1
|
Bieerkehazhi S, Abdullahi A, Khalaf F, Barayan D, de Brito Monteiro L, Samadi O, Rix G, Jeschke MG. β-Adrenergic blockade attenuates adverse adipose tissue responses after burn. J Mol Med (Berl) 2024; 102:1245-1254. [PMID: 39145814 DOI: 10.1007/s00109-024-02478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Severe burn injuries are defined by a prolonged hypermetabolic response characterized by increases in resting energy expenditure, systemic catabolism, and multi-organ dysfunction. The sustained elevation of catecholamines following a burn injury is thought to significantly contribute to this hypermetabolic response, leading to changes in adipose tissue such as increased lipolysis and the browning of subcutaneous white adipose tissue (WAT). Failure to mitigate these adverse changes within the adipose tissue has been shown to exacerbate the post-burn hypermetabolic response and lead to negative outcomes. Propranolol, a non-selective β-blocker, has been clinically administered to improve outcomes of pediatric and adult burn patients, but there is inadequate knowledge of its effects on the distinct adipose tissue depots. In this study, we investigated the adipose depot-specific alterations that occur in response to burn injury. Moreover, we explored the therapeutic effects of β-adrenoceptor blockade via the drug propranolol in attenuating these burn-induced pathophysiological changes within the different fat depots. Using a murine model of thermal injury, we show that burn injury induces endoplasmic reticulum (ER) stress in the epididymal (eWAT) but not in the inguinal (iWAT) WAT depot. Conversely, burn injury induces the activation of key lipolytic pathways in both eWAT and iWAT depots. Treatment of burn mice with propranolol effectively mitigated adverse burn-induced alterations in the adipose by alleviating ER stress in the eWAT and reducing lipolysis in both depots. Furthermore, propranolol treatment in post-burn mice attenuated UCP1-mediated subcutaneous WAT browning following injury. Overall, our findings suggest that propranolol serves as an effective therapeutic intervention to mitigate the adverse changes induced by burn injury, including ER stress, lipotoxicity, and WAT browning, in both adipose tissue depots. KEY MESSAGES: Burn injury adversely affects adipose tissue metabolism via distinct changes in both visceral and subcutaneous adipose depots. Propranolol, a non-selective β-adrenergic blocker, attenuates many of the adverse adipose tissue changes mediated by burn injury.
Collapse
Affiliation(s)
- Shayahati Bieerkehazhi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Abdikarim Abdullahi
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Fadi Khalaf
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Dalia Barayan
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Lauar de Brito Monteiro
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Osai Samadi
- Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Graham Rix
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, McMaster University, Hamilton, ON, Canada
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Biochemistry, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
- Department of Surgery, McMaster University, Hamilton, ON, Canada.
- David Braley Research Institute, C5-104, 20 Copeland Ave., Hamilton, ON, L8L 2X2, Canada.
- Centre for Burn Research, Hamilton Health Sciences, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Xie CQ, Fan FX, Li PT, Cai C, Li XZ, Song JH, Xu JG, Xu QL. [Effects and mechanism of diammonium glycyrrhizinate on liver injury in severely scalded rats]. ZHONGHUA SHAO SHANG YU CHUANG MIAN XIU FU ZA ZHI 2022; 38:735-743. [PMID: 36058696 DOI: 10.3760/cma.j.cn501225-20220120-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Objective: To investigate the effects and mechanism of diammonium glycyrrhizinate (DG) on liver injury in severely scalded rats. Methods: The experimental research method was used. Fifty-four female Sprague-Dawley rats aged 7-9 weeks were divided into sham injury group with simulated injury on the back, and simple scald group and scald+DG group with scald of 30% total body surface area on the back, with 18 rats in each group. Rats in sham injury group were not specially treated after injury, and rats in simple scald group and scald+DG group were rehydrated for antishock. Besides, rats in scald+DG group were injected intraperitoneally with 50 mg/kg DG at post injury hour (PIH) 1, 25, and 49. Rats in the three groups were collected, the serum content of liver function injury related indexes including aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), total protein, and albumin was measured by automatic biochemical assay analyzer, and serum content of ornithine carbamoyl transferase (OCT) was measured by enzyme-linked immunosorbent assay method at PIH 24, 48, and 72; hepatic histopathological changes at PIH 72 were observed by hematoxylin-eosin staining; the mRNA expressions of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), glucose regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), and protein kinase R-like endoplasmic reticulum kinase (PERK) in liver tissue were detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction at PIH 24, 48, and 72. The protein expressions of Bcl-2, Bax, GRP78, PERK, and ATF4 in liver tissue were detected by Western blotting at PIH 72 in sham injury group and PIH 24, 48, and 72 in simple scald group and scald+DG group. The number of samples was 6 in each group at each time point. Data were statistically analyzed with analysis of variance for factorial design, one-way analysis of variance, and Bonferroni test. Results: Compared with that in sham injury group, the serum content of AST, ALT, and LDH was significantly increased (P<0.01), and the serum content of total protein and albumin was significantly decreased (P<0.05 or P<0.01) of rats in simple scald group at all post-injury time points. Compared with those in simple scald group, the serum AST content of rats in scald+DG group at PIH 24 was decreased significantly (P<0.05); the serum AST, ALT, and LDH content of rats in scald+DG group at PIH 48 was decreased significantly (P<0.01), and the serum total protein content was increased significantly (P<0.01); the serum AST, ALT, and LDH content of rats in scald+DG group at PIH 72 was decreased significantly (P<0.01), and the serum total protein and albumin content was increased significantly (P<0.01). At PIH 24, 48, and 72, the serum OCT content of rats in simple scald group was (48.5±3.9), (40.8±2.4), and (38.7±2.0) U/L, which was significantly higher than (15.1±2.5), (15.7±2.6), and (16.4±3.7) U/L in sham injury group (P<0.01), and (39.0±4.5), (31.8±2.0), and (22.1±2.6) U/L in scald+DG group (P<0.05 or P<0.01). At PIH 72, the cells in liver tissue of rats in sham injury group had normal morphology and regular arrangement, with no obvious inflammatory cell infiltration; the cells in liver tissue of rats in simple scald group had disordered arrangement, diffuse steatosis, and moderate inflammatory cell infiltration; the cells in liver tissue of rats in scald+DG group arranged regularly, with scattered steatosis and a small amount of inflammatory cell infiltration. Compared with those in sham injury group, the Bcl-2 mRNA (P<0.05 or P<0.01) and protein expressions of liver tissue were significantly decreased, and the mRNA (P<0.01) and protein expressions of Bax were significantly increased in rats in simple scald group at PIH 24, 48, and 72. Compared with those in simple scald group, the mRNA (P<0.05) and protein expressions of Bax in liver tissue of rats in scald+DG group were decreased significantly at PIH 48; the mRNA (P<0.01) and protein expressions of Bax in liver tissue of rats in scald+DG group were significantly decreased, and the mRNA (P<0.01) and protein expressions of Bcl-2 were significantly increased at PIH 72. Compared with those in sham injury group, the mRNA (P<0.05 or P<0.01) and protein expressions of ATF4, GRP78, and PERK in liver tissue were significantly increased in rats in simple scald group at all post-injury time points. Compared with those in simple scald group, the mRNA (P<0.01) and protein expressions of ATF4 in liver tissue of rats in scald+DG group at PIH 48 were significantly decreased, and the mRNA (P<0.05 or P<0.01) and protein expressions of ATF4, GRP78, and PERK were significantly decreased in liver tissue of rats in scald+DG group at PIH 72. Conclusions: DG can effectively reduce the degree of liver injury in rats after severe scald, and the mechanism may involve alleviating endoplasmic reticulum stress and mitigating mitochondrial damage.
Collapse
Affiliation(s)
- C Q Xie
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - F X Fan
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - P T Li
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - C Cai
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - X Z Li
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - J H Song
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - J G Xu
- Department of Immunology, School of Basic Medical Sciences of Anhui Medical University, Hefei 230032, China
| | - Q L Xu
- Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| |
Collapse
|
4
|
Müllebner A, Herminghaus A, Miller I, Kames M, Luís A, Picker O, Bauer I, Kozlov AV, Duvigneau JC. Tissue Damage, Not Infection, Triggers Hepatic Unfolded Protein Response in an Experimental Rat Peritonitis Model. Front Med (Lausanne) 2022; 9:785285. [PMID: 35372445 PMCID: PMC8965740 DOI: 10.3389/fmed.2022.785285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Abdominal surgery is an efficient treatment of intra-abdominal sepsis. Surgical trauma and peritoneal infection lead to the activation of multiple pathological pathways. The liver is particularly susceptible to injury under septic conditions. Liver function is impaired when pathological conditions induce endoplasmic reticulum (ER) stress. ER stress triggers the unfolded protein response (UPR), aiming at restoring ER homeostasis, or inducing cell death. In order to translate basic knowledge on ER function into the clinical setting, we aimed at dissecting the effect of surgery and peritoneal infection on the progression of ER stress/UPR and inflammatory markers in the liver in a clinically relevant experimental animal model. Methods Wistar rats underwent laparotomy followed by colon ascendens stent peritonitis (CASP) or surgery (sham) only. Liver damage (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and De Ritis values), inflammatory and UPR markers were assessed in livers at 24, 48, 72, and 96 h postsurgery. Levels of inflammatory (IL-6, TNF-α, iNOS, and HO-1), UPR (XBP1, GRP78, CHOP), and apoptosis (BAX/Bcl-XL) mRNA were determined by qPCR. Splicing of XBP1 (XBP1s) was analyzed by gel electrophoresis, p-eIF2α and GRP78 protein levels using the western blots. Results Aspartate aminotransferase levels were elevated 24 h after surgery and thereafter declined with different kinetics in sham and CASP groups. Compared with sham De Ritis ratios were significantly higher in the CASP group, at 48 and 96 h. CASP induced an inflammatory response after 48 h, evidenced by elevated levels of IL-6, TNF-α, iNOS, and HO-1. In contrast, UPR markers XBP1s, p-eIF2α, GRP78, XBP1, and CHOP did not increase in response to infection but paralleled the kinetics of AST and De Ritis ratios. We found that inflammatory markers were predominantly associated with CASP, while UPR markers were associated with surgery. However, in the CASP group, we found a stronger correlation between XBP1s, XBP1 and GRP78 with damage markers, suggesting a synergistic influence of inflammation on UPR in our model. Conclusion Our results indicate that independent mechanisms induce ER stress/UPR and the inflammatory response in the liver. While peritoneal infection predominantly triggers inflammatory responses, the conditions associated with organ damage are predominant triggers of the hepatic UPR.
Collapse
Affiliation(s)
- Andrea Müllebner
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria.,Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anna Herminghaus
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ingrid Miller
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Kames
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andreia Luís
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, Vienna, Austria
| | - Johanna Catharina Duvigneau
- Department of Biomedical Sciences, Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Zhang Y, Huang S, Yang G, Zou L, Huang X, Liu S. The Role of miRNAs during Endoplasmic Reticulum Stress Induced Apoptosis in Digestive Cancer. J Cancer 2021; 12:6787-6795. [PMID: 34659567 PMCID: PMC8517994 DOI: 10.7150/jca.62352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Digestive cancer is one of the leading causes of cancer mortality in the world. Despite a number of studies being conducted, the exact mechanism for treating digestive cancer has not yet been fully understood. To survive, digestive cancer cells are subjected to various internal and external adverse factors, such as hypoxia, nutritional deficiencies or drug toxicity, resulting in accumulation of misfolded and unfolded protein in endoplasmic reticulum (ER) lumen further leading to ER stress and the unfolded protein response (UPR). During the last years, studies on the relationship between ER stress and microRNAs (miRNAs) has burst on the scene. miRNAs are non-coding RNAs with a length of 21~22nucleotides involved in post-transcriptional regulation of gene expression, which could be regarded as oncomiRs (tumor inducers) and tumor suppressors regulating cancer cell proliferation, invasion, and apoptosis by differently affecting the expression of genes related to cancer cell signaling. Therefore, investigating the interaction between ER stress and miRNAs is crucial for developing effective cancer treatment and prevention strategies. In this review, we mainly discuss miRNAs focusing on its regulation, role in ER stress induced apoptosis in Digestive cancer, expound the underlying mechanism, thus provides a theoretical foundation for finding new therapeutic targets of digestive cancer.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Shuai Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Gang Yang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Lianhong Zou
- Hunan Provincial Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410015, China
| | - Xin Huang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Normal University, Changsha, 410081, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, 410015, China
| |
Collapse
|
6
|
Lin W, Chen S, Wang Y, Wang M, Lee WYW, Jiang X, Li G. Dynamic regulation of mitochondrial-endoplasmic reticulum crosstalk during stem cell homeostasis and aging. Cell Death Dis 2021; 12:794. [PMID: 34400615 PMCID: PMC8368094 DOI: 10.1038/s41419-021-03912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 02/07/2023]
Abstract
Cellular therapy exerts profound therapeutic potential for curing a broad spectrum of diseases. Adult stem cells reside within a specified dynamic niche in vivo, which is essential for continuous tissue homeostatic maintenance through balancing self-renewal with lineage selection. Meanwhile, adult stem cells may be multipotent or unipotent, and are present in both quiescent and actively dividing states in vivo of the mammalians, which may switch to each other state in response to biophysical cues through mitochondria-mediated mechanisms, such as alterations in mitochondrial respiration and metabolism. In general, stem cells facilitate tissue repair after tissue-specific homing through various mechanisms, including immunomodulation of local microenvironment, differentiation into functional cells, cell "empowerment" via paracrine secretion, immunoregulation, and intercellular mitochondrial transfer. Interestingly, cell-source-specific features have been reported between different tissue-derived adult stem cells with distinct functional properties due to the different microenvironments in vivo, as well as differential functional properties in different tissue-derived stem cell-derived extracellular vehicles, mitochondrial metabolism, and mitochondrial transfer capacity. Here, we summarized the current understanding on roles of mitochondrial dynamics during stem cell homeostasis and aging, and lineage-specific differentiation. Also, we proposed potential unique mitochondrial molecular signature features between different source-derived stem cells and potential associations between stem cell aging and mitochondria-endoplasmic reticulum (ER) communication, as well as potential novel strategies for anti-aging intervention and healthy aging.
Collapse
Affiliation(s)
- Weiping Lin
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yan Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ming Wang
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wayne Yuk-Wai Lee
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaohua Jiang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
- Faculty of Medicine, MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Kaur S, Auger C, Barayan D, Shah P, Matveev A, Knuth CM, Harris TE, Jeschke MG. Adipose-specific ATGL ablation reduces burn injury-induced metabolic derangements in mice. Clin Transl Med 2021; 11:e417. [PMID: 34185433 PMCID: PMC8181198 DOI: 10.1002/ctm2.417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.
Collapse
Affiliation(s)
- Supreet Kaur
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Christopher Auger
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Dalia Barayan
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Priyal Shah
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Anna Matveev
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Carly M. Knuth
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| | - Thurl E. Harris
- Department of PharmacologyUniversity of Virginia School of MedicineCharlottesville VAUSA
| | - Marc G. Jeschke
- Ross Tilley Burn CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
- Institute of Medical SciencesUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
8
|
Barayan D, Abdullahi A, Vinaik R, Knuth CM, Auger C, Jeschke MG. Interleukin-6 blockade, a potential adjunct therapy for post-burn hypermetabolism. FASEB J 2021; 35:e21596. [PMID: 33871073 PMCID: PMC8982752 DOI: 10.1096/fj.202100388r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023]
Abstract
Severe burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism. Indeed, genetic deletion of IL-6 alleviates various complications associated with poor clinical outcomes including the adverse remodeling of adipose tissue, cachexia and hepatic steatosis. Thus, pharmacological blockade of IL-6 may be a more favorable treatment option to fully restore metabolic function after injury. To test this, we investigated the safety and effectiveness of blocking IL-6 for post-burn hypermetabolism using a validated anti-IL-6 monoclonal antibody (mAb) in our experimental murine model. Here, we show daily anti-IL-6 mAb administration protects against burn-induced weight loss (P < .0001) without any adverse effect on mortality. At the organ level, post-burn treatment with the IL-6 blocker suppressed the thermogenic activation of adipose tissue (P < .01) and its associated wasting (P < .05). The reduction of browning-induced lipolysis (P < .0001) indirectly decreased hepatic lipotoxicity (P < .01) which improved liver dysfunction (P < .05). Importantly, the beneficial effects of this anti-IL-6 agent extended to the skin, reflected by the decrease in excessive collagen deposition (P < .001) and genes involved in pathologic fibrosis and scarring (P < .05). Together, our results indicate that post-burn IL-6 blockade leads to significant improvements in systemic hypermetabolism by inhibiting pathological alterations in key immunometabolic organs. These findings support the therapeutic potential of anti-IL-6 interventions to improve care, quality of life, and survival in burned patients.
Collapse
Affiliation(s)
| | | | - Roohi Vinaik
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | - Marc G. Jeschke
- Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
9
|
Abdullahi A, Barayan D, Vinaik R, Diao L, Yu N, Jeschke MG. Activation of ER stress signalling increases mortality after a major trauma. J Cell Mol Med 2020; 24:9764-9773. [PMID: 32810382 PMCID: PMC7520325 DOI: 10.1111/jcmm.15548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) adapts to stress by activating a signalling cascade known as the ER stress response. While ER stress signalling is a central component of the cellular defence against environmental insult, persistent activation is thought to contribute to the progression of various metabolic complications via loss of protein function and cell death. Despite its importance however, whether and how ER stress impacts morbidity and mortality in conditions of hypermetabolism remain unclear. In this study, we discovered that chronic ER stress response plays a role in mediating adverse outcomes that occur after major trauma. Using a murine model of thermal injury, we show that induction of ER stress with Tunicamycin not only increased mortality but also resulted in hepatic damage and hepatic steatosis. Importantly, post‐burn treatment with chaperone ER stress inhibitors attenuated hepatic ER stress and improved organ function following injury. Our study identifies ER stress as a potential hub of the signalling network affecting multiple aspects of metabolism after major trauma and as a novel potential molecular target to improve the clinical outcomes of severely burned patients.
Collapse
Affiliation(s)
- Abdikarim Abdullahi
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Dalia Barayan
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Roohi Vinaik
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Li Diao
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nancy Yu
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada.,Department of Surgery, Division of Plastic Surgery and Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|