1
|
Zou YX, Kantapan J, Wang HL, Li JC, Su HW, Dai J, Dechsupa N, Wang L. Iron-Quercetin complex enhances mesenchymal stem cell-mediated HGF secretion and c-Met activation to ameliorate acute kidney injury through the prevention of tubular cell apoptosis. Regen Ther 2025; 28:169-182. [PMID: 39802634 PMCID: PMC11720445 DOI: 10.1016/j.reth.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Acute kidney injury (AKI) is a life-threatening clinical syndrome with no effective treatment currently available. This study aims to investigate whether Iron-Quercetin complex (IronQ) pretreatment can enhance the therapeutic efficacy of Mesenchymal stem cells (MSCs) in AKI and explore the underlying mechanisms. Methods A cisplatin-induced AKI model was established in male C57BL/6 mice, followed by the intravenous administration of 1x10ˆ6 MSCs or IronQ-pretreated MSCs (MSCIronQ). Renal function, histology, and tubular cell apoptosis were analyzed three days post-treatment. In vitro, apoptosis was induced in mouse tubular epithelial cells (mTECs) using cisplatin, followed by treatment with MSCs or MSCIronQ conditioned medium (CM). Apoptosis was evaluated using TUNEL assay, RT-PCR, and western blotting. Furthermore, RNA sequencing (RNA-seq) was performed on MSCIronQ to explore the underlying mechanisms. Results Compared to MSC-treated AKI mice, those treated with MSCIronQ showed significantly improved renal function and histological outcomes, with reduced tubular cell apoptosis. A similar effect was observed in cisplatin-treated mTECs exposed to MSCIronQ-CM. Mechanistically, RNA-seq and subsequent validation revealed that IronQ treatment markedly upregulated the expression and secretion of hepatocyte growth factor (HGF) in MSCs. Furthermore, RNA interference or antibody-mediated neutralization of HGF effectively abolished the anti-apoptotic effects of MSCIronQ on mTECs. This mechanistic insight was reinforced by pharmacological inhibition of c-Met, the specific receptor of HGF, in both in vitro and in vivo models. Conclusions IronQ pretreatment enhances MSCs efficacy in AKI by promoting HGF expression and secretion, activating the HGF/c-Met pathway to suppress tubular cell apoptosis. These findings indicate that IronQ improves MSC-based therapies and offers insights into molecular mechanisms, supporting the development of better AKI treatments.
Collapse
Affiliation(s)
- Yuan-Xia Zou
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Children's Diagnosis and Treatment Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hong-Lian Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian-Chun Li
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Hong-Wei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Jian Dai
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Neurology, The Third People's Hospital, Luzhou, 646000, China
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Li Wang
- Research Center for Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
2
|
Li L, Cai W, Zhang H, Tang J, Yang Y, Huang Y, Xi Q, Zhang R. Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis. Phytother Res 2025; 39:1355-1371. [PMID: 39764683 DOI: 10.1002/ptr.8425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 03/11/2025]
Abstract
Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation. Notably, the kidney is the most sensitive of all tissues to iron-dependent ferroptosis, and the inhibition of ferroptosis is an effective therapeutic strategy for the treatment of kidney fibrosis. Nonetheless, the pathways involved in ferroptosis in renal fibrosis are still unclear. Bergapten, a natural coumarin derivative, is mainly found in bergapten essential oil, grapefruit juice, and other commonly used plants, and it has various pharmacological effects. However, the role that ferroptosis plays in renal fibrosis and the potential therapeutic benefits of bergapten remain unclear. In this study, we investigated the therapeutic effects of bergapten on renal fibrosis and its mechanisms. We investigated the anti-fibrotic effects of bergapten in in vivo and in vitro models of renal fibrosis. Initially, network pharmacological analysis was employed to predict the potential therapeutic impact of bergapten on renal fibrosis. We then explored the potential therapeutic role of bergapten in obstructive nephropathy, which is due to unilateral ureteral obstruction (UUO). Furthermore, RNA-Seq was conducted to investigate the possible mechanism of bergapten against renal fibrosis. Additionally, Bergapten demonstrated a significant improvement in TGF-β1-induced fibrosis and RSL3-induced renal tubular epithelial cell ferroptosis; these findings are consistent with those of the in vivo studies. Our findings indicate that bergapten is a potential treatment for renal fibrosis. Treatment with bergapten significantly reduced the expression of fibronectin and α-SMA in the damaged kidneys of UUO mice, thereby improving fibrosis. Meanwhile, bergapten protected against fibrosis caused by TGF-β1 and ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibitor RSL3. Significantly, bergapten therapy alleviated renal fibrosis by modulating ferroptosis. We found that bergapten inhibited PI3K phosphorylation and indirectly restored GPX4 expression. In conclusion, we have revealed the nephroprotective effect of bergapten, whose mechanism of action is related to the inhibition of ferroptosis, and it is expected that it will be developed as a therapeutic agent for the treatment of renal fibrosis. This study aims to explore the effect of bergapten on renal fibrosis ferroptosis. Collectively, these results demonstrate that bergapten is an inhibitor of ferroptosis and provides a new treatment strategy for diseases associated with ferroptosis.
Collapse
Affiliation(s)
- Li Li
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenqian Cai
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hao Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiuren Tang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjie Yang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Huang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qing Xi
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
4
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
5
|
Gong XX, Cao LH, Ni HX, Zang ZY, Chang H. Chinese herbal medicine for the treatment of diabetic nephropathy: From clinical evidence to potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118179. [PMID: 38636575 DOI: 10.1016/j.jep.2024.118179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.
Collapse
Affiliation(s)
- Xiao-Xiao Gong
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Lin-Hai Cao
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hong-Xia Ni
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Zi-Yan Zang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Li J, Yang J, Xian Q, Su H, Ni Y, Wang L. Kaempferitrin attenuates unilateral ureteral obstruction-induced renal inflammation and fibrosis in mice by inhibiting NOX4-mediated tubular ferroptosis. Phytother Res 2024; 38:2656-2668. [PMID: 38487990 DOI: 10.1002/ptr.8191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 06/13/2024]
Abstract
Tubular ferroptosis significantly contributes to renal inflammation and fibrosis, critical factors in chronic kidney disease (CKD). This study aims to investigate Kaempferitrin, a potent flavonoid glycoside from Bauhinia forficata leaves, renowned for its anti-inflammatory and antitumor effects, and to elucidate its potential mechanisms in mitigating inflammation and fibrosis induced by tubular ferroptosis. The study investigated Kaempferitrin's impact on tubular ferroptosis using a unilateral ureteral obstruction (UUO) model-induced renal inflammation and fibrosis. In vitro, erastin-induced ferroptosis in primary tubular epithelial cells (TECs) was utilized to further explore Kaempferitrin's effects. Additionally, NADPH oxidase 4 (NOX4) transfection in TECs and cellular thermal shift assay (CETSA) were conducted to identify Kaempferitrin's target protein. Kaempferitrin effectively improved renal function, indicated by reduced serum creatinine and blood urea nitrogen levels. In the UUO model, it significantly reduced tubular necrosis, inflammation, and fibrosis. Its renoprotective effects were linked to ferroptosis inhibition, evidenced by decreased iron, 4-hydroxynonenal (4-HNE), and malondialdehyde (MDA) levels, and increased glutathione (GSH). Kaempferitrin also normalized glutathione peroxidase 4 (GPX4) and Solute Carrier Family 7 Member 11(SLC7A11) expression, critical ferroptosis mediators. In vitro, it protected TECs from ferroptosis and consistently suppressed NOX4 expression. NOX4 transfection negated Kaempferitrin's antiferroptosis effects, while CETSA confirmed Kaempferitrin-NOX4 interaction. Kaempferitrin shows promise as a nephroprotective agent by inhibiting NOX4-mediated ferroptosis in tubular cells, offering potential therapeutic value for CKD.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jieke Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Qianwen Xian
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongwei Su
- Department of Urology, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Pan JH, Lee MK, Chang MH, Crowley LN, Le BL, Lee DS, Kim TG, Kim D, Lee K, Ko SG, Lee JH, Lee SH, Kim JK. Optimized combination of Cervus nippon (Sika deer), Angelica (Dangui), and Rehmannia (Suk-jihwang) mitigates LPS-induced inflammation: exploring signaling pathways through plasma metabolomics. Food Sci Biotechnol 2024; 33:1671-1683. [PMID: 38623429 PMCID: PMC11016027 DOI: 10.1007/s10068-023-01476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 04/17/2024] Open
Abstract
This study aimed to determine the optimal combination of three anti-inflammatory materials [i.e., Cervus nippon Temminck (CT), Angelica gigas Nakai (AN), and Rehmannia glutinosa (RG)] for the strongest anti-inflammatory potential. Eighteen combinations of the three materials were tested in LPS-stimulated RAW264.7 cells via assessing nitric oxide (NO). The best combination from in vitro studies was administered to LPS-treated C57BL/6J mice for five days. Subsequently, plasma metabolites were profiled by bioinformatics analyses and validations. As results, 2, 20, and 50 µg/mL of CT, AN, and RG (TM) were the most effective combination suppressing inflammation. In mice, TM mitigated hepatic inflammatory markers. Similarly, the metabolomics indicated that TM may suppress NF-κB signaling pathway, thereby alleviating hepatic inflammation. TM also decreased systemic and hepatic pro-inflammatory cytokines. Collectively, we found the optimal combination of TM for mitigating inflammation; thus further studies on safety, mechanisms, and clinical models are warranted for human applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01476-x.
Collapse
Affiliation(s)
- Jeong Hoon Pan
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
- Department of Food and Nutrition, Chosun University, Gwangju, 61452 Republic of Korea
| | - Min Kook Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Moon Han Chang
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
| | - Liana N. Crowley
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
| | - Brandy L. Le
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
| | - Da Seul Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365 Republic of Korea
| | - Tae Gyun Kim
- The Bioinformatix Inc, Cheongju, 28674 Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju, 55365 Republic of Korea
| | - Kangwook Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447 Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
- Biological Clock-Based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Suk Hee Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- BK21 FOUR Research Group for Omics-based Bio-health in Food Industry, Korea University, Sejong, Republic of Korea
- Biological Clock-Based Anti-aging Convergence RLRC, Korea University, Sejong, Republic of Korea
| | - Jae Kyeom Kim
- Department of Behavioral Health and Nutrition, University of Delaware, Newark, DE 19716 USA
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
- Department of Behavioral Health and Nutrition, University of Delaware, 15 Innovation Way, Newark, DE 19711 USA
| |
Collapse
|
8
|
Liu C, Zhao M, Chen J, Xu L, Wang K, Li G. Nodakenin alleviates ovariectomy-induced osteoporosis by modulating osteoblastogenesis and osteoclastogenesis. Eur J Pharmacol 2023; 960:176121. [PMID: 37866743 DOI: 10.1016/j.ejphar.2023.176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Osteoporosis, a systemic bone disease defined by decreased bone mass and deterioration of bone microarchitecture, is becoming a global concern. Nodakenin (NK) is a furanocoumarin-like compound isolated from the traditional Chinese medicine Radix Angelicae biseratae (RAB). NK has been reported to have various pharmacological activities, but osteoporosis has not been reported to be affected by NK. In this study, we used network pharmacology, molecular docking and molecular dynamics simulation techniques to identify potential targets and pathways of NK in osteoporosis. We found that NK treatment significantly promoted osteogenic differentiation of BMSCs while activating the PI3K/AKT/mTOR signalling pathway by measuring alkaline phosphatase activity and the expression of various osteogenic markers. In contrast, LY294002, an inhibitor of PI3K, reversed these changes and inhibited the osteogenic differentiation-enabling effect of NK. Meanwhile, prevent the Akt and NFκB signalling pathways by down-regulating c-Src and TRAF6 thereby effectively inhibiting RANKL-induced osteoclastogenesis. In addition, oral administration of NK to mice significantly elevated bone mass and ameliorated ovariectomized (OVX)-mediated bone microarchitectural disorders. In conclusion, these data suggest that NK attenuates OVX-induced bone loss by enhancing osteogenesis and inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- Chunxiao Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jingyue Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Liwen Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kaiying Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
9
|
Wang K, Liao Q, Chen X. Research progress on the mechanism of renal interstitial fibrosis in obstructive nephropathy. Heliyon 2023; 9:e18723. [PMID: 37593609 PMCID: PMC10428074 DOI: 10.1016/j.heliyon.2023.e18723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Renal fibrosis is a common result for various chronic kidney diseases developing to the end stage. It is a pathological process characterized by the destruction of normal kidney structure and the subsequent replacement with fibrous tissue, which primarily involves fibroblast proliferation and extracellular matrix deposition. Obstruction is a common cause of renal fibrosis, and obstructive renal fibrosis is a common disease in urology. Obstructive renal fibrosis, characterized by its insidious onset, is the result of a complex interplay of multiple factors. These factors encompass renal tubular epithelial cell injury, the presence of a hypoxic microenvironment in affected kidney tissue, inflammatory cell infiltration, release of inflammatory mediators, and the release of renal fibrosis growth factors, among others. This paper reviews the research progress on the mechanism and treatment of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Kangning Wang
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| | - Qiuling Liao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha City, Hunan Province, 410011, China
| | - Xiang Chen
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
10
|
Zhu B, Ni Y, Gong Y, Kang X, Guo H, Liu X, Li J, Wang L. Formononetin ameliorates ferroptosis-associated fibrosis in renal tubular epithelial cells and in mice with chronic kidney disease by suppressing the Smad3/ATF3/SLC7A11 signaling. Life Sci 2023; 315:121331. [PMID: 36586573 DOI: 10.1016/j.lfs.2022.121331] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
AIMS Chronic kidney disease (CKD) is characterized by interstitial fibrosis, while limited treatment drugs are available. Ferroptosis is a newly identified process that can trigger tubular atrophy and fibrosis. The aim of this study is to investigate the effects of formononetin (FN), a bioflavonoid, on ferroptosis and renal fibrosis. MAIN METHODS In vivo experiments, unilateral ureteral obstruction (UUO)- and folic acid (FA, 250 mg/kg)-induced CKD models were constructed in C57BL/6 mice of 6-8 weeks old, followed by the administration with 40 mg/kg/day FN by gavage. For in vitro experiments, ferroptosis was induced with RSL3 or erastin in primary mouse renal tubular epithelial cells (TECs), followed by the addition of indicated concentrations of FN. Then, the levels of ferroptosis and fibrosis were analyzed. The translocation of Smad3, ATF3, and Nrf2 from the cytoplasm to the nucleus was checked by western blotting. The interaction of Smad3 and ATF3 was detected by Co-immunoprecipitation. KEY FINDINGS FN dramatically ameliorated tubular injury along with reduced expression of the profibrotic genes including α-SMA, Col1a1, and fibronectin in both two CKD mouse models and RSL3/erastin-treated TECs. Furthermore, FN administration also significantly suppressed ferroptosis, as evidenced by increased expression of SLC7A11 and GPX4, and decreased levels of 4-HNE. In mechanism, FN disrupted the interaction between Smad3 and ATF3, resulting in the blocking of their translocation from the cytoplasm to the nucleus. In addition, FN also promoted the separation of the Nrf2/Keap1 complex and enhanced Nrf2 nuclear accumulation. SIGNIFICANCE FN alleviates CKD by impeding ferroptosis-associated fibrosis by suppressing the Smad3/ATF3/SLC7A11 signaling and could serve as a candidate therapeutic drug for CKD.
Collapse
Affiliation(s)
- Bingwen Zhu
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China; Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yufang Ni
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Yi Gong
- Southwest Medical University, 646000 Luzhou, Sichuan, China; Department of Nephrology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | | | - Huaiying Guo
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Xiaoheng Liu
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
| | - Jianchun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, 646000 Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Yi N, Mi Y, Xu X, Li N, Chen B, Yan K, Tan K, Zhang B, Wang L, Kuang G, Lu M. Nodakenin attenuates cartilage degradation and inflammatory responses in a mice model of knee osteoarthritis by regulating mitochondrial Drp1/ROS/NLRP3 axis. Int Immunopharmacol 2022; 113:109349. [DOI: 10.1016/j.intimp.2022.109349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
12
|
Tan F, Cao Y, Zheng L, Wang T, Zhao S, Chen J, Pang C, Xia W, Xia Z, Li N, Chi X. Diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization via miR-3061/Snail1 signaling. Front Immunol 2022; 13:922614. [PMID: 36159784 PMCID: PMC9503829 DOI: 10.3389/fimmu.2022.922614] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Background Macrophages play important roles in diabetes and sepsis-related intestinal injury. Accumulating evidence suggests that microRNAs (miRNAs) act as the fundamental link between macrophage polarization and tissue injury. However, the underlying mechanisms of miRNAs in regulating macrophage polarization–related intestinal injury under diabetes and sepsis conditions remain unclear. Methods The cecal ligation and puncture (CLP)–induced sepsis models were established in male wild-type (WT) and diabetic mice. Clodronate liposome was used to deplete macrophage. H&E staining, inflammatory cytokines [tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and IL-6], and intestinal mucosal barrier function markers [occludin, ZO-1, lipopolysaccharide (LPS), and intestinal fatty acid binding protein (iFABP)] were used to assess elevated intestinal damage. miRNA array, RNA-seq, and bioinformatic analysis were performed to detect the miRNA and messenger RNA (mRNA) expression and the potential regulation mechanism. In vitro, RAW264.7 cells were cultured in the absence or presence of high glucose and LPS, miR-3061 mimics, and Snail small interfering RNA stimulation, respectively, for further mechanism studies. Luciferase reporter assay was used to confirm the interplay between miRNA and its target genes. Results Compared with WT CLP mice, the diabetic CLP mice showed severe intestinal damage characterized by significant increases in Chui’s scores, expression of inflammatory cytokines (TNF-α, IL-1β, and IL-6), serum LPS and iFABP concentration, and significant reductions in tight junction protein occludin and ZO-1 levels. Macrophage depletion reversed the intestinal damage caused by CLP. The bioinformatic analysis revealed that miR-3061/Snail1 might be a potential regulation axis of macrophage polarization. Furthermore, high glucose and LPS stimulation increased M1 macrophage and reduced the levels of miR-3061, which was negatively associated with Snail1 in RAW264.7 cells. Mechanistic studies demonstrated that miR-3061 regulated macrophage polarization by targeting the Snail1 mRNA 3′‐untranslated region. Moreover, miR-3061 overexpression suppressed Snail1 expression and inhibited M1 macrophage and inflammatory cytokines. Conclusion This study elucidated that diabetes exacerbated sepsis-induced intestinal injury by promoting M1 macrophage polarization and further demonstrated that the miR-3061/Sani1 axis may be the potential target of macrophage polarization.
Collapse
Affiliation(s)
- Fang Tan
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Yuling Cao
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Lei Zheng
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Tao Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Shuhua Zhao
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Jiong Chen
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Changji Pang
- Department of Anaesthesiology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiyi Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhengyuan Xia
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong SAR, China
- The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
| | - Xinjin Chi
- Department of Anaesthesiology, the Seventh Affiliated Hospital of Sun Yat-Sen University (SYSU), Shenzhen, China
- *Correspondence: Xinjin Chi,
| |
Collapse
|
13
|
Tan Z, Si Y, Yu Y, Ding J, Huang L, Xu Y, Zhang H, Lu Y, Wang C, Yu B, Yuan L. Yi-Shen-Hua-Shi Granule Alleviates Adriamycin-Induced Glomerular Fibrosis by Suppressing the BMP2/Smad Signaling Pathway. Front Pharmacol 2022; 13:917428. [PMID: 35784691 PMCID: PMC9240271 DOI: 10.3389/fphar.2022.917428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a common clinical condition with manifestations of nephrotic syndrome and fibrosis of the glomeruli and interstitium. Yi-Shen-Hua-Shi (YSHS) granule has been shown to have a good effect in alleviating nephrotic syndrome (NS) in clinical and in animal models of FSGS, but whether it can alleviate renal fibrosis in FSGS and its mechanism and targets are not clear. In this study, we explored the anti-fibrotic effect and the targets of the YSHS granule in an adriamycin (ADR)-induced FSGS model and found that the YSHS granule significantly improved the renal function of ADR-induced FSGS model mice and also significantly reduced the deposition of collagen fibers and the expression of mesenchymal cell markers FN, vimentin, and α-SMA in the glomeruli of ADR-induced FSGS mice, suggesting that the YSHS granule inhibited the fibrosis of sclerotic glomeruli. Subsequently, a network pharmacology-based approach was used to identify the potential targets of the YSHS granule for the alleviation of glomerulosclerosis in FSGS, and the results showed that the YSHS granule down-regulated the expressions of BMP2, GSTA1, GATS3, BST1, and S100A9 and up-regulated the expressions of TTR and GATM in ADR-induced FSGS model mice. We also proved that the YSHS granule inhibited the fibrosis in the glomeruli of ADR-induced FSGS model mice through the suppression of the BMP2/Smad signaling pathway.
Collapse
Affiliation(s)
- Zhuojing Tan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yachen Si
- Department of Internal Medicine, No. 944 Hospital of Joint Logistics Support Force, Jiuquan, China
| | - Yan Yu
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiarong Ding
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Linxi Huang
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Xu
- Department of Nephrology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hongxia Zhang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yihan Lu
- Nanjing Medical University, Nanjing, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Bing Yu
- Department of Cell Biology, Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| | - Li Yuan
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Li Yuan, ; Bing Yu, ; Chao Wang,
| |
Collapse
|
14
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. The immune-enhancing effects of a mixture of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) or its active constituent nodakenin. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114893. [PMID: 34875347 DOI: 10.1016/j.jep.2021.114893] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A mixture (SH003) of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) has beneficial effects against several carcinomas. There have been few reports on an immune-enhancing activity of SH003 and its active constituent nodakenin. AIM OF THE STUDY This study aimed at identifying the immune-enhancing effect of SH003 and nodakenin. MATERIALS AND METHODS The immune-enhancing effect was evaluated using RAW264.7 macrophages, mouse primary splenocytes, and a cyclophosphamide (CP)-induced immunosuppression murine model. RESULTS The results show that SH003 or nodakenin stimulated the production levels of granulocyte colony-stimulating factor, IL-12, IL-2, IL-6, TNF-α, and nitric oxide (NO) and the expression levels of iNOS in RAW264.7 macrophages. SH003 or nodakenin also enhanced NF-κB p65 activation in RAW264.7 macrophages. SH003 or nodakenin stimulated the production levels of IFN-γ, IL-12, IL-2, TNF-α, and NO and the expression levels of iNOS in splenocytes. SH003 or nodakenin increased the splenic lymphocyte proliferation and splenic NK cell activity. In addition, SH003 or nodakenin increased the levels of IFN-γ, IL-12, IL-2, IL-6, and TNF-α in the serum and spleen of CP-treated mice, alleviating CP-induced immunosuppression. CONCLUSION Taken together, the results of this study show that SH003 improved immunosuppression through the activation of macrophages, splenocytes, and NK cells. These findings suggest that SH003 could be applied as a potential immunostimulatory agent for a variety of diseases caused or exacerbated by immunodeficiency.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
15
|
Li J, Yang J, Zhu B, Fan J, Hu Q, Wang L. Tectorigenin protects against unilateral ureteral obstruction by inhibiting Smad3-mediated ferroptosis and fibrosis. Phytother Res 2022; 36:475-487. [PMID: 34964161 DOI: 10.1002/ptr.7353] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 12/20/2022]
Abstract
Renal tubular epithelial cell (TEC) injury and fibrosis are the key factors of the pathogenesis of chronic kidney disease. Here, we reported that tectorigenin is effectively protected against obstructive nephropathy established by unilateral ureteral obstruction (UUO). In vivo, tectorigenin administration significantly alleviated the deteriorations of renal functions including blood urea nitrogen and creatinine. Meanwhile, results from the histology suggested that renal injury characterized by tubular cell damage and fibrosis lesions of kidneys in UUO group were markedly attenuated following tectorigenin treatment. Mechanistically, we found that tectorigenin treatment greatly inhibited Smad3 phosphorylation, and the transcription and protein level of Nox4, a newly identified direct downstream molecule of Smad3 and a modulator of ferroptosis, while it indirectly restored the expression of glutathione peroxidase 4, a negative regulator of ferroptosis. Consistent with in vivo studies, treatment with tectorigenin also suppressed the ferroptosis induced by erastin/RSL3 and fibrosis stimulated by transforming growth factor β1 (TGF-β1) in primary renal TECs. What is more, treatment with ferroptosis inhibitor, ferrostatin-1, also impeded TGF-β1 stimulated the profibrotic effects in TECs, indicating that tectorigenin may relieve fibrosis by inhibiting ferroptosis in TECs. In addition, tectorigenin treatment exhibited a similar tendency, which inhibited Smad3 activation, and the docking analysis revealed that tectorigenin docked well into the Smad3 binding cavity with strong binding affinity (-7.9 kcal/mol). Thus, this study deciphers the protective effect of tectorigenin against obstructive nephropathy through inhibiting Smad3-mediated ferroptosis and fibrosis.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Jieke Yang
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bingwen Zhu
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Junming Fan
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Chengdu Medical College, Chengdu, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou, China
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
17
|
Li J, Wang L, Tan R, Zhao S, Zhong X, Wang L. Nodakenin alleviated obstructive nephropathy through blunting Snail1 induced fibrosis. J Cell Mol Med 2020; 24:9752-9763. [PMID: 32696548 PMCID: PMC7520266 DOI: 10.1111/jcmm.15539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/21/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Tubulointerstitial fibrosis plays an important role in end‐stage renal failure, and there are only limited therapeutic options available to preserve organ function. In the present study, we identified that nodakenin, a coumarin isolated from the roots of Angelicae gigas, functions effectively against unilateral ureteral obstruction (UUO)‐induced fibrosis via down‐regulating Snail1 expression. We established UUO‐induced renal fibrosis in mice and then administered with nodakenin orally ata a dose of 1 and 10 mg/kg. The in‐vivo results indicated that nodakenin protected obstructive nephropathy through its anti‐inflammatory and anti‐fibrotic properties. Nodakenin prevented the infiltration of inflammatory cells, alleviated the levels of pro‐inflammatory cytokines, reduced the polarization of macrophages and down‐regulating the aberrant deposition of extracellular matrix at the site of injury. Of note, nodakenin dramatically impeded Smad3, NF‐κB p65 phosphorylation and Snail1 expression. In line with in vivo studies, nodakenin suppressed the expression of Snail1, Smad3 phosphorylation and fibrogenesis in TGF‐β1‐treated renal epithelial cells in‐vitro. Furthermore, we found that the effect of nodaknin against fibrosis was reversed in Snail1 overexpressing cells, whereas nodakenin could not further reduce expression of fibrogenesis in Snail1 silenced cells, suggesting that nodaknein may function through a Snail1‐dependent manner. Collectively, this study reveal a critical role of nodakenin in the cure of renal fibrosis.
Collapse
Affiliation(s)
- Jianchun Li
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Lu Wang
- Division of Nephrology, The Affiliated Baiyun hospital of Guizhou Medical University, Guiyang, China
| | - Ruizhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Zhao
- Department of Intensive Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|