1
|
Pei D, Zhang D, Guo Y, Chang H, Cui H. Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy. Int J Mol Sci 2025; 26:694. [PMID: 39859408 PMCID: PMC11766336 DOI: 10.3390/ijms26020694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy. The insights provided offer new directions for advancing basic research and clinical applications in malignant brain tumors.
Collapse
Affiliation(s)
| | | | | | | | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China; (D.P.); (D.Z.); (Y.G.); (H.C.)
| |
Collapse
|
2
|
Elhosary E, Eldin Shibel PE, Eltoukhy M, Talaat R, Kamel M, Soliman NA. Downregulation of lncRNA-MALAT1, Altered Immunohistochemical Expression of Cyclin D1 Protein and E-Cadherin Protein in Correlation to Meningioma Grades. Asian Pac J Cancer Prev 2024; 25:4097-4107. [PMID: 39611935 PMCID: PMC11996092 DOI: 10.31557/apjcp.2024.25.11.4097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
OBJECTIVES Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is known to be upregulated in the tumors with ability to metastasize. In contrast, long non-coding Ribonuclei acid (lncRNA) MALAT1 was reported by some studies to be downregulated in meningioma cells. E-cadherin and Cyclin D1 are prognostic indicators and possible attractive targets for the treatment of recurring and aggressive meningioma. This study aimed to evaluate the expression level of lncRNA MALAT1, as well as Cyclin D1 and E-cadherin immunohistochemical expression in meningiomas (Grade 1 and 2) and their association with the clinicopathological parameters of the studied cases. MATERIAL AND METHODS Quantitative determination of relative expression levels of lncRNA-MALAT1 in 64 cases of meningioma to 5 controls of normal dura mater was performed, in addition to evaluation of E-cadherin and Cyclin D1 immunohistochemical expression. The results were tested for association with the clinicopathological parameters. RESULTS lncRNA-MALAT1 expression were downregulated in 49/64 of the cases of meningioma (76%) in comparison to control. There were significant association of expression of lncRNA-MALAT1 with grade, brain invasion and increased mitosis (p=0.007, 0.04, 0.006 respectively). There were also significant associations of strong E-cadherin and negative Cyclin D1 proteins expression with grade 1 (p = 0.02, 0.004), low mitosis (p=0.03, and 0.04) and brain invasion (p=0.04, 0.03) respectively. Additionally, a significant weak negative correlation between E-cadherin and Cyclin D1 expression was fond, yet no significant correlation between lncRNA MALAT1 expression and either of E-cadherin or Cyclin D1 expression could be achieved. CONCLUSION lncRNA MALAT1 is downregulated in meningiomas and associated with increased aggressiveness. Overexpressed cyclin D1 and decreased E-cadherin expression are also associated with high grade meningioma.
Collapse
Affiliation(s)
- Enas Elhosary
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan 11795, Egypt.
| | | | - Mohamed Eltoukhy
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Cairo 12613, Egypt.
| | - Rania Talaat
- Department: Medical Microbiology and Immunology, Faculty of Medicine, Helwan University, Helwan 11795, Egypt.
| | - Marwa Kamel
- Department of Medical Biochemistry and Molecular biology, Faculty of Medicine, Helwan University, Helwan 11795, Egypt.
| | - Nahed Ahmed Soliman
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan 11795, Egypt.
| |
Collapse
|
3
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
4
|
Li Z, Wang X, Zhang H, Yang Y, Zhang Y, Zhuang Y, Yang Q, Gao E, Ren Y, Zhang Y, Cai S, Chen Z, Cai C, Dong Y, Bao J, Cheng J. Positive Progesterone Receptor Expression in Meningioma May Increase the Transverse Relaxation: First Prospective Clinical Trial Using Single-Shot Ultrafast T 2 Mapping. Acad Radiol 2024; 31:187-198. [PMID: 37316368 DOI: 10.1016/j.acra.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/16/2023]
Abstract
RATIONALE AND OBJECTIVES This project aims to investigate the diagnostic performance of multiple overlapping-echo detachment imaging (MOLED) technique-derived transverse relaxation time (T2) maps in predicting progesterone receptor (PR) and S100 expression in meningiomas. MATERIALS AND METHODS 63 meningioma patients were enrolled from October 2021 to August 2022, who underwent a complete routine magnetic resonance imaging and T2 MOLED, which can characterize the whole brain transverse relaxation time within 32 seconds in a single scan. After the surgical resection of meningiomas, the expression levels of PR and S100 were determined by an experienced pathologist using immunohistochemistry techniques. Histogram analysis was performed in tumor parenchyma based on the parametric maps. Independent t test and Mann-Whitney U test were applied for the comparison of histogram parameters between different groups, with a significance level of P < .05. Logistic regression and receiver operating characteristic (ROC) analysis with 95% confidence interval were conducted for the diagnostic efficiency evaluation. RESULTS PR-positive group had significantly elevated T2 histogram parameters (P = .001-.049) compared to the PR-negative group. The multivariate logistic regression model with T2 showed the highest area under the ROC curve (AUC) for predicting PR expression (AUC=0.818). Additionally, the multivariate model also had the best diagnostic performance for predicting meningioma S100 expression (AUC=0.768). CONCLUSION The MOLED technique-derived T2 maps can distinguish PR and S100 status in meningiomas preoperatively.
Collapse
Affiliation(s)
- Zongye Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Xiao Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Hongyan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China (H.Z.)
| | - Yijie Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen, China (Y.Y., Q.Y., S.C., Z.C., C.C.)
| | - Yue Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York (Y.Z.)
| | - Qinqin Yang
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen, China (Y.Y., Q.Y., S.C., Z.C., C.C.)
| | - Eryuan Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Yanan Ren
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Shuhui Cai
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen, China (Y.Y., Q.Y., S.C., Z.C., C.C.)
| | - Zhong Chen
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen, China (Y.Y., Q.Y., S.C., Z.C., C.C.)
| | - Congbo Cai
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, Xiamen University, Xiamen, China (Y.Y., Q.Y., S.C., Z.C., C.C.)
| | - Yanbo Dong
- Institute of Psychology, Herzen State Pedagogical University of Russia, Saint Petersburg, Russia (Y.D.)
| | - Jianfeng Bao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.)
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, No. 1, Jianshe Dong Road, Zhengzhou 450000, China (Z.L., X.W., Y.Z., E.G., Y.R., Y.Z., J.B., J.C.).
| |
Collapse
|
5
|
Eraky AM. Non-coding RNAs as Genetic Biomarkers for the Diagnosis, Prognosis, Radiosensitivity, and Histopathologic Grade of Meningioma. Cureus 2023; 15:e34593. [PMID: 36883085 PMCID: PMC9985895 DOI: 10.7759/cureus.34593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/05/2023] Open
Abstract
Meningioma is considered the most common primary benign brain tumor. It originates from the arachnoid cells of the leptomeninges surrounding the brain. The mainstay treatment of meningiomas is microsurgical resection. Meningioma prognosis depends on tumor grade, location, and patient age. Recently, using non-coding RNA as a prognostic and diagnostic biomarker for many tumors became a trend. Herein, we demonstrate the importance of non-coding RNAs, including microRNAs and lncRNAs in meningioma and their potential role in meningioma's early diagnosis, prognosis, histological grade, and radiosensitivity. In this review, many microRNAs were found to be upregulated in radioresistant meningioma cells such as microRNA-221, microRNA-222, microRNA-4286, microRNA-4695-5p, microRNA-6732-5p, microRNA-6855-5p, microRNA-7977, microRNA-6765-3p, and microRNA-6787-5p. Moreover, there are many microRNAs downregulated in radioresistant meningioma cells such as microRNA-1275, microRNA-30c-1-3p, microRNA-4449, microRNA-4539, microRNA-4684-3p, microRNA-6129, and microRNA-6891-5p. Also, we highlight the possible use of non-coding RNAs as serum non-invasive biomarkers and their potential role as therapeutic targets to treat high-grade meningiomas. Recent studies show that microRNA-497, microRNA-195, microRNA-18a, microRNA-197, and microRNA-224 are downregulated in the serum of patients with meningiomas. Additionally, microRNA-106a-5p, microRNA-219-5p, microRNA-375, and microRNA-409-3p are found to be upregulated in the serum of patients with meningioma. We also found that there are many deregulated microRNAs in meningioma cells that can be used as potential biomarkers for meningioma diagnosis, prognosis, and histopathologic grade, such as microRNA-17-5p, microRNA-199a, microRNA-190a, microRNA-186-5p, microRNA155-5p, microRNA-22-3p, microRNA-24-3p, microRNA-26-5p, microRNA-27a-3p, microRNA-27b-3p, microRNA-96-5p, microRNA-146a-5p, microRNA-29c-3p, microRNA-219-5p, microRNA-335, microRNA-200a, microRNA-21, microRNA-107, microRNA-224, microRNA-195, microRNA-34a-3p, and microRNA-let-7d. Of interest, we found fewer studies discussing deregulated long non-coding RNAs (lncRNAs) in meningioma cells. LncRNAs work as competitive endogenous RNA (ceRNA) by binding to oncogenic or anti-oncogenic microRNAs. We found that lncRNA- NUP210, lncRNA-SPIRE2, lncRNA-SLC7A1, lncRNA-DMTN, lncRNA-LINC00702, and lncRNA-LINC00460 are upregulated in meningioma cells. In contrast, lncRNA-MALAT1 was found to be downregulated in meningioma cells.
Collapse
Affiliation(s)
- Akram M Eraky
- Neurological Surgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
6
|
Chang WW, Zhang L, Wen LY, Huang Q, Tong X, Tao YJ, Chen GM. Association of tag single nucleotide polymorphisms (SNPs) at lncRNA MALAT1 with type 2 diabetes mellitus susceptibility in the Chinese Han population: A case-control study. Gene X 2023; 851:147008. [DOI: 10.1016/j.gene.2022.147008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
|
7
|
Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Gong Y, Zhang T. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway. Mol Cells 2022; 45:388-402. [PMID: 35680373 PMCID: PMC9200663 DOI: 10.14348/molcells.2022.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.
Collapse
Affiliation(s)
- Yaodong Ding
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Ge
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haixia Cheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
8
|
Maimaiti A, Tuerhong M, Wang Y, Aisha M, Jiang L, Wang X, Mahemuti Y, Aili Y, Feng Z, Kasimu M. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol Cell Biochem 2022; 477:1417-1438. [DOI: 10.1007/s11010-022-04368-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022]
|
9
|
Tong G, Tong W, He R, Cui Z, Li S, Zhou B, Yin Z. MALAT1 Polymorphisms and Lung Cancer Susceptibility in a Chinese Northeast Han Population. Int J Med Sci 2022; 19:1300-1306. [PMID: 35928715 PMCID: PMC9346381 DOI: 10.7150/ijms.73026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/21/2022] [Indexed: 11/05/2022] Open
Abstract
Background: LncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) was competitive endogenous RNA (ceRNA) involved in various molecular processes for metastasis development in lung cancer. Single nucleotide polymorphisms (SNPs) in MALAT1 gene might be predictive markers for lung cancer. In our study, we selected rs619586 and rs3200401 in MALAT1 gene to explore their effects on lung cancer susceptibility. Methods: The case-control study included 444 lung cancer cases and 460 healthy controls. Genotyping was performed by Taqman allelic discrimination method. Logistic regression, Student t-test, and Chi-square test (χ2 ) were used to analyze the data. Results: The findings of the study showed that rs3200401 was significantly associated with the risk of non-small cell lung cancer (NSCLC) and lung squamous cell carcinoma (LUSC). Compared with homozygous CC genotype, CT heterozygous genotype decreased risk of NSCLC (Pa = 0.034) and LUSC (Pa = 0.025). In addition, no statistical association was detected between rs619586 and lung cancer susceptibility. The interactions between genes and cigarette smoking were discovered via crossover analysis. However, there were no remarkable gene-environment interactions in additive and multiplicative model. Conclusion: Rs3200401 in lncRNA MALAT1 was associated with the susceptibility of non-small-cell lung cancer and lung squamous cell carcinoma. The gene-environmental (cigarette smoking) interactions were not notable.
Collapse
Affiliation(s)
- Guanghui Tong
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China.,Department of Obstetrics and Gynecology, Liaoning Provincial Hospital for women and children, Shayang Street, Heping District, Shenyang 110122, P.R. China
| | - Weiwei Tong
- Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ran He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Zhigang Cui
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Sixuan Li
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| | - Baosen Zhou
- Department of Clinical Epidemiology and Center of Evidence Based Medicine, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Heping District, Shenyang 110001, P.R. China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, P.R. China
| |
Collapse
|
10
|
Ghafouri-Fard S, Abak A, Hussen BM, Taheri M, Sharifi G. The Emerging Role of Non-Coding RNAs in Pituitary Gland Tumors and Meningioma. Cancers (Basel) 2021; 13:cancers13235987. [PMID: 34885097 PMCID: PMC8656547 DOI: 10.3390/cancers13235987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are non-coding transcripts which are involved in the pathogenesis of pituitary gland tumors. LncRNAs that participate in the pathogenesis of pituitary gland tumors mainly serve as sponges for miRNAs. CLRN1-AS1/miR-217, XIST/miR-424-5p, H19/miR-93a, LINC00473/miR-502-3p, SNHG7/miR-449a, MEG8/miR-454-3p, MEG3/miR-23b-3p, MEG3/miR-376B-3P, SNHG6/miR-944, PCAT6/miR-139-3p, lncRNA-m433s1/miR-433, TUG1/miR-187-3p, SNHG1/miR-187-3p, SNHG1/miR-302, SNHG1/miR-372, SNHG1/miR-373, and SNHG1/miR-520 are identified lncRNA/miRNA pairs that are involved in this process. Hsa_circ_0001368 and circOMA1 are two examples of circRNAs that contribute to the pathogenesis of pituitary gland tumors. Meanwhile, SNHG1, LINC00702, LINC00460, and MEG3 have been found to partake in the pathogenesis of meningioma. In the current review, we describe the role of non-coding RNAs in two types of brain tumors, i.e., pituitary tumors and meningioma.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Atefe Abak
- Men’s Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07743 Jena, Germany
- Correspondence: (M.T.); (G.S.)
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
- Correspondence: (M.T.); (G.S.)
| |
Collapse
|
11
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
12
|
Zheng J, Pang CH, Du W, Wang L, Sun LG, Xing ZY. An allele of rs619586 polymorphism in MALAT1 alters the invasiveness of meningioma via modulating the expression of collagen type V alpha (COL5A1). J Cell Mol Med 2020; 24:10223-10232. [PMID: 32720739 PMCID: PMC7520290 DOI: 10.1111/jcmm.15637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
The rs619586 polymorphism has been shown to alter the expression of MALAT1, which act as a competing endogenous RNA (ceRNA) against miR‐145. And miR‐145 was found to target COL5A1, the interaction between which was shown to be involved in the pathogenesis of invasive meningioma. In this study, we aimed to explore the effect of rs619586 polymorphism and its underlying molecular mechanism in invasive meningioma. Real‐time PCR and Western Blot analysis were used to study the differentiated expression of miR‐145, MALAT1 (metastasis‐associated lung adenocarcinoma transcript 1) and COL5A1 (collagen alpha‐1(V) chain) in tumour/serum samples genotyped as rs619586 AA, AG and GG. Computational analysis and luciferase reporter assay were also conducted to identify the regulatory relationship between miR‐145 and MALAT1/COL5A1. Meanwhile, expression of miR‐145 and COL5A1 in different cell treatment groups was measured to validate the results obtained from earlier experiments. As shown by the results and in tumour/serum samples genotyped as AA, AG and GG, the expression of both MALAT1 and COL5A1 was down‐regulated in a stepwise fashion, while the expression of miR‐145 was increased, suggesting a potential negative relationship between MALAT1/COL5A1 and miR‐145. Meanwhile, miR‐145 was shown to bind to MALAT1, while COL5A1 was identified as a virtual target gene of miR‐145. As a consequence, a MALAT1/miR‐145/COL5A1 molecular pathway was established based on the above results. In particular, with the presence of rs619586 A>G polymorphism, the expression of MALAT1 and COL5A1 was both reduced, leading to reduced invasiveness of meningioma.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Chang-He Pang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Du
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Wang
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Lai-Guang Sun
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| | - Zhen-Yi Xing
- Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, China
| |
Collapse
|