1
|
Zhu L, Guo L, Xu J, Xiang Q, Tan Y, Tian F, Du X, Zhang S, Wen T, Liu L. Postprandial Triglyceride-Rich Lipoproteins-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Inflammation in White Adipocytes. J Nutr 2024; 154:1619-1630. [PMID: 38008361 DOI: 10.1016/j.tjnut.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Obesity and postprandial hypertriglyceridemia, characterized by an increase in triglyceride-rich lipoproteins (TRLs), cause chronic low-grade inflammation. It is unclear how postprandial TRLs affect inflammation in white adipocytes. OBJECTIVES The objectives of the study were to explore the inflammatory response of postprandial TRLs in white adipocytes and investigate the possible mechanism. METHODS We measured postprandial triglyceride (TG) and high-sensitivity C-reactive protein (hsCRP) concentrations in 204 recruited subjects and treated white adipocytes from mice with postprandial TRLs from above patients with hypertriglyceridemia. RESULTS Serum hsCRP concentrations and BMI were positively related to TG concentrations in the postprandial state. Postprandial TRLs increased mRNA and protein expression of inflammatory factors, including interleukin-1β, via the NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway, and impaired autophagy flux in white adipocytes of mice. TRLs also induced lysosomal damage as evidenced by the reduced protein expression of lysosome-associated membrane proteins-1 and Cathepsin L. Inhibition of Cathepsin B, NLRP3, and mTOR signaling improved autophagy/lysosome dysfunction and inhibited the activation of the NLRP3/Caspase-1 pathway and inflammatory factors induced by TRLs in white adipocytes. CONCLUSIONS Our results suggest that postprandial hypertriglyceridemia causes chronic inflammation in adipocytes through TRL-induced lysosomal dysfunction and impaired autophagic flux in an mTOR-dependent manner.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Liling Guo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Yangrong Tan
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Shilan Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, PR China
| | - Tie Wen
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China.
| |
Collapse
|
2
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Liton PB, Boesze-Battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. AUTOPHAGY IN THE EYE: FROM PHYSIOLOGY TO PATHOPHYSOLOGY. AUTOPHAGY REPORTS 2023; 2:2178996. [PMID: 37034386 PMCID: PMC10078619 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/26/2023] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Reduced OPA1, Mitochondrial Fragmentation and Increased Susceptibility to Apoptosis in Granular Corneal Dystrophy Type 2 Corneal Fibroblasts. Genes (Basel) 2023; 14:genes14030566. [PMID: 36980838 PMCID: PMC10048436 DOI: 10.3390/genes14030566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
The progressive degeneration of granular corneal dystrophy type 2 (GCD2) corneal fibroblasts is associated with altered mitochondrial function, but the underlying mechanisms are incompletely understood. We investigated whether an imbalance of mitochondrial dynamics contributes to mitochondrial dysfunction of GCD2 corneal fibroblasts. Transmission electron microscopy revealed several small, structurally abnormal mitochondria with altered cristae morphology in GCD2 corneal fibroblasts. Confocal microscopy showed enhanced mitochondrial fission and fragmented mitochondrial tubular networks. Western blotting revealed higher levels of MFN1, MFN2, and pDRP1 and decreased levels of OPA1 and FIS1 in GCD2. OPA1 reduction by short hairpin RNA (shRNA) resulted in fragmented mitochondrial tubular networks and increased susceptibility to mitochondrial stress-induced apoptosis. A decrease in the mitochondrial biogenesis-related transcription factors NRF1 and PGC1α was observed, while there was an increase in the mitochondrial membrane proteins TOM20 and TIM23. Additionally, reduced levels of mitochondrial DNA (mtDNA) were exhibited in GCD2 corneal fibroblasts. These observations suggest that altered mitochondrial fission/fusion and biogenesis are the critical molecular mechanisms that cause mitochondrial dysfunction contributing to the degeneration of GCD2 corneal fibroblasts.
Collapse
|
5
|
Suh JH, Ryu IH, Hong JP, Moon JY, Choi JS, Jun I, Kim TI, Kim EK. Phenotypes of Granular Corneal Dystrophy Type 2 among Koreans in Their Twenties. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2022. [DOI: 10.3341/jkos.2022.63.12.965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose: Granular corneal dystrophy type 2 (GCD2) is a hereditary disease that features granular and lattice stromal deposits in the cornea. There are homozygotes and heterozygotes and the opacities are exacerbated by corneal trauma or surgery, such as laser in situ keratomileusis (LASIK). As there is individual variability in GCD2 phenotypes, we investigated various corneal features of GCD2 patients in their twenties, the main age group for refractive surgery.Methods: From genetically confirmed GCD2 patients who had an R124H mutation of the transforming growth factor β induced (<i>TGFBI</i>) gene at age 20 to 29 years, we chose representative patients: one homozygote; one compound heterozygote; one simple heterozygote with a severe phenotype with many granular deposits; one common heterozygote; and four heterozygotes with normal corneas. The corneas of all patients were subject to slit-lamp examination and photographed.Results: The homozygote had confluent granular deposits covering the cornea. The compound heterozygote had granular and lattice deposits covering the center of the cornea. The patient with a severe phenotype had more than 30 granular deposits in one eye, but was a simple GCD2 heterozygote, verified by full-sequencing of the <i>TGFBI</i> gene. In the four patients with normal corneas, a single small lesion was subsequently detected during follow-up in two, at 3 weeks and 6 months, respectively. Both corneas were judged clear at chance examinations.Conclusions: Among Koreans in their twenties, GCD2 patients have various phenotypes, from clear corneas to severe confluent opacities. There are GCD2 heterozygotes with nearly clear corneas, so caution must be taken when choosing patients for refractive surgery.
Collapse
|
6
|
Dias-Teixeira KL, Sharifian Gh M, Romano J, Norouzi F, Laurie GW. Autophagy in the normal and diseased cornea. Exp Eye Res 2022; 225:109274. [PMID: 36252655 PMCID: PMC10083687 DOI: 10.1016/j.exer.2022.109274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023]
Abstract
The cornea and covering tear film are together the 'objective lens' of the eye through which 80% of light is refracted. Despite exposure to a physically harsh and at times infectious or toxic environment, transparency essential for sight is in most cases maintained. Such resiliency makes the avascular cornea a superb model for the exploration of autophagy in the regulation of homeostasis with relevancy to all organs. Nonetheless, missense mutations and inflammation respectively clog or apparently overwhelm autophagic flux to create dystrophies much like in neurodegenerative diseases or further exacerbate inflammation. Here there is opportunity to generate novel topical therapies towards the restoration of homeostasis with potential broad application.
Collapse
Affiliation(s)
| | | | - Jeff Romano
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Fan Y, Li C, Bai S, Ma X, Yang J, Guan X, Sun Y. NIR-II Emissive Ru(II) Metallacycle Assisting Fluorescence Imaging and Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201625. [PMID: 35560771 DOI: 10.1002/smll.202201625] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Despite the success of emissive Ruthenium (Ru) agents in biomedicine, problems such as the visible-light excitation/emission and single chemo- or phototherapy modality still hamper their applications in deep-tissue imaging and efficient cancer therapy. Herein, an second nearinfrared window (NIR-II) emissive Ru(II) metallacycle (Ru1000, λem = 1000 nm) via coordination-driven self-assembly is reported, which holds remarkable deep-tissue imaging capability (≈6 mm) and satisfactory chemo-phototherapeutic performance. In vitro results indicate Ru1000 displays promising cellular uptake, good cancer-cell selectivity, attractive anti-metastasis properties, and remarkable anticancer activity against various cancer cells, including cisplatin-resistant A549 cells (IC50 = 3.4 × 10-6 m vs 92.8 × 10-6 m for cisplatin). The antitumor mechanism could be attributed to Ru1000-induced lysosomal membrane damage and mitochondrial-mediated apoptotic cell death. Furthermore, Ru1000 also allows the high-performance in vivo NIR-II fluorescence imaging-guided chemo-phototherapy against A549 tumors. This work may provide a paradigm for the development of long-wavelength emissive metallacycle-based agents for future biomedicine.
Collapse
Affiliation(s)
- Yifan Fan
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Suya Bai
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Normal University, Wuhu, 241000, China
| | - Xin Ma
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Jingfang Yang
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| | - Xiaofang Guan
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, 450016, China
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology (Ministry of Education), College of Chemistryk, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
8
|
Ma S, Liu X, Yin J, Hao L, Diao Y, Zhong J. Exosomes and autophagy in ocular surface and retinal diseases: new insights into pathophysiology and treatment. Stem Cell Res Ther 2022; 13:174. [PMID: 35505403 PMCID: PMC9066793 DOI: 10.1186/s13287-022-02854-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ocular surface and retinal diseases are widespread problems that cannot be ignored in today's society. However, existing prevention and treatment still have many shortcomings and limitations, and fail to effectively hinder the occurrence and development of them. MAIN BODY The purpose of this review is to give a detailed description of the potential mechanism of exosomes and autophagy. The eukaryotic endomembrane system refers to a range of membrane-bound organelles in the cytoplasm that are interconnected structurally and functionally, which regionalize and functionalize the cytoplasm to meet the needs of cells under different conditions. Exosomal biogenesis and autophagy are two important components of this system and are connected by lysosomal pathways. Exosomes are extracellular vesicles that contain multiple signaling molecules produced by multivesicular bodies derived from endosomes. Autophagy includes lysosome-dependent degradation and recycling pathways of cells or organelles. Recent studies have revealed that there is a common molecular mechanism between exosomes and autophagy, which have been, respectively, confirmed to involve in ocular surface and retinal diseases. CONCLUSION The relationship between exosomes and autophagy and is mostly focused on fundus diseases, while a deeper understanding of them will provide new directions for the pathological mechanism, diagnosis, and treatment of ocular surface and retinal diseases.
Collapse
Affiliation(s)
- Shisi Ma
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China
| | - Jiayang Yin
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China
| | - Lili Hao
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China
| | - Yuyao Diao
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China
| | - Jingxiang Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, 613 West Huangpu Ave, Guangzhou, 510632, Guangdong, China. .,The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, China.
| |
Collapse
|
9
|
Fang Z, Li X, Wang S, Jiang Q, Loor JJ, Jiang X, Ju L, Yu H, Shen T, Chen M, Song Y, Wang Z, Du X, Liu G. Overactivation of hepatic mechanistic target of rapamycin kinase complex 1 (mTORC1) is associated with low transcriptional activity of transcription factor EB and lysosomal dysfunction in dairy cows with clinical ketosis. J Dairy Sci 2022; 105:4520-4533. [DOI: 10.3168/jds.2021-20892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 01/14/2022] [Indexed: 11/19/2022]
|
10
|
Compound heterozygous mutations in TGFBI cause a severe phenotype of granular corneal dystrophy type 2. Sci Rep 2021; 11:6986. [PMID: 33772078 PMCID: PMC7997986 DOI: 10.1038/s41598-021-86414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
We investigated the clinical and genetic features of patients with severe phenotype of granular corneal dystrophy type 2 (GCD2) associated with compound heterozygosity in the transforming growth factor-β-induced (TGFBI) gene. Patients with severe GCD2 underwent ophthalmic examination (best-corrected visual acuity test, intraocular pressure measurement, slit-lamp examination, and slit-lamp photograph analysis) and direct Sanger sequencing of whole-TGFBI. The patient’s family was tested to determine the pedigrees. Five novel mutations (p.(His174Asp), p.(Ile247Asn), p.(Tyr88Cys), p.(Arg257Pro), and p.(Tyr468*)) and two known mutations (p.(Asn544Ser) and p.(Arg179*)) in TGFBI were identified, along with p.(Arg124His), in the patients. Trans-phase of TGFBI second mutations was confirmed by pedigree analysis. Multiple, extensive discoid granular, and increased linear deposits were observed in the probands carrying p.(Arg124His) and other nonsense mutations. Some patients who had undergone phototherapeutic keratectomy experienced rapid recurrence (p.(Ile247Asn) and p.(Asn544Ser)); however, the cornea was well-maintained in a patient who underwent deep anterior lamellar keratoplasty (p.(Ile247Asn)). Thus, compound heterozygosity of TGFBI is associated with the phenotypic variability of TGFBI corneal dystrophies, suggesting that identifying TGFBI second mutations may be vital in patients with extraordinarily severe phenotypes. Our findings indicate the necessity for a more precise observation of genotype–phenotype correlation and additional care when treating TGFBI corneal dystrophies.
Collapse
|
11
|
Abstract
PURPOSE To report the outcome of unilateral small incision lenticule extraction (SMILE) in a patient with granular corneal dystrophy type 2 (GCD2). METHODS Slit-lamp photography and Fourier domain optical coherence tomography were used to document the clinical course and appearance of the corneas in a patient with genetically determined GCD2 who underwent unilateral SMILE in the right eye. RESULTS Slit-lamp examination of a 23-year-old woman revealed 2 faint opacities at the surgical interface approximately 2 months after the SMILE procedure had been performed on her right eye. Nine and 3 typical GCD2 deposits located immediately beneath the Bowman layer were observed in the right and left corneas, respectively. Over time, the deposits at the interface increased in size, density, and number in the right eye. Fourier domain optical coherence tomography performed 33 months after the SMILE procedure revealed deposits at the SMILE interface that were distinct from those located immediately beneath the Bowman layer. The severity of disease exacerbation was less in this patient than what is typically observed in others who have undergone laser-assisted in situ keratomileusis or photorefractive keratectomy. CONCLUSIONS SMILE is contraindicated in patients with GCD2, as are other corneal refractive surgical procedures. This case highlights the importance of genetic testing before the performance of refractive corneal procedures-especially for patients with corneal opacities on preoperative slit-lamp examination or a family history of corneal disease compatible with that of a corneal dystrophy.
Collapse
|
12
|
Choi SI, Woo JH, Kim EK. Lysosomal dysfunction of corneal fibroblasts underlies the pathogenesis of Granular Corneal Dystrophy Type 2 and can be rescued by TFEB. J Cell Mol Med 2020; 24:10343-10355. [PMID: 32667742 PMCID: PMC7521267 DOI: 10.1111/jcmm.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/17/2020] [Accepted: 04/17/2020] [Indexed: 01/13/2023] Open
Abstract
Granular corneal dystrophy type 2 (GCD2) is the most common form of transforming growth factor β‐induced (TGFBI) gene‐linked corneal dystrophy and is pathologically characterized by the corneal deposition of mutant‐TGFBIp. The defective autophagic degradation of pathogenic mutant‐TGFBIp has been shown in GCD2; however, its exact mechanisms are unknown. To address this, we investigated lysosomal functions using corneal fibroblasts. Levels of cathepsins K and L (CTSK and CTSL) were significantly decreased in GCD2 cells, but of cathepsins B and D (CTSB and CTSD) did not change. The maturation of the pro‐enzymes to their active forms (CTSB, CTSK and CTSL) was inhibited in GCD2 cells. CTSL enzymes directly degraded both LC3 (autophagosomes marker) and mutant‐TGFBIp. Exogenous CTSL expression dramatically reduced mutant‐TGFBIp in GCD2 cells, but not TGFBIp in WT cells. An increased lysosomal pH and clustered lysosomal perinuclear position were found in GCD2 cells. Transcription factor EB (TFEB) levels were significantly reduced in GCD2 cells, compared to WT. Notably, exogenous TFEB expression improved mutant‐TGFBIp clearance and lysosomal abnormalities in GCD2 cells. Taken together, lysosomal dysfunction in the corneal fibroblasts underlies the pathogenesis of GCD2, and TFEB has a therapeutic potential in the treatment of GCD2.
Collapse
Affiliation(s)
- Seung-Il Choi
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hwan Woo
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Eung Kweon Kim
- Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, South Korea.,Department of Ophthalmology, Yonsei University College of Medicine, Seoul, South Korea.,Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|