16 samples (8 graft samples and 8 plasma samples). Each kind of sample was divided into acute rejection (AR) groups and non-acute rejection (NR) groups, and each group had 4 replicates. First, we performed principal component analysis (PCA) with downloaded data to compare the difference between samples in a macroscopic way. Then, we used the “limma” R package to screen out differentially expressed miRNAs among different groups and used the “pheatmap” R package to perform bidirectional hierarchical clustering analysis for these differentially expressed miRNAs. The miRWalk database and the LncBase V.2 database were applied to predict downstream target genes and upstream-related lncRNAs, respectively. Meanwhile, the String database was used to predict the relationship between target genes, and the aforementioned results were processed for visualization by Cytoscape software. In addition, we exhibited the ultimate ceRNA network, including two lncRNAs, two miRNAs, and 77 mRNAs. Finally, we constructed a rat model of ARLT and applied graft specimens to relevant experimental verification. We found that the lncRNA Snhg1/rno-miR-139-5p axis might be involved in the regulation of ARLT in rats. In short, we demonstrated the differentially expressed miRNA profile, constructed a related ceRNA network, and screened out a possible regulatory axis. In view of the conservation of genes among species, this work was expected to provide a new strategy for the treatment and prevention of ARLT in the clinical setting.
Collapse
Affiliation(s)
- Wu Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Menghao Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Zhu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhang
- Department of Gastrointestinal Surgery, Chengdu Seventh People’s Hospital, Chengdu, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhibing Ou
- Department of Hepatobiliary Surgery, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Zhibing Ou, ; Zuojin Liu,
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhibing Ou, ; Zuojin Liu,
| |
Collapse
|
6
|
Li X, Zhang C, Peng X, Li Y, Chen G, Gou X, Zhou X, Ma C. A novel risk score model based on five angiogenesis-related long non-coding RNAs for bladder urothelial carcinoma. Cancer Cell Int 2022; 22:157. [PMID: 35440045 PMCID: PMC9019982 DOI: 10.1186/s12935-022-02575-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/06/2022] [Indexed: 01/09/2023] Open
Abstract
Background Tumour angiogenesis is an independent risk factor for bladder urothelial carcinoma (BUC) progression, but viable and promising antiangiogenic targets are understudied. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play prominent role in the tumour microenvironment and tumour angiogenesis. Methods The clinical data of BUC patients were obtained from TCGA database and clinical specimens of 138 BUC patients. Univariate and multivariate COX regression analyses were used to identify survival-related ARLNRs (sARLNRs) from The Molecular Signatures Database v4.0. Fisher’s exact probability method was used to detect the correlations between sARLNRs levels and clinicopathological characteristics. A chain of experiments including FACS, qPCR, immunohistochemistry, tube formation, migration and invasion assays, combining with co-culture models, were utilized to validate the clinical significance and angiogenetic correlation of sARLNRs. Results Five sARLNRs were employed to establish an angiogenesis-related risk score model, by which patients in the low-risk group obtained better overall survival than those in the high-risk group. The expression of AC005625.1 and AC008760.1 was significantly related to ECs percentage, tumour size and muscle invasion status. Besides, AC005625.1 and AC008760.1 expressed lower in BUC cell lines and tumour tissues than that in normal urothelial cells and adjacent normal tissues, with much lower levels in more advanced T stages. A prominently higher proportion of ECs was detected in tumour tissues with lower expression of AC005625.1 and AC008760.1. In the co-culture models, we found that knockdown of AC005625.1 and AC008760.1 in BUC cells increased the tube formation, migration and invasion abilities of HUVEC. The expression levels of CD31, VEGF-A, VIMENTIN and N-CADHERIN were also enhanced in HUVEC cells co-cultured with siR-AC005625.1 and siR-AC008760.1-treated T24 cells. Conclusion In the study, we identify five sARLNRs and validate their clinical significance, angiogenesis correlation and prognosis-predictive values in BUC. These findings may provide a new perspective and some promising antiangiogenic targets for clinical diagnosis and treatment strategies of BUC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02575-1.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,CAS Centre for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, China.
| | - Chao Ma
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China. .,The Fifth People's Hospital of Chongqing, Chongqing, China.
| |
Collapse
|
7
|
Peng PH, Hsu KW, Chieh-Yu Lai J, Wu KJ. The role of hypoxia-induced long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis. Biomed J 2021; 44:521-533. [PMID: 34654684 PMCID: PMC8640553 DOI: 10.1016/j.bj.2021.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/23/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are noncoding RNAs with length greater than 200 nt. The biological roles and mechanisms mediated by lncRNAs have been extensively investigated. Hypoxia is a proven microenvironmental factor that promotes solid tumor metastasis. Epithelial-mesenchymal transition (EMT) is one of the major mechanisms induced by hypoxia to contribute to metastasis. Many lncRNAs have been shown to be induced by hypoxia and their roles have been delineated. In this review, we focus on the hypoxia-inducible lncRNAs that interact with protein/protein complex and chromatin/epigenetic factors, and the mechanisms that contribute to metastasis. The role of a recently discovered lncRNA RP11-390F4.3 in hypoxia-induced EMT is discussed. Whole genome approaches to delineating the association between lncRNAs and histone modifications are discussed. Other topics related to hypoxia-induced tumor progression but require further investigation are also mentioned. The clinical significance and treatment strategy targeted against lncRNAs are discussed. The review aims to identify suitable lncRNA targets that may provide feasible therapeutic venues for hypoxia-involved cancers.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, Institute of New Drug Development, China Medical University, Taichung, Taiwan
| | | | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
8
|
Wang P, Yang S, Dai S, Ni Q, Liu H, Yu L, Lu K, Han G, Huang J. Expression and Clinical Value of LncRNA GAPLINC in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2021; 14:4039-4045. [PMID: 34262290 PMCID: PMC8274232 DOI: 10.2147/ott.s299394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background The long noncoding RNA (lncRNA) GAPLINC, or gastric adenocarcinoma predictive long intergenic ncRNA, plays a carcinogenic role in a variety of different tumor types. There is limited information regarding the biological function of GAPLINC in the development of esophageal squamous cell carcinoma (ESCC). Methods Surgical tissue samples of 40 patients undergoing ESCC radical surgery were collected, including ESCC tissues and corresponding adjacent normal tissues. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of lncRNA GAPLINC in the human ESCC cell line (TE11). The function role of LncRNA GAPLINC was detected after specific siRNA interference and overexpression in the TE11 cell line. The effects of LncRNA GAPLINC on ESCC cell proliferation, migration and invasion abilities were investigated by flow cytometry, using the Cell Counting Kit-8 (CCK-8), and by Transwell migration assays, respectively. Results The expression of lncRNA GAPLINC in ESCC tissues was significantly higher than that in corresponding adjacent normal tissues (P<0.05) and correlated with the degree of tumor differentiation (P<0.05). Compared with human esophageal normal epithelial cell lines, the expression of LncRNA GAPLINC was significantly higher in the human ESCC cell line (P<0.05). CCK-8 assays showed that LncRNA GAPLINC overexpression increased the growth rate of cells (P<0.05). Transwell experiments showed that LncRNA GAPLINC overexpression increased the ability of cell migration and invasion compared to control cells (P<0.05). Annexin V assay revealed that LncRNA GAPLINC silencing increased early stage apoptosis (P<0. 05). Conclusion Our results suggest that LncRNA GAPLINC may be used as a biomarker for the diagnosis and monitoring of ESCC, and may play an oncogenic role in ESCC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Song Yang
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Shengbin Dai
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Qingtao Ni
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Huilan Liu
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Lei Yu
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Kaijin Lu
- Department of Thoracic Surgery, The Fifth Affiliated Hospital of Nantong University, Jiangsu Taizhou People's Hospital, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Gaohua Han
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| | - Junxing Huang
- Department of Oncology, The Fifth Affiliated Hospital of Nantong University (Jiangsu Taizhou People's Hospital), Taizhou, Jiangsu, 225300, People's Republic of China
| |
Collapse
|
9
|
Ghafouri-Fard S, Tamizkar KH, Hussen BM, Taheri M. An update on the role of long non-coding RNAs in the pathogenesis of breast cancer. Pathol Res Pract 2021; 219:153373. [DOI: 10.1016/j.prp.2021.153373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
|
10
|
Rezaei O, Nateghinia S, Estiar MA, Taheri M, Ghafouri-Fard S. Assessment of the role of non-coding RNAs in the pathophysiology of Parkinson's disease. Eur J Pharmacol 2021; 896:173914. [PMID: 33508286 DOI: 10.1016/j.ejphar.2021.173914] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second main neurodegenerative disease causing motor abnormalities in the middle-aged and old individuals. In some cases, cognitive dysfunction also occurs. The clinical signs of PD are bradykinesia, rigidity and resting tremor. As these signs might be detected in other neurological conditions such as multiple systems atrophy and corticobasal degeneration, it is necessary to find specific and sensitive markers for this disorder. Non-coding RNAs are implicated in the different PD-associated features such as α-synuclein expression and Lewy body construction, mitochondrial dysfunction, apoptosis, neuroinflammation and defects in glial cell-derived neurotrophic factor. Several researches have confirmed dysregulation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in brain tissues, plasma exosomes and leukocytes of affected individuals or animal models of PD. A number of these transcripts directly regulate the neurodegenerative process in PD. In the current study, we review the current data about dysregulation of ncRNAs and the role of their genomic variants in the pathogenesis of PD.
Collapse
Affiliation(s)
- Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Nateghinia
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Li F, Chen ZH, Tan BB, Li Y. Long non-coding RNAs as potential markers for occurrence, progression, and prognosis of gastric cancer. Shijie Huaren Xiaohua Zazhi 2020; 28:544-552. [DOI: 10.11569/wcjd.v28.i13.544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, more and more attention has been paid to the relationship between long non-coding RNAs (lncRNAs) and tumor. Abnormal expression of lncRNAs plays an oncogenic or tumor-suppressing role in gastric cancer (GC) by participating in the biological behaviors of GC cells, such as proliferation, invasion, and migration. By summarizing the relevant literature, this paper discusses the research status, detection technology, and mechanism of action of lncRNAs in GC, as well as their potential as markers for occurrence, progression, prognosis, and drug resistance of GC. It is expected that lncRNAs can play an important role in early detection, early treatment, and effective improvement of chemotherapy resistance of GC to achieve personalized precise treatment of this malignancy.
Collapse
Affiliation(s)
- Fang Li
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Zi-Hao Chen
- Third Department of Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Bi-Bo Tan
- Third Department of Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yong Li
- Third Department of Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
12
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q, Zhao M. Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother 2020; 128:110338. [PMID: 32526454 DOI: 10.1016/j.biopha.2020.110338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia, the decline of tissue oxygen stress, plays a role in mediating cellular processes. Cardiovascular disease, relatively widespread with increased mortality, is closely correlated with oxygen homeostasis regulation. Besides, hypoxia-inducible factor-1(HIF-1) is reported to be a crucial component in regulating systemic hypoxia-induced physiological and pathological modifications like oxidative stress, damage, angiogenesis, vascular remodeling, inflammatory reaction, and metabolic remodeling. In addition, HIF1 controls the movement, proliferation, apoptosis, differentiation and activity of numerous core cells, such as cardiomyocytes, endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages. Here we review the molecular regulation of HIF-1 in cardiovascular diseases, intended to improve therapeutic approaches for clinical diagnoses. Better knowledge of the oxygen balance control and the signal mechanisms involved is important to advance the development of hypoxia-related diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Linyong Xu
- Xiangya School of Life Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| |
Collapse
|
13
|
Corrigendum. J Cell Mol Med 2020. [PMCID: PMC9332881 DOI: 10.1111/jcmm.15320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
He Y, Wu Z, Qiu C, Wang X, Xiang Y, Lu T, He Y, Shang T, Zhu Q, Wang X, Zeng Q, Zhang H, Li D. Long non-coding RNA GAPLINC promotes angiogenesis by regulating miR-211 under hypoxia in human umbilical vein endothelial cells. J Cell Mol Med 2019; 23:8090-8100. [PMID: 31589383 PMCID: PMC6850972 DOI: 10.1111/jcmm.14678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, we investigated the role of a long non-coding RNA GAPLINC in angiogenesis using human umbilical vein endothelial cells (HUVEC). We found that hypoxia and hypoxia-inducible factor 1α (HIF-1α) increased the expression of GAPLINC in HUVEC cells. Moreover, GAPLINC overexpression down-regulated miR-211 and up-regulated Bcl2 protein expression. Further rescue experiments confirmed that hypoxia directly increased GAPLINC expression. GAPLINC overexpression also increased cell migration and vessel formation which promoted angiogenesis, and these changes were attributed to the increased expression of vascular endothelial growth factor receptors (VEGFR) and delta-like canonical notch ligand 4 (DLL4) receptors. Finally, we demonstrated that GAPLINC promotes vessel formation and migration by regulating MAPK and NF-kB signalling pathways. Taken together, these findings comprehensively demonstrate that overexpression of GAPLINC increases HUVEC cells angiogenesis under hypoxia condition suggesting that GAPLINC can be a potential target for critical limb ischaemia (CLI) treatment.
Collapse
Affiliation(s)
- Yangyan He
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Ziheng Wu
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Chenyang Qiu
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Xiaohui Wang
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Yilang Xiang
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Tian Lu
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Yunjun He
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Tao Shang
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Qianqian Zhu
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Xun Wang
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Qinglong Zeng
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Hongkun Zhang
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| | - Donglin Li
- Department of Vascular SurgeryThe First Affiliated Hospital, College of Medicine, Zhejiang UniversityHang ZhouChina
| |
Collapse
|