1
|
Meng L, Lv H, Liu A, Cao Q, Du X, Li C, Li Q, Luo Q, Xiao Y. Albiflorin inhibits inflammation to improve liver fibrosis by targeting the CXCL12/CXCR4 axis in mice. Front Pharmacol 2025; 16:1577201. [PMID: 40371331 PMCID: PMC12074940 DOI: 10.3389/fphar.2025.1577201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025] Open
Abstract
Liver fibrosis is a common pathological feature of chronic hepatic injury that currently lacks effective therapeutic interventions. Albiflorin (ALB), a pinane-type monoterpene derived from Paeonia lactiflora Pall, has notable anti-inflammatory and hepatoprotective effects. However, the potential role of ALB against liver fibrosis is largely unknown. In this study, we discovered that ALB significantly inhibited CCl4-induced liver fibrosis in mice. This was evidenced by improvements in liver and kidney function indexes, fibrosis indicators, and histopathological findings. In vitro studies also showed that ALB inhibited TGF-β1-induced LX-2 cell activation and reduced the expression of α-SMA and collagen I. Additionally, we found that ALB mitigates inflammation and ameliorates liver fibrosis by targeting the CXCL12/CXCR4 axis, as confirmed using the CXCR4 inhibitor AMD3100 in CCl4-treated mice. Notably, combining ALB with metformin (MET) enhanced the inhibition of liver fibrosis progression. These findings highlight that ALB exerts anti-liver fibrosis effects by targeting the CXCL12/CXCR4 axis, underscoring its potential as a standalone treatment or as an adjuvant therapy.
Collapse
Affiliation(s)
- Lingjie Meng
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huijing Lv
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Anli Liu
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Cao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinyi Du
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chengjin Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qinggui Li
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qingqing Luo
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Xiao
- Institute of life sciences, Zunyi Medical University, Zunyi, Guizhou, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Zhao Q, Jin M, Zhao Q, Wang Z, Zhao C, Xue X, Qiao X, Qu P, Han D, Tao R. Natural products in traditional Chinese medicine for renal fibrosis: a comprehensive review. Front Pharmacol 2025; 16:1560567. [PMID: 40308781 PMCID: PMC12041090 DOI: 10.3389/fphar.2025.1560567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Renal fibrosis represents the terminal pathological manifestation of most chronic kidney diseases, driving progressive loss of renal function. Natural products have emerged as promising therapeutic agents for preventing and ameliorating renal fibrosis due to their multi-target efficacy and favorable safety profiles. In this review, we conducted a comprehensive literature search on PubMed using the keywords "natural product" and "renal fibrosis" from 2004 to 2025, identifying 704 relevant articles. We systematically categorize and discuss the biological effects of key natural products and formulations with antifibrotic potential, focusing on five major classes: glycosides, flavonoids, phenolic compounds, anthraquinones, and terpenoids. Representative compounds from each category are highlighted for their mechanisms of action, including modulation of oxidative stress, inflammation, autophagy, and fibrosis signaling pathways. This review aims to provide a theoretical foundation for the development of natural product-based therapies to combat renal fibrosis, offering insights into their therapeutic potential and future research directions.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Meihua Jin
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Qiang Zhao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Zhimei Wang
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Chun Zhao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xiaocong Xue
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Xikai Qiao
- Department of Immunology, Medical College, Dalian University, Dalian, Liaoning, China
| | - Peng Qu
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Donghe Han
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Maldonado MBC, Rabaglino MB, Cannon GH, Hansen PJ. Effects of endometrial embryokines on the preimplantation bovine embryo to create a gene expression signature consistent with a high competence phenotype†. Biol Reprod 2025; 112:447-457. [PMID: 39869817 DOI: 10.1093/biolre/ioaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/18/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. The identity of specific embryokines that enhance the competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate the effects of three putative embryokines in cattle on embryonic development to the blastocyst stage. The molecules tested were vascular endothelial growth factor A (VEGFA), C-X-C motif chemokine ligand 12 (CXCL12), and interleukin-6 (IL6). Molecules were added from day 4 to 7.5 of culture at 50 ng/mL (VEGFA and CXCL12) or 100 ng/mL (IL6). Endpoints were development to the blastocyst stage and transcript abundance for 94 specific genes involved in lineage commitment, epigenetic regulation, and other functions. Among the genes examined were eight whose transcript abundance has been related to embryo competence for survival after embryo transfer. None of the molecules increased the proportion of putative zygotes or cleaved embryos becoming blastocysts at day 7.5 of development. An embryo competence index based on a Bayesian multiple regression formula to weigh transcript abundance of the eight biomarker genes was not affected by treatment with VEGFA but was increased by both CXCL12 and IL6. The transcript abundance of 5 genes was modified by VEGFA, 19 by CXCL12, and 19 by IL6. A total of 11 genes were modified in a similar manner by CXCL12 and IL6. Most differentially expressed genes for CXCL12 and IL6 were downregulated, suggesting that the embryokines may promote a less energetically demanding metabolic state than would be the case in their absence.
Collapse
Affiliation(s)
| | - Maria Belen Rabaglino
- Department of Population Health Science, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gabrielle Heather Cannon
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC 27599-7555, USA
| | - Peter James Hansen
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Cao Q, Foley M, Gill AJ, Chou A, Chen XM, Pollock CA. Second Generation I-Body AD-214 Attenuates Unilateral Ureteral Obstruction (UUO)-Induced Kidney Fibrosis Through Inhibiting Leukocyte Infiltration and Macrophage Migration. Int J Mol Sci 2024; 25:13127. [PMID: 39684834 DOI: 10.3390/ijms252313127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Kidney fibrosis is the common pathological pathway in progressive chronic kidney disease (CKD), and current treatments are largely ineffective. The C-X-C chemokine receptor 4 (CXCR4) is crucial to fibrosis development. By using neural cell adhesion molecules as scaffolds with binding loops that mimic the shape of shark antibodies, fully humanized single-domain i-bodies have been developed. The first-generation i-body, AD-114, demonstrated antifibrotic effects in a mouse model of folic acid (FA)-induced renal fibrosis. The second-generation i-body, AD-214, is an Fc-fusion protein with an extended half-life, enhanced activity, and a mutated Fc domain to prevent immune activation. To investigate the renoprotective mechanisms of AD-214, RPTEC/TERT1 cells (a human proximal tubular cell line) were incubated with TGF-b1 with/without AD-214 and the supernatant was collected to measure collagen levels by Western blot. Mice with unilateral ureteral obstruction (UUO) received AD-214 intraperitoneally (i.p.) every two days for 14 days. Kidney fibrosis markers and kidney function were then analyzed. AD-214 suppressed TGF-b1-induced collagen overexpression in RPTEC/TERT1 cells. In UUO mice, AD-214 reduced extracellular matrix (ECM) deposition, restored kidney function, and limited leukocyte infiltration. In a scratch assay, AD-214 also inhibited macrophage migration. To conclude, i-body AD-214 attenuates UUO-induced kidney fibrosis by inhibiting leukocyte infiltration and macrophage migration.
Collapse
Affiliation(s)
- Qinghua Cao
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Michael Foley
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- AdAlta Limited, LIMS2 Building, Science Drive, La Trobe University, Melbourne, VIC 3086, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Angela Chou
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, Sydney, NSW 2065, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, St Leonards, NSW 2064, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Xin-Ming Chen
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Carol A Pollock
- Renal Medicine, Kolling Institute of Medical Research, Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
5
|
Meng P, Liu C, Li J, Fang P, Yang B, Sun W, Zhang Y. CXC chemokine receptor 7 ameliorates renal fibrosis by inhibiting β-catenin signaling and epithelial-to-mesenchymal transition in tubular epithelial cells. Ren Fail 2024; 46:2300727. [PMID: 38189094 PMCID: PMC10776045 DOI: 10.1080/0886022x.2023.2300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/26/2023] [Indexed: 01/09/2024] Open
Abstract
Renal fibrosis is a common feature of various chronic kidney diseases. However, the underlying mechanism remains poorly understood. The CXC chemokine receptor (CXCR) family plays a role in renal fibrosis; however, the detailed mechanisms have not been elucidated. In this study, we investigated the potential role of CXCR7 in mediating renal fibrosis. CXCR7 expression is decreased in unilateral ischemia-reperfusion injury (UIRI) and unilateral ureteral obstruction mouse models. Furthermore, CXCR7 was specifically expressed primarily in the Lotus Tetragonolobus Lectin-expressing segment of tubules, was slightly expressed in the peanut agglutinin-expressing segment, and was barely expressed in the Dolichos biflorus agglutinin-expressing segment. Administration of pFlag-CXCR7, an overexpression plasmid for CXCR7, significantly inhibited the activation of β-catenin signaling and protected against the progression of epithelial-to-mesenchymal transition (EMT) and renal fibrosis in a UIRI mouse model. Using cultured HKC-8 cells, we found that CXCR7 significantly downregulated the expression of active β-catenin and fibrosis-related markers, including fibronectin, Collagen I, and α-SMA. Furthermore, CXCR7 significantly attenuated TGF-β1-induced changes in β-catenin signaling, EMT and fibrosis. These results suggest that CXCR7 plays a crucial role in inhibiting the activation of β-catenin signaling and the progression of EMT and renal fibrosis. Thus, CXCR7 could be a novel therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Ping Meng
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Chunli Liu
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Jingchun Li
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Ping Fang
- Department of Laboratory Medicine, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Bo Yang
- Department of Clinical Nutrition, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Wei Sun
- Department of Central Laboratory, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
6
|
G SK, N K, Elumalai E, Gupta KK. Identification of CXCR4 inhibitors as a key therapeutic small molecule in renal fibrosis. J Biomol Struct Dyn 2024; 42:8441-8453. [PMID: 37592737 DOI: 10.1080/07391102.2023.2246575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023]
Abstract
The final stage of almost all chronic kidney diseases is renal fibrosis. Simple wounds or persistent inflammation can cause tissue inflammation, which, in the case of the kidney, results in scarring. Vascular sclerosis, tubulointerstitial fibrosis and glomerular fibrosis are all types of kidney fibrosis. Renal damage and fibrosis are caused by elevated expression of CXCR4. This study aimed to identify possible pharmacological agents which could bind to and inhibit isoform I of CXCR4 and determine their strength of interactions. The I-TASSER, Galaxyweb and Robetta were used to predict and refine the structure of the CXCR4 protein. ModBase was used to improve the loops, and then the quality was evaluated by using the ERRAT value (92.15) and Ramachandran plot. The improved 3D structure was subjected to small molecule database docking using Maestro (from Schrodinger) and the glide module. GROMACS was used to simulate molecules with the three top low glide scores and the best ADME properties. The best glide score was achieved by ligand ID 4990 (-11.5). Simulations, free energy landscape and residue decomposition analysis revealed that 4990 interacted more consistently with CXCR4 than the other two small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Senthil Kumar G
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Kishore N
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Elakkiya Elumalai
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
7
|
Andersson KE, Williams K. Cellular regenerative therapy in stress urinary incontinence: new frontiers?-a narrative review. Transl Androl Urol 2024; 13:1709-1716. [PMID: 39280677 PMCID: PMC11399031 DOI: 10.21037/tau-22-682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/10/2023] [Indexed: 09/18/2024] Open
Abstract
Background and Objective Even if treatment with stem cells has been shown to be safe and effective in many patients with stress urinary incontinence (SUI), there is still room for improvement using other regenerative medicine alternatives. Since the beneficial effects of stem cells are probably mediated by secretion of factors rather than by the cells themselves there is a good rationale for further exploring the therapeutic effects of the secretome and/or its components. However, homing factors such as stromal derived growth factor 1 (SDF-1; CXCL12), stimulation of stem cell growth and stem cell mobilization in vivo using low intensity shock wave therapy (Li-ESWT) or regenerative electrical stimulation (RES), are also promising approaches. Methods A literature search was performed based on PubMed, Scopus and Google Scholar. The search criteria included original basic science articles, systematic reviews and randomized control trials. All studies were published between 2000 and 2023. Selected, peer-reviewed studies were further analyzed to identify those of relevance. Keywords searched included: "female stress incontinence", "homing factors", "CXCL12", "secretome", "low intensity shockwave therapy" and "regenerative electrical stimulation". The peer-reviewed publications on the key word subjects that contained a novel addition to the existing body of literature were included. Key Content and Findings There is evidence from studies on non-human primates (NHPs) with experimental urinary sphincter injury that CXCL12 can restore sphincter structure and function. Studies with homing factors in human patients with SUI are still to be performed. A large number of clinical studies on the use of secretome or secretome products from mesenchymal stem cells (MSCs) on indications other than human SUI are already available. However, controlled clinical trials on patients with SUI, have to the best of our knowledge, not yet been performed. Also, RES has not been studied in patients with SUI. In contrast, there is clinical evidence that Li-ESWT may improve female SUI. Conclusions Treatment with homing factors, MSC secretome/secretome components, Li-ESWT and RES are promising frontiers in the treatment of human SUI caused by sphincter damage.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
- Institute for Laboratory Medicine, Lund University, Lund, Sweden
| | - Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| |
Collapse
|
8
|
Scharf P, Sandri S, Rizzetto F, Xavier LF, Grosso D, Correia-Silva RD, Farsky PS, Gil CD, Farsky SHP. GPCRs overexpression and impaired fMLP-induced functions in neutrophils from chronic kidney disease patients. Front Immunol 2024; 15:1387566. [PMID: 39253088 PMCID: PMC11381270 DOI: 10.3389/fimmu.2024.1387566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction G-protein coupled receptors (GPCRs) expressed on neutrophils regulate their mobilization from the bone marrow into the blood, their half-live in the circulation, and their pro- and anti-inflammatory activities during inflammation. Chronic kidney disease (CKD) is associated with systemic inflammatory responses, and neutrophilia is a hallmark of CKD onset and progression. Nonetheless, the role of neutrophils in CKD is currently unclear. Methods Blood and renal tissue were collected from non-dialysis CKD (grade 3 - 5) patients to evaluate GPCR neutrophil expressions and functions in CKD development. Results CKD patients presented a higher blood neutrophil-to-lymphocyte ratio (NLR), which was inversely correlated with the glomerular filtration rate (eGFR). A higher frequency of neutrophils expressing the senescent GPCR receptor (CXCR4) and activation markers (CD18+CD11b+CD62L+) was detected in CKD patients. Moreover, CKD neutrophils expressed higher amounts of GPCR formyl peptide receptors (FPR) 1 and 2, known as neutrophil pro- and anti-inflammatory receptors, respectively. Cytoskeletal organization, migration, and production of reactive oxygen species (ROS) by CKD neutrophils were impaired in response to the FPR1 agonist (fMLP), despite the higher expression of FPR1. In addition, CKD neutrophils presented enhanced intracellular, but reduced membrane expression of the protein Annexin A1 (AnxA1), and an impaired ability to secrete it into the extracellular compartment. Secreted and phosphorylated AnxA1 is a recognized ligand of FPR2, pivotal in anti-inflammatory and efferocytosis effects. CKD renal tissue presented a low number of neutrophils, which were AnxA1+. Conclusion Together, these data highlight that CKD neutrophils overexpress GPCRs, which may contribute to an unbalanced aging process in the circulation, migration into inflamed tissues, and efferocytosis.
Collapse
Affiliation(s)
- Pablo Scharf
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Felipe Rizzetto
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Lagoa Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rebeca D Correia-Silva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro S Farsky
- Dante Pazzanese Institute of Cardiology of Sao Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Ma KT, Wu YJ, Yang YX, Wu T, Chen C, Peng F, Du JR, Peng C. A novel phthalein component ameliorates neuroinflammation and cognitive dysfunction by suppressing the CXCL12/CXCR4 axis in rats with vascular dementia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118117. [PMID: 38548120 DOI: 10.1016/j.jep.2024.118117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.
Collapse
Affiliation(s)
- Kai-Ting Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Xin Yang
- Department of Epidemiology and Health Statistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Chu Chen
- Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Zhang H, Li Y, Liu Y. An updated review of the pharmacological effects and potential mechanisms of hederagenin and its derivatives. Front Pharmacol 2024; 15:1374264. [PMID: 38962311 PMCID: PMC11220241 DOI: 10.3389/fphar.2024.1374264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Hederagenin (HG) is a natural pentacyclic triterpenoid that can be isolated from various medicinal herbs. By modifying the structure of HG, multiple derivatives with superior biological activities and safety profiles have been designed and synthesized. Accumulating evidence has demonstrated that HG and its derivatives display multiple pharmacological activities against cancers, inflammatory diseases, infectious diseases, metabolic diseases, fibrotic diseases, cerebrovascular and neurodegenerative diseases, and depression. Previous studies have confirmed that HG and its derivatives combat cancer by exerting cytotoxicity, inhibiting proliferation, inducing apoptosis, modulating autophagy, and reversing chemotherapy resistance in cancer cells, and the action targets involved mainly include STAT3, Aurora B, KIF7, PI3K/AKT, NF-κB, Nrf2/ARE, Drp1, and P-gp. In addition, HG and its derivatives antagonize inflammation through inhibiting the production and release of pro-inflammatory cytokines and inflammatory mediators by regulating inflammation-related pathways and targets, such as NF-κB, MAPK, JAK2/STAT3, Keap1-Nrf2/HO-1, and LncRNA A33/Axin2/β-catenin. Moreover, anti-pathogen, anti-metabolic disorder, anti-fibrosis, neuroprotection, and anti-depression mechanisms of HG and its derivatives have been partially elucidated. The diverse pharmacological properties of HG and its derivatives hold significant implications for future research and development of new drugs derived from HG, which can lead to improved effectiveness and safety profiles.
Collapse
Affiliation(s)
- Huize Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
12
|
Wu Q, Chen Q, Xu D, Wang X, Ye H, Li X, Xiong Y, Li J, Zhou S, Miao J, Shen W, Liu Y, Niu H, Tang Y, Zhou L. C-X-C chemokine receptor type 4 promotes tubular cell senescence and renal fibrosis through β-catenin-inhibited fatty acid oxidation. J Cell Mol Med 2024; 28:e18075. [PMID: 38213100 PMCID: PMC10844696 DOI: 10.1111/jcmm.18075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/13/2024] Open
Abstract
The prevalence of chronic kidney disease (CKD) is highly increasing. Renal fibrosis is a common pathological feature in various CKD. Previous studies showed tubular cell senescence is highly involved in the pathogenesis of renal fibrosis. However, the inducers of tubular senescence and the underlying mechanisms have not been fully investigated. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled seven-span transmembrane receptor, increases renal fibrosis and plays an important role in tubular cell injury. Whereas, whether CXCR4 could induce tubular cell senescence and the detailed mechanisms have not studied yet. In this study, we adopted adriamycin nephropathy and 5/6 nephrectomy models, and cultured tubular cell line. Overexpression or knockdown of CXCR4 was obtained by injection of related plasmids. We identified CXCR4 increased in injury tubular cells. CXCR4 was expressed predominantly in renal tubular epithelial cells and co-localized with adipose differentiation-related protein (ADRP) as well as the senescence-related protein P16INK4A . Furthermore, we found overexpression of CXCR4 greatly induced the activation of β-catenin, while knockdown of CXCR4 inhibited it. We also found that CXCR4 inhibited fatty acid oxidation and triggered lipid deposition in tubular cells. To inhibit β-catenin by ICG-001, an inhibitor of β-catenin, could significantly block CXCR4-suppressed fatty acid oxidation. Taken together, our results indicate that CXCR4 is a key mediator in tubular cell senescence and renal fibrosis. CXCR4 promotes tubular cell senescence and renal fibrosis by inducing β-catenin and inhibiting fatty acid metabolism. Our findings provide a new theory for tubular cell injury in renal fibrosis.
Collapse
Affiliation(s)
- Qinyu Wu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Qiurong Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Dan Xu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiyun Ye
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiemei Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Tang
- Department of NephrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Division of Nephrology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Ren Z, Zhang H, Yu H, Zhu X, Lin J. Roles of four targets in the pathogenesis of graves' orbitopathy. Heliyon 2023; 9:e19250. [PMID: 37810014 PMCID: PMC10558314 DOI: 10.1016/j.heliyon.2023.e19250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/29/2023] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
Graves' orbitopathy (GO) is an autoimmune disease that involves complex immune systems. The mainstays of clinical management for this disease are surgery, targeted drugs therapy, and no-targeted drugs drug therapy. targeted drugs can improve therapeutic efficacy and enhance the quality of life for GO patients. However, as a second-line treatment for GO, targeted drugs such as tocilizumab and rituximab have very limited therapeutic effects and may be accompanied by side effects. The introduction of Teprotumumab, which targets IGF-IR, has made significant progress in the clinical management of GO. The pathophysiology of GO still remains uncertain as it involves a variety of immune cells and fibroblast interactions as well as immune responses to relevant disease targets of action. Therfore, learning more about immune response feedback pathways and potential targets of action will assist in the treatment of GO. In this discussion, we explore the pathogenesis of GO and relevant work, and highlight four potential targets for GO: Interleukin-23 receptor (IL-23 R), Leptin receptor (LepR), Orbital fibroblast activating factors, and Plasminogen activator inhibitor-1 (PAI-1). A deeper understanding of the pathogenesis of GO and the role of potential target signaling pathways is crucial for effective treatment of this disease.
Collapse
Affiliation(s)
- Ziqiang Ren
- College of Life Sciences, Yantai University, Shandong, China
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Hailing Zhang
- College of Life Sciences, Yantai University, Shandong, China
| | - Haiwen Yu
- College of Life Sciences, Yantai University, Shandong, China
| | - Xiqiang Zhu
- Fengjin Biomedical Co., Ltd, Shandong, China
| | - Jian Lin
- College of Life Sciences, Yantai University, Shandong, China
| |
Collapse
|
14
|
Hjazi A, Nasir F, Noor R, Alsalamy A, Zabibah RS, Romero-Parra RM, Ullah MI, Mustafa YF, Qasim MT, Akram SV. The pathological role of C-X-C chemokine receptor type 4 (CXCR4) in colorectal cancer (CRC) progression; special focus on molecular mechanisms and possible therapeutics. Pathol Res Pract 2023; 248:154616. [PMID: 37379710 DOI: 10.1016/j.prp.2023.154616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Colorectal cancer (CRC) is comprised of transformed cells and non-malignant cells including cancer-associated fibroblasts (CAF), endothelial vasculature cells, and tumor-infiltrating cells. These nonmalignant cells, as well as soluble factors (e.g., cytokines), and the extracellular matrix (ECM), form the tumor microenvironment (TME). In general, the cancer cells and their surrounding TME can crosstalk by direct cell-to-cell contact and via soluble factors, such as cytokines (e.g., chemokines). TME not only promotes cancer progression through growth-promoting cytokines but also provides resistance to chemotherapy. Understanding the mechanisms of tumor growth and progression and the roles of chemokines in CRC will likely suggest new therapeutic targets. In this line, a plethora of reports has evidenced the critical role of chemokine receptor type 4 (CXCR4)/C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis in CRC pathogenesis. In the current review, we take a glimpse into the role of the CXCR4/CXCL12 axis in CRC growth, metastasis, angiogenesis, drug resistance, and immune escape. Also, a summary of recent reports concerning targeting CXCR4/CXCL12 axis for CRC management and therapy has been delivered.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Rabia Noor
- Amna Inayat Medical College, Lahore, Pakistan
| | - Ali Alsalamy
- College of Medical Technique, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Muhammad Ikram Ullah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 75471, Aljouf, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of Research & Innovation, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
15
|
Jia J, Xu LH, Deng C, Zhong X, Xie KH, Han RY, Su HW, Tan RZ, Wang L. Hederagenin ameliorates renal fibrosis in chronic kidney disease through blocking ISG15 regulated JAK/STAT signaling. Int Immunopharmacol 2023; 118:110122. [PMID: 37023701 DOI: 10.1016/j.intimp.2023.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023]
Abstract
Interstitial fibrosis is the key pathological characteristics of chronic kidney diseases (CKD). In this study, we reported that hederagenin (HDG) can effectively improve the renal interstitial fibrosis and its mechanism. We constructed CKD animal models of ischemia reperfusion injury (IRI) and unilateral ureteral obstruction (UUO) respectively to observe the improvement effect of HDG on CKD. The results showed that HDG can effectively improve the pathological structure of kidney and the renal fibrosis in CKD mice. Meanwhile, HDG can also significantly reduce the expression of α-SMA and FN induced by TGF-β in Transformed C3H Mouse Kidney-1 (TCMK1) cells. Mechanistically, we performed transcriptome sequencing on UUO kidneys treated with HDG. By real time PCR screening of the sequencing results, we determined that ISG15 plays an important role in the intervention of HDG in CKD. Subsequently, we knocked-down ISG15 in TCMK1 and found that ISG15 knock-down significantly inhibited TGF-β-induced fibrotic protein expression and JAK/STAT activation. Finally, we performed electrotransfection and used liposomes to transfect ISG15 overexpression plasmids to up-regulate ISG15 in kidney and cells, respectively. We found that ISG15 can aggravate renal tubular cell fibrosis and abolish the protection of HDG on CKD. These results indicated that HDG significantly improves renal fibrosis in CKD by inhibiting ISG15 and its downstream JAK/STAT signaling pathway, which provides a new drug and research target for the subsequent treatment of CKD.
Collapse
Affiliation(s)
- Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ling-Hui Xu
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chong Deng
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China; Clinical Laboratory, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ke-Huan Xie
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hong-Wei Su
- Department of Urology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
16
|
Sinha N, Puri V, Kumar V, Nada R, Rastogi A, Jha V, Puri S. Urinary exosomal miRNA-663a shows variable expression in diabetic kidney disease patients with or without proteinuria. Sci Rep 2023; 13:4516. [PMID: 36934129 PMCID: PMC10024703 DOI: 10.1038/s41598-022-26558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/16/2022] [Indexed: 03/20/2023] Open
Abstract
Heterogeneity in the Diabetic Kidney Disease (DKD) diagnosis makes its rational therapeutics challenging. Although albuminuria characterizes DKD, reports also indicate its prevalence among non-proteinuric. Recent understanding of disease progression has thus inclined the focus on proximal tubular cell damage besides the glomeruli. A non-invasive approach exploiting exosomal miRNA derived from human kidney proximal tubular cell line was, hence, targeted. Upon miRNA profiling, three miRNAs, namely, hsa-miR-155-5p, hsa-miR-28-3p, and hsa-miR-425-5p were found to be significantly upregulated, while hsa-miR-663a was downregulated under diabetic conditions. Among these, hsa-miR-663a downregulation was more pronounced in non-proteinuric than proteinuric DKD subjects and was thus selected for the bioinformatics study. Ingenuity Pathway Analysis (IPA) narrowed on to IL-8 signaling and inflammatory response as the most enriched 'canonical pathway' and 'disease pathway' respectively, during DKD. Further, the putative gene network generated from these enriched pathways revealed experimentally induced diabetes, renal tubular injury, and decreased levels of albumin as part of mapping under 'disease and function'. Genes target predictions and annotations by IPA reiterated miR-663a's role in the pathogenesis of DKD following tubular injury. Overall, the observations might offer an indirect reflection of the underlying mechanism between patients who develop proteinuria and non-proteinuria.
Collapse
Affiliation(s)
- Nisha Sinha
- Centre for Stem Cell Tissue Engineering and Biomedical Excellence, Panjab University, Chandigarh, India
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashu Rastogi
- Department of Endocrinology and Metabolism, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vivekanand Jha
- The George Institute for Global Health, New Delhi, India.
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
17
|
Cambier S, Gouwy M, Proost P. The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell Mol Immunol 2023; 20:217-251. [PMID: 36725964 PMCID: PMC9890491 DOI: 10.1038/s41423-023-00974-6] [Citation(s) in RCA: 213] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/12/2022] [Indexed: 02/03/2023] Open
Abstract
Chemokines are an indispensable component of our immune system through the regulation of directional migration and activation of leukocytes. CXCL8 is the most potent human neutrophil-attracting chemokine and plays crucial roles in the response to infection and tissue injury. CXCL8 activity inherently depends on interaction with the human CXC chemokine receptors CXCR1 and CXCR2, the atypical chemokine receptor ACKR1, and glycosaminoglycans. Furthermore, (hetero)dimerization and tight regulation of transcription and translation, as well as post-translational modifications further fine-tune the spatial and temporal activity of CXCL8 in the context of inflammatory diseases and cancer. The CXCL8 interaction with receptors and glycosaminoglycans is therefore a promising target for therapy, as illustrated by multiple ongoing clinical trials. CXCL8-mediated neutrophil mobilization to blood is directly opposed by CXCL12, which retains leukocytes in bone marrow. CXCL12 is primarily a homeostatic chemokine that induces migration and activation of hematopoietic progenitor cells, endothelial cells, and several leukocytes through interaction with CXCR4, ACKR1, and ACKR3. Thereby, it is an essential player in the regulation of embryogenesis, hematopoiesis, and angiogenesis. However, CXCL12 can also exert inflammatory functions, as illustrated by its pivotal role in a growing list of pathologies and its synergy with CXCL8 and other chemokines to induce leukocyte chemotaxis. Here, we review the plethora of information on the CXCL8 structure, interaction with receptors and glycosaminoglycans, different levels of activity regulation, role in homeostasis and disease, and therapeutic prospects. Finally, we discuss recent research on CXCL12 biochemistry and biology and its role in pathology and pharmacology.
Collapse
Affiliation(s)
- Seppe Cambier
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Cui S, Shin YJ, Fang X, Lee H, Eum SH, Ko EJ, Lim SW, Shin E, Lee KI, Lee JY, Lee CB, Bae SK, Yang CW, Chung BH. CRISPR/Cas9-mediated A4GALT suppression rescues Fabry disease phenotypes in a kidney organoid model. Transl Res 2023:S1931-5244(23)00025-7. [PMID: 36805562 DOI: 10.1016/j.trsl.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/28/2023] [Accepted: 02/13/2023] [Indexed: 02/20/2023]
Abstract
The objective of this study was to investigate whether CRISPR/Cas9-mediated suppression of A4GALT could rescue phenotype of Fabry disease nephropathy (FDN) using human induced pluripotent stem cells (hiPSCs) derived kidney organoid system. We generated FDN patient-derived hiPSC (CMC-Fb-002) and FD-specific hiPSCs (GLA-KO) by knock-out (KO) of GLA in wild-type (WT) hiPSCs using CRISPR/Cas9. We then performed A4GALT KO in both CMC-Fb-002 and GLA-KO to make Fb-002-A4GALT-KO and GLA/A4GALT-KO, respectively. Using these hiPSCs, we generated kidney organoids and compared alpha-galactosidase-A enzyme (α-GalA) activity, globotriaosylceramide (Gb-3) deposition, and zebra body formation under electron microscopy (EM). We also compared mRNA expression levels using RNA-seq and qPCR. Generated hiPSCs showed typical pluripotency markers without chromosomal disruption. Expression levels of GLA in CMC-Fb-002 and GLA-KO and expression levels of A4GALT in Fb-002-A4GALT-KO and GLA/A4GALT-KO were successfully decreased compared to those in WT-hiPSCs, respectively. Generated kidney organoids using these hiPSCs expressed typical nephron markers. In CMC-Fb-002 and GLA-KO organoids, α-GalA activity was significantly decreased along with increased deposition of Gb-3 in comparison with WT organoids. Intralysosomal inclusion body was also detected under EM. However, these disease phenotypes were rescued by KO of A4GALT in both GLA/A4GALT-KO and Fb-002-A4GALT-KO kidney organoids. RNA-seq showed increased expression levels of genes related to FDN progression in both GLA-mutant organoids compared to those in WT. Such increases were rescued in GLA/A4GALT-KO or Fb-002-A4GALT-KO organoids. CRISPR/Cas9 mediated suppression of A4GALT could rescue FDN phenotype. Hence, it can be proposed as a therapeutic approach to treat FDN.
Collapse
Affiliation(s)
- Sheng Cui
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Xianying Fang
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hanbi Lee
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Hun Eum
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Woo Lim
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | | | | | | | - Chae Bin Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Chul Woo Yang
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
19
|
STAT-3 signaling role in an experimental model of nephropathy induced by doxorubicin. Mol Cell Biochem 2022; 478:981-989. [PMID: 36201104 DOI: 10.1007/s11010-022-04574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
Abstract
The focal segmental glomerulosclerosis (FSGS) is one of the most frequent glomerulopathy in the world, being considered a significative public health problem worldwide. The disease is characterized by glomerular loss mainly due to inflammation process and collagen fibers deposition. STAT-3 is a transcription factor associated with cell differentiation, migration and proliferation and in renal cells it has been related with fibrosis, acting on the progression of the lesion. Considering this perspective, the present study evaluated the involvement of STAT-3 molecule in an experimental model of FSGS induced by Doxorubicin (DOX). DOX mimics primary FSGS by causing both glomerular and tubular lesions and the inhibition of the STAT3 pathway leads to a decrease in fibrosis and attenuation of kidney damage. We described here a novel FSGS experimental model in a strain of genetically heterogeneous mice which resembles the reality of FSGS patients. DOX-injected mice presented elevated indices of albuminuria and glycosuria, that were significantly reduced in animals treated with a STAT-3 inhibitor (STATTIC), in addition with a decrease of some inflammatory molecules. Moreover, we detected that SOCS-3 (a regulator of STAT family) was up-regulated only in STATTIC-treated mice. Finally, histopathological analyzes showed that DOX-treated group had a significant increase in a tubulointerstitial fibrosis and tubular necrosis, which were not identified in both control and STATTIC groups. Thus, our results indicate that STAT-3 pathway possess an important role in experimental FSGS induced by DOX and may be an important molecule to be further investigated.
Collapse
|
20
|
CXCR4 inhibition attenuates calcium oxalate crystal deposition-induced renal fibrosis. Int Immunopharmacol 2022; 107:108677. [DOI: 10.1016/j.intimp.2022.108677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022]
|
21
|
Meng P, Huang J, Ling X, Zhou S, Wei J, Zhu M, Miao J, Shen W, Li J, Ye H, Niu H, Zhang Y, Zhou L. CXC Chemokine Receptor 2 Accelerates Tubular Cell Senescence and Renal Fibrosis via β-Catenin-Induced Mitochondrial Dysfunction. Front Cell Dev Biol 2022; 10:862675. [PMID: 35592244 PMCID: PMC9110966 DOI: 10.3389/fcell.2022.862675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/14/2022] [Indexed: 01/10/2023] Open
Abstract
Renal fibrosis is a common feature of various chronic kidney diseases (CKD). However, its underlying mechanism has not been totally clarified. C-X-C motif chemokine receptor (CXCR) family plays a role in renal fibrosis, however, detailed mechanisms have not been elucidated. Here, we report that CXCR2 has a potential role in tubular cell senescence and renal fibrosis, and is associated with β-catenin-activated mitochondrial dysfunction. CXCR2 is one of most increased members among CXCR family in unilateral ureteral obstruction (UUO) mice. CXCR2 was expressed primarily in tubules and co-localized with p16INK4A, a cellular senescence marker, and β-catenin. Administration of SB225002, a selective CXCR2 antagonist, significantly inhibited the activation of β-catenin signaling, restored mitochondrial function, protected against tubular cell senescence and renal fibrosis in unilateral ureteral obstruction (UUO) mice. In unilateral ischemia-reperfusion injury (UIRI) mice, treatment with interlukin-8 (IL-8), the ligand of CXCR2, further aggravated β-catenin activation, mitochondrial dysfunction, tubular cell senescence and renal fibrosis, whereas knockdown of p16INK4A inhibited IL-8-induced these effects. In vitro, SB225002 inhibited mitochondrial dysfunction and tubular cell senescence. Furthermore, ICG-001, a β-catenin signaling blocker, significantly retarded CXCR2-induced cellular senescence and fibrotic changes. These results suggest that CXCR2 promotes tubular cell senescence and renal fibrosis through inducing β-catenin-activated mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ping Meng
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- Department of Central Laboratory, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
| | - Jiewu Huang
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Xian Ling
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Jingyan Wei
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People’s Hospital of Gaozhou, Maoming, China
| | - Jinhua Miao
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Jiemei Li
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Huiyun Ye
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lili Zhou, ; Yunfang Zhang, ; Hongxin Niu,
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People’s Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Lili Zhou, ; Yunfang Zhang, ; Hongxin Niu,
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
- *Correspondence: Lili Zhou, ; Yunfang Zhang, ; Hongxin Niu,
| |
Collapse
|
22
|
Fan LL, Du R, Liu JS, Jin JY, Wang CY, Dong Y, He WX, Yan RQ, Xiang R. Loss of RTN3 phenocopies chronic kidney disease and results in activation of the IGF2-JAK2 pathway in proximal tubular epithelial cells. Exp Mol Med 2022; 54:653-661. [PMID: 35596061 PMCID: PMC9166791 DOI: 10.1038/s12276-022-00763-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
Reticulon 3 (RTN3) is an endoplasmic reticulum protein that has previously been shown to play roles in neurodegenerative diseases, but little is known about its function in the kidneys. The aim of the present study was to clarify the roles of RTN3 in chronic kidney disease (CKD) and kidney fibrosis. In this study, RTN3 levels were measured in kidney tissues from healthy controls and CKD or kidney fibrosis patients. An RTN3-null mouse model was generated to explore the pathophysiological roles of RTN3 in the kidneys. The underlying mechanisms were studied in primary proximal tubular epithelial cells and HEK293 cells in vitro. The results showed that (1) a reduction in RTN3 in mice induces CKD and kidney fibrosis; (2) decreased RTN3 expression is found in patients with CKD; (3) RTN3 plays critical roles in regulating collagen biosynthesis and mitochondrial function; and (4) mechanistically, RTN3 regulates these phenotypes by interacting with GC-Rich Promoter Binding Protein 1 (GPBP1), which activates the IGF2-JAK2-STAT3 pathway. Our study indicates that RTN3 might play crucial roles in CKD and kidney fibrosis and that a reduction in RTN3 in the kidneys might be a risk factor for CKD and kidney fibrosis. A protein (RTN3) known to be involved in neurodegenerative diseases may play a causative role in kidney fibrosis or scarring, and chronic kidney disease (CKD). An estimated 20% of CKD cases may have genetic causes and identifying the genes involved may help find better treatments. Ri-Qiang Yan at the University of Connecticut Health, Farmington, USA, and Rong Xian at Central South University, China, noticed that mice in which the gene coding for RTN3 was inactivated had kidney fibrosis. The researchers showed that RTN3 levels were also lower in kidney tissues of patients with CKD than in healthy individuals and that RTN3 levels were inversely proportional to disease progression. Further investigation showed that decreased RTN3 caused extra collagen deposition and misshapen mitochondria, the cellular powerhouses, in the kidney. These results identify a potential novel risk factor for CKD.
Collapse
Affiliation(s)
- Liang-Liang Fan
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ran Du
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Ji-Shi Liu
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jie-Yuan Jin
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Chen-Yu Wang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yi Dong
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China.,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China
| | - Wan-Xia He
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States
| | - Ri-Qiang Yan
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06032, United States.
| | - Rong Xiang
- Department of Nephrology, Third Xiangya Hospital of Central South University, Changsha, 410013, China. .,Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410013, China. .,Hunan Key Laboratory of Organ Fibrosis, Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
23
|
Wu X, Zhang H, Sui Z, Gao Y, Gong L, Chen C, Ma Z, Tang P, Yu Z. CXCR4 promotes the growth and metastasis of esophageal squamous cell carcinoma as a critical downstream mediator of HIF-1α. Cancer Sci 2022; 113:926-939. [PMID: 34990040 PMCID: PMC8898735 DOI: 10.1111/cas.15265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022] Open
Abstract
C–X–C motif chemokine receptor 4 (CXCR4) belongs to the CXC chemokine receptor family, which mediates the metastasis of tumor cells and promotes the malignant development of cancers. However, its biological role and regulatory mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. Here, we found that CXCR4 expression was associated with lymph node metastasis and a poor prognosis. In vitro and in vivo studies demonstrated that CXCR4 overexpression promoted ESCC cell proliferation, migration, invasion, and survival, whereas silencing CXCR4 induced the opposite effects. Mechanically, HIF‐1α transcriptionally regulates CXCR4 expression by binding to a hypoxia response element in its promoter. HIF‐1α‐induced ESCC cell migration and invasion were reversed by CXCR4 knockdown or treatment with MSX‐122, a CXCR4 antagonist. Collectively, these data revealed that the HIF‐1α/CXCR4 axis plays key roles in ESCC growth and metastasis and indicated CXCR4 as a potential target for ESCC treatment.
Collapse
Affiliation(s)
- Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhilin Sui
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yongyin Gao
- Department of Cardio-pulmonary Functions, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chuangui Chen
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thoracic Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| |
Collapse
|
24
|
Wen Y, Liu Y, Huang Q, Liu R, Liu J, Zhang F, Liu S, Jiang Y. Moringa oleifera Lam. seed extract protects kidney function in rats with diabetic nephropathy by increasing GSK-3β activity and activating the Nrf2/HO-1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153856. [PMID: 34856477 DOI: 10.1016/j.phymed.2021.153856] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Moringa oleifera Lam. (M. oleifera) seeds are widely used in traditional folk medicine and as nutritional supplements in the Middle East, Africa, and other regions. Published research showed that M. oleifera seeds (MOS) have pharmacological activities such as blood glucose-lowering, anti-inflammatory, and antitumor effects. However, experimental evidence on the use of MOS to treat diabetic nephropathy and its underlying mechanisms were rarely reported. PURPOSE To evaluate the therapeutic effects of MOS extract on the kidneys of high-fat diet (HFD)-fed rats with streptozotocin-induced diabetic nephropathy and reveal its underlying mechanisms. STUDY DESIGN HFD-fed rats with streptozotocin-induced diabetic nephropathy and high-glucose induced Human Renal Mesangial Cells (HRMC) were used to explore the protective effect of MOS on diabetic nephropathy in vivo and in vitro. METHODS HRMC were used to preliminarily evaluate the effect of MOS extract under high glucose conditions. For the in vivo study, rats were divided into the following 6 groups (n = 5): normal control group (NC), diabetic nephropathy model group (DN), high dose of MOS-treatment group (DN + MOS-H, 200 mg/kg/d); medium dose of MOS-treatment group (DN + MOS-M, 100 mg/kg/d); low dose of MOS-treatment group (DN + MOS-l, 50 mg/kg/d), and metformin-treatment group (DN + MET, 200 mg/kg/d). After 4 weeks of treatment, the damage caused by DN was assessed based on the related parameters of urine and blood. Periodic acid-Schiff (PAS) staining and hematoxylin and eosin (HE) staining were used to assess pathological tissue damage. Immunohistochemistry was used to detect nuclear factor erythroid-derived 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and phosphorylated-glycogen synthase kinase-3beta (P-GSK-3β) levels, whereas western blotting was used to detect Nrf2, HO-1, nephrin, GSK-3β, and p-GSK-3β levels. RESULTS MOS extract could inhibit the proliferation of HRMCs induced by high glucose levels. Compared with the rats in the DN group, MOS not only significantly reduced blood glucose levels and oxidative stress in the experimental rats but also improved their kidney function and reduced kidney tissue damage. Additionally, MOS extract increased GSK-3β activity and the expression of Nrf2 and HO-1. CONCLUSIONS This study showed that MOS could activate GSK-3β and Nrf2/HO-1 pathways to exert antioxidant and anti-renal fibrosis activities, and delay the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Ying Wen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yanyang Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jing Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Fengyu Zhang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
25
|
Hong X, Zhou Y, Wang D, Lyu F, Guan T, Liu Y, Xiao L. Exogenous Wnt1 Prevents Acute Kidney Injury and Its Subsequent Progression to Chronic Kidney Disease. Front Physiol 2021; 12:745816. [PMID: 34819873 PMCID: PMC8606814 DOI: 10.3389/fphys.2021.745816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022] Open
Abstract
Studies suggest that Wnt/β-catenin agonists are beneficial in the treatment of acute kidney injury (AKI); however, it remains elusive about its role in the prevention of AKI and its progression to chronic kidney disease (CKD). In this study, renal Wnt/β-catenin signaling was either activated by overexpression of exogenous Wnt1 or inhibited by administration with ICG-001, a small molecule inhibitor of β-catenin signaling, before mice were subjected to ischemia/reperfusion injury (IRI) to induce AKI and subsequent CKD. Our results showed that in vivo expression of exogenous Wnt1 before IR protected mice against AKI, and impeded the progression of AKI to CKD in mice, as evidenced by both blood biochemical and kidney histological analyses. In contrast, pre-treatment of ICG-001 before IR had no effect on renal Wnt/β-catenin signaling or the progression of AKI to CKD. Mechanistically, in vivo expression of exogenous Wnt1 before IR suppressed the expression of proapoptotic proteins in AKI mice, and reduced inflammatory responses in both AKI and CKD mice. Additionally, exogenous Wnt1 inhibited apoptosis of tubular cells induced by hypoxia-reoxygenation (H/R) treatment in vitro. To conclude, the present study provides evidences to support the preventive effect of Wnt/β-catenin activation on IR-related AKI and its subsequent progression to CKD.
Collapse
Affiliation(s)
- Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanni Zhou
- Department of Nephrology, Xiamen Hospital Affiliated to Beijing University of Chinese Medicine, Xiamen, China
| | - Dedong Wang
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Fuping Lyu
- Department of Endocrinology and Diabetes, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tianjun Guan
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Liangxiang Xiao
- Department of Nephrology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| |
Collapse
|
26
|
Yu HX, Lin W, Yang K, Wei LJ, Chen JL, Liu XY, Zhong K, Chen X, Pei M, Yang HT. Transcriptome-Based Network Analysis Reveals Hirudin Potentiates Anti-Renal Fibrosis Efficacy in UUO Rats. Front Pharmacol 2021; 12:741801. [PMID: 34621173 PMCID: PMC8490886 DOI: 10.3389/fphar.2021.741801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Hirudin has been widely used in the treatment of antifibrosis. Previous studies have shown that hirudin can effectively improve the clinical remission rate of chronic kidney disease. However, the mechanism of its renal protection has not been systematically investigated. Methods: In this study, the reliability of UUO-induced renal interstitial fibrosis was evaluated by histopathological verification. High-throughput transcriptome sequencing was used to elucidate the molecular mechanism of hirudin, differentially expressed mRNAs were identified, and their functions were analyzed by GO analysis and GSEA. In addition, the RNA-seq results were validated by in vitro and vivo experiments. Results: We found 322 identical differential expressed genes (IDEs) in the UUO hirudin-treated group compared with the sham group. Functional enrichment analysis indicated that cellular amino acid metabolic processes were the most obvious enrichment pathways in biological processes. In terms of molecular functional enrichment analysis, IDEs were mainly enriched in coenzyme binding, pyridoxal phosphate binding and other pathways. In addition, microbody is the most obvious pathway for cellular components. A total of 115 signaling pathways were enriched, and AMPK, JAK-STAT, and PI3K-Akt signaling pathways were the important signaling pathways enriched. We found that PI3K, p-Akt, and mTOR expression were significantly reduced by hirudin treatment. In particular, our results showed that hirudin could induce a decrease in the expression of autophagy-related proteins such as P62, LC3, Beclin-1 in TGF-β1-induced NRK-52E cells. Conclusion: Our results suggest that hirudin may protect the kidney by ameliorating renal autophagy impairment through modulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Hang-Xing Yu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Kang Yang
- Kidney Disease Treatment Center, The First Affiliated Hospital of Henan University of CM, Zhengzhou, China
| | - Li-Juan Wei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jun-Li Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin-Yue Liu
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ke Zhong
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Ming Pei
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hong-Tao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
27
|
Zhou S, Ling X, Meng P, Liang Y, Shen K, Wu Q, Zhang Y, Chen Q, Chen S, Liu Y, Zhou L. Cannabinoid receptor 2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. J Cell Mol Med 2021; 25:8957-8972. [PMID: 34414658 PMCID: PMC8435409 DOI: 10.1111/jcmm.16857] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Kidney is one of the most important organs in maintaining the normal life activities. With the high abundance of mitochondria, renal tubular cell plays the vital role in functioning in the reabsorption and secretion of kidney. Reports have shown that mitochondrial dysfunction is of great importance to renal tubular cell senescence and subsequent kidney ageing. However, the underlying mechanisms are not elucidated. Cannabinoid receptor 2 is one of the two receptors responsible for the activation of endocannabinoid system. CB2 is primarily upregulated in renal tubular cells in chronic kidney diseases and mediates fibrogenesis. However, the role of CB2 in tubular mitochondrial dysfunction and kidney ageing has not been clarified. In this study, we found that CB2 was upregulated in kidneys in 24-month-old mice and d-galactose (d-gal)-induced accelerated ageing mice, accompanied by the decrease in mitochondrial mass. Furthermore, gene deletion of CB2 in d-gal-treated mice could greatly inhibit the activation of β-catenin signalling and restore the mitochondrial integrity and Adenosine triphosphate (ATP) production. In CB2 knockout mice, renal tubular cell senescence and kidney fibrosis were also significantly inhibited. CB2 overexpression or activation by the agonist AM1241 could sufficiently induce the decrease in PGC-1α and a variety of mitochondria-related proteins and trigger cellular senescence in cultured human renal proximal tubular cells. CB2-activated mitochondrial dysfunction and cellular senescence could be blocked by ICG-001, a blocker for β-catenin signalling. These results show CB2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. The intrinsic mechanism may be related to its activation in β-catenin signalling.
Collapse
Affiliation(s)
- Shan Zhou
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xian Ling
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ping Meng
- Department of Central LaboratoryHuadu District People’s HospitalSouthern Medical UniversityGuangzhouChina
| | - Ye Liang
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kunyu Shen
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yunfang Zhang
- Department of Nephrologythe First People's Hospital of FoshanFoshanChina
| | - Qiyan Chen
- Department of Nephrologythe First People's Hospital of FoshanFoshanChina
| | - Shuangqin Chen
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
28
|
Shen W, Jia N, Miao J, Chen S, Zhou S, Meng P, Zhou X, Tang L, Zhou L. Penicilliumin B Protects against Cisplatin-Induced Renal Tubular Cell Apoptosis through Activation of AMPK-Induced Autophagy and Mitochondrial Biogenesis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:278-292. [PMID: 34395543 PMCID: PMC8314782 DOI: 10.1159/000514657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/21/2021] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Acute kidney injury (AKI) is at a high prevalence in hospitalized patients, especially in those receiving chemotherapy. Cisplatin is the most widely used chemotherapy drug; however, with its side effects that include nephrotoxicity, it also exhibits a risk of inducing AKI. Importantly, recent studies have shown that autophagy plays a protective role in cisplatin-induced AKI. However, therapeutic strategies and candidate drugs for inducing activation of autophagy remain limited. METHODS In the present study, we adopted a novel candidate drug from a deep sea-derived Penicillium strain, penicilliumin B, to testify its protective role in cisplatin-induced renal tubular cell injury. RESULTS Penicilliumin B exhibited protection against cisplatin-induced apoptosis in cultured renal tubular epithelial cells and in cisplatin-treated mice. Moreover, penicilliumin B maintained normal mitochondrial morphology and inhibited the production of mitochondrial reactive oxygen species. Further studies demonstrated that penicilliumin B enhanced autophagic flux, promoted the activation of multiple autophagy-related proteins, such as mTOR, Beclin-1, ATG5, PINK1, and LC3B, and induced the degradation of p62. Interestingly, we also found penicilliumin B triggered phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which is an upstream inducer of nearly all autophagy pathways and also an activator of mitochondrial biogenesis. These results suggest that AMPK may represent an activated site of penicilliumin B. Consistently, compound C, an AMPK inhibitor, significantly blocked the protective effects of penicilliumin B on mitochondria and apoptotic inhibition. CONCLUSION Taken together, our findings indicate that penicilliumin B represents a novel AMPK activator that may provide protection against renal tubular cell apoptosis through activation of AMPK-induced autophagy and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nan Jia
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuangqin Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, CAS, Guangzhou, China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
29
|
Schmid FA, Williams JK, Kessler TM, Stenzl A, Aicher WK, Andersson KE, Eberli D. Treatment of Stress Urinary Incontinence with Muscle Stem Cells and Stem Cell Components: Chances, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3981. [PMID: 33921532 PMCID: PMC8069473 DOI: 10.3390/ijms22083981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
Urinary incontinence (UI) is a major problem in health care and more than 400 million people worldwide suffer from involuntary loss of urine. With an increase in the aging population, UI is likely to become even more prominent over the next decades and the economic burden is substantial. Among the different subtypes of UI, stress urinary incontinence (SUI) is the most prevalent and focus of this review. The main underlying causes for SUI are pregnancy and childbirth, accidents with direct trauma to the pelvis or medical treatments that affect the pelvic floor, such as surgery or irradiation. Conservative approaches for the treatment of SUI are pelvic physiotherapy, behavioral and lifestyle changes, and the use of pessaries. Current surgical treatment options include slings, colposuspensions, bulking agents and artificial urinary sphincters. These treatments have limitations with effectiveness and bear the risk of long-term side effects. Furthermore, surgical options do not treat the underlying pathophysiological causes of SUI. Thus, there is an urgent need for alternative treatments, which are effective, minimally invasive and have only a limited risk for adverse effects. Regenerative medicine is an emerging field, focusing on the repair, replacement or regeneration of human tissues and organs using precursor cells and their components. This article critically reviews recent advances in the therapeutic strategies for the management of SUI and outlines future possibilities and challenges.
Collapse
Affiliation(s)
- Florian A. Schmid
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - J. Koudy Williams
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Thomas M. Kessler
- Department of Neuro-Urology, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Wilhelm K. Aicher
- Department of Urology, University Hospital Tubingen, University of Tubingen, 72076 Tubingen, Germany; (A.S.); (W.K.A.)
| | - Karl-Erik Andersson
- Institute of Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC 27101, USA; (J.K.W.); (K.-E.A.)
| | - Daniel Eberli
- Department of Urology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
30
|
Sluimer JC, Biessen EAL. Arterial lymphangiogenesis ReSPONDINg 2 a new cue: the R-spondin2/LRG4 axis limits VEGFR3-mediated lymphangiogenesis and reverse cholesterol transport. Cardiovasc Res 2021; 117:1417-1419. [PMID: 33712820 DOI: 10.1093/cvr/cvab050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Judith C Sluimer
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC, Maastricht, Netherlands.,BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh, UK
| | - Erik A L Biessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, Netherlands.,Department of Pathology, MUMC, Maastricht, Netherlands.,Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
31
|
Wu X, Zhang H, Sui Z, Wang Y, Yu Z. The biological role of the CXCL12/CXCR4 axis in esophageal squamous cell carcinoma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0140. [PMID: 33710803 PMCID: PMC8185864 DOI: 10.20892/j.issn.2095-3941.2020.0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor and the sixth leading cause of cancer-related death worldwide. Esophageal squamous cell carcinoma (ESCC) is the main histological type of esophageal cancer, and accounts for 90% of all cancer cases. Despite the progress made in surgery, chemotherapy, and radiotherapy, the mortality rate from esophageal cancer remains high, and the overall 5-year survival rate is less than 20%, even in developed countries. The C-X-C motif chemokine ligand 12 (CXCL12) is a member of the CXC chemokine subgroup, which is widely expressed in a variety of tissues and cells. CXCL12 participates in the regulation of many physiological and pathological processes by binding to its specific receptor, C-X-C motif chemokine receptor type 4 (CXCR4), where it causes embryonic development, immune response, and angiogenesis. In addition, increasing evidence indicates that the CXCL12/CXCR4 axis plays an important role in the biological processes of tumor cells. Studies have shown that CXCL12 and its receptor, CXCR4, are highly expressed in ESCC. This abnormal expression contributes to tumor proliferation, lymph node and distant metastases, and worsening prognosis. At present, antagonists and imaging agents against CXCL12 or CXCR4 have been developed to interfere with the malignant process and monitor metastasis of tumors. This article summarizes the structure, function, and regulatory mechanism of CXCL12/CXCR4 and its role in the malignancy of ESCC. Current results from preclinical research targeting CXCL12/CXCR4 are also summarized to provide a reference for the clinical diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Xianxian Wu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hongdian Zhang
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhilin Sui
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yang Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhentao Yu
- Departments of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
32
|
Bennington J, Lankford S, Magalhaes RS, Shankle D, Fanning J, Kartini C, Suparto I, Kusumawardhani W, Putra MA, Mariya S, Badlani G, Williams JK. Chemokine Therapy in Cats With Experimental Renal Fibrosis and in a Kidney Disease Pilot Study. Front Vet Sci 2021; 8:646087. [PMID: 33748219 PMCID: PMC7969654 DOI: 10.3389/fvets.2021.646087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic tubulointerstitial fibrosis is a common final pathway leading to end stage kidney disease in cats and has no effective treatment. The use of cell-based molecules to treat kidney fibrosis may be a promising approach. The objectives were to test the effects of intra-renal chemokine CXCL12 injection in a pre-clinical cat model of unilateral ischemia/reperfusion (I/R)-induced kidney fibrosis and then, within a clinical pilot study, test the safety/feasibility of CXCL12 injection in cats that might have early chronic kidney disease (CKD). Methods: Pre-clinical: Thirty cats received intra-renal injection of 100, 200, or 400 ng of recombinant human CXCL12, or sterile saline, into the I/R kidney 70 days post-injury, or were non-injured, non-injected controls (n = 6/group). Kidney collagen content was quantified 4 months post-treatment using Masson's Trichrome and Picrosirius Red (PSR) stained tissues. In a separate study (n = 2) exploring short-term effects of CXCL12, 200 ng CXCL12 was injected into I/R kidneys and then harvested either 30 min (n = 1) or 1 month (n = 1) post-injection. Kidney concentrations of CXCL12, matrix metalloproteinase 1 (MMP-1), and lysyl oxidase-like enzyme 2 (LOXL-2) were quantified via ELISA. Clinical Pilot: 14 client-owned cats with potential early kidney disease received a single-treatment, bilateral intra-renal injection of 200 ng CXCL12 (n = 7), or received no injection (n = 7). Blood/urine samples were collected monthly for 9 months to assess renal function and CKD staging. Results: Pre-clinical: I/R increased the affected kidney collagen content, which both mid and high doses of CXCL12 restored to normal (ps < 0.05 vs. untreated). I/R increased collagen fiber width, which both mid and high doses of CXCL12 restored to normal (p < 0.001 vs. untreated). Early changes in kidney MMP-1, associated with collagen breakdown, and subsequent decreases in LOXL-2, associated with collagen cross-linking, in response to CXCL12 treatment may contribute to these findings. Clinical Pilot: Bilateral intra-renal injection of CXCL12 using ultrasound guidance in cats with CKD was feasible and safe in a general practice clinical setting with no obvious side effects noted during the 9-month follow-up period. Conclusions: Intra-renal injection of CXCL12 may prove to be an effective treatment for kidney fibrosis in cats with CKD. Additional mechanistic and clinical evaluations are needed.
Collapse
Affiliation(s)
- Julie Bennington
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Renata S. Magalhaes
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Douglas Shankle
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| | - Jason Fanning
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, NC, United States
| | - Cucu Kartini
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Irma Suparto
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | | | - M. ArRaniri Putra
- Praktek Dokter Hewan Bersama Joint Veterinary Practice, Sunter, Indonesia
| | - Silmi Mariya
- Primate Research Center, Institut Pertanian Bogor, Bogor Agricultural University, Bogor, Indonesia
| | - Gopal Badlani
- Department of Urology, Wake Forest Baptist Health, Winston-Salem, NC, United States
| | - J. Koudy Williams
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, United States
| |
Collapse
|
33
|
Miao J, Huang J, Luo C, Ye H, Ling X, Wu Q, Shen W, Zhou L. Klotho retards renal fibrosis through targeting mitochondrial dysfunction and cellular senescence in renal tubular cells. Physiol Rep 2021; 9:e14696. [PMID: 33463897 PMCID: PMC7814487 DOI: 10.14814/phy2.14696] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide and is an intricate issue to whole medical society. Renal fibrosis is the common pathological feature for various kinds of CKD. As an anti-aging protein, Klotho is predominantly expressed in renal tubular epithelial cells. Reports show Klotho could retard age-related renal fibrosis. Mitochondrial dysfunction plays an important role in cellular senescence. However, the role of Klotho in mitochondrial dysfunction in CKD has not yet been determined. In this study, we treated unilateral ischemia-reperfusion (UIRI) mice and cultured human renal tubular epithelial cells (HKC-8) with Klotho. We assessed renal fibrosis, cellular senescence, and Wnt/β-catenin signaling. We also focused on mitochondrial function assessment. In UIRI mice, ectopic expression of Klotho greatly retarded fibrotic lesions and the activation of Wnt/β-catenin signaling. Interestingly, Klotho significantly preserved mitochondrial mass, inhibited mitochondrial reactive oxygen species (ROS) production and restored the expression of mitochondrial respiration chain complex subunits. Consequently, Klotho restrained cellular senescence. In HKC-8 cells, Klotho significantly inhibited Wnt1- and Wnt9a-induced mitochondrial injury, cellular senescence, and fibrotic lesions. These results suggest Klotho has a protective role in renal function through targeted protection on mitochondria. This further broads the understanding of the beneficial efficacies of Klotho in CKD.
Collapse
Affiliation(s)
- Jinhua Miao
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiewu Huang
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Congwei Luo
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huiyun Ye
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xian Ling
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- State Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseDivision of NephrologyNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory)GuangzhouChina
| |
Collapse
|
34
|
Wang R, Wu G, Dai T, Lang Y, Chi Z, Yang S, Dong D. Naringin attenuates renal interstitial fibrosis by regulating the TGF-β/Smad signaling pathway and inflammation. Exp Ther Med 2020; 21:66. [PMID: 33365066 PMCID: PMC7716641 DOI: 10.3892/etm.2020.9498] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Interstitial fibrosis is a typical feature of all progressive renal diseases. The process of fibrosis is frequently coupled with the presence of pro-fibrotic factors and inflammation. Naringin is a dihydroflavone compound that has been previously reported to exhibit anti-fibrotic effects in the liver, where it prevents oxidative damage. In the present study, a rat model of renal interstitial fibrosis and fibrosis cell model were established to evaluate the effects of naringin on inflammatory proteins and fibrosis markers in kidney of rats and NRK-52E cells, and to elucidate the role of the TGF-β/Smad signaling pathway in this mechanism. Compared with those in fibrotic NRK-52E cells that were stimulated by transforming growth factor-β (TGF-β), gene expression levels of α-smooth muscle actin (α-SMA), collagen 1 (COL1A1), collagen 3 (COL3A1), interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were all found to be significantly decreased in fibrotic NRK-52E cells following treatment with naringin (50, 100 and 200 ng/ml). Results from the histopathological studies showed that naringin treatment preserved the renal tissue structure and reduced the degree of fibrosis in the kidney tissues of rats that underwent unilateral ureteral obstruction (UUO). In addition, naringin administration reduced the expression of α-SMA, COL1A1, COL3A1, IL-1β, IL-6 and TNF-α in the kidneys of rats following UUO. The current study, using western blot analysis, indicated that naringin also downregulated the activation of Smad2/3 and the expression of Smad4, high-mobility group protein B1, activator protein-1, NF-κB and cyclooxygenase-2 whilst upregulating the expression of Smad7 in fibrotic NRK-52E cells and rats in the UUO group. In conclusion, naringin could antagonize renal interstitial fibrosis by regulating the TGF-β/Smad pathway and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Ruichen Wang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Gaolei Wu
- Department of Pharmacy, Dalian Municipal Women and Children's Medical Center, Dalian, Liaoning 116037, P.R. China
| | - Tiantian Dai
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yitian Lang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zhongchao Chi
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
35
|
Makitani K, Ogo N, Asai A. STX-0119, a novel STAT3 dimerization inhibitor, prevents fibrotic gene expression in a mouse model of kidney fibrosis by regulating Cxcr4 and Ccr1 expression. Physiol Rep 2020; 8:e14627. [PMID: 33112058 PMCID: PMC7592413 DOI: 10.14814/phy2.14627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/30/2022] Open
Abstract
Kidney fibrosis is a histological hallmark of chronic kidney disease (CKD) and is believed to be involved in the progression of CKD. Therefore, inhibition of kidney fibrosis is a potential strategy for slowing CKD progression. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is activated by interleukin-6 and is reported to be involved in fibrosis. Previously, S3I-201, an inhibitor of STAT3 phosphorylation, was shown to inhibit renal fibrosis in a mouse model, but its mechanism was not clarified completely. In this study, we investigated whether STX-0119, a new inhibitor of STAT3 dimerization, suppressed kidney fibrotic gene expression using a mouse model of kidney fibrosis and examined the underlying mechanisms. Kidney fibrosis was induced by unilateral ureteral obstruction (UUO), which was accompanied by upregulation of STAT3 target genes. STX-0119 administration suppressed the expression of fibrotic genes in UUO kidneys without affecting STAT3 phosphorylation. STX-0119 decreased Cxcr4 mRNA in cultured rat kidney fibroblasts and Ccr1 mRNA in blood cells from UUO mice, both of which are reported to be involved in the progression of kidney fibrosis. These results suggest that STX-0119 inhibits fibrotic gene expression in kidney by suppressing Cxcr4 and Ccr1 expression. This is the first report to indicate a part of the mechanism of the antifibrotic effects of a STAT3 inhibitor and suggests that STX-0119 may be a lead compound for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Kouki Makitani
- Center for Drug DiscoveryGraduate School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Naohisa Ogo
- Center for Drug DiscoveryGraduate School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| | - Akira Asai
- Center for Drug DiscoveryGraduate School of Pharmaceutical SciencesUniversity of ShizuokaShizuokaJapan
| |
Collapse
|
36
|
Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020; 24:3837-3855. [PMID: 32119183 PMCID: PMC7171406 DOI: 10.1111/jcmm.14973] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a high prevalence worldwide. Renal fibrosis is the common pathological feature in various types of CKD. However, the underlying mechanisms are not determined. Here, we adopted different CKD mouse models and cultured human proximal tubular cell line (HKC-8) to examine the expression of C-X-C motif chemokine receptor 4 (CXCR4) and β-catenin signalling, as well as their relationship in renal fibrosis. In CKD mice and humans with a variety of nephropathies, CXCR4 was dramatically up-regulated in tubules, with a concomitant activation of β-catenin. CXCR4 expression level was positively correlated with the expression of β-catenin target MMP-7. AMD3100, a CXCR4 receptor blocker, and gene knockdown of CXCR4 significantly inhibited the activation of JAK/STAT and β-catenin signalling, protected against tubular injury and renal fibrosis. CXCR4-induced renal fibrosis was inhibited by treatment with ICG-001, an inhibitor of β-catenin signalling. In HKC-8 cells, overexpression of CXCR4 induced activation of β-catenin and deteriorated cell injury. These effects were inhibited by ICG-001. Stromal cell-derived factor (SDF)-1α, the ligand of CXCR4, stimulated the activation of JAK2/STAT3 and JAK3/STAT6 signalling in HKC-8 cells. Overexpression of STAT3 or STAT6 decreased the abundance of GSK3β mRNA. Silencing of STAT3 or STAT6 significantly blocked SDF-1α-induced activation of β-catenin and fibrotic lesions. These results uncover a novel mechanistic linkage between CXCR4 and β-catenin activation in renal fibrosis in association with JAK/STAT/GSK3β pathway. Our studies also suggest that targeted inhibition of CXCR4 may provide better therapeutic effects on renal fibrosis by inhibiting multiple downstream signalling cascades.
Collapse
Affiliation(s)
- Yahong Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
- Division of NephrologyThe Second Affiliated Hospital of Xingtai Medical CollegeXingtaiChina
| | - Qijian Feng
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jinhua Miao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qinyu Wu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shan Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Weiwei Shen
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanqiu Feng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouChina
| | - Fan Fan Hou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Youhua Liu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lili Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchNational Clinical Research Center of Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|