1
|
Liu Y, Deng X, Chen C, Fu B, Wang M, Li J, Xu L, Wang B. Atractylenolide I Attenuates Glucocorticoid-Induced Osteoporosis via Inhibiting NF-κB Signaling Pathway. Calcif Tissue Int 2025; 116:51. [PMID: 40074976 DOI: 10.1007/s00223-025-01358-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Long-term treatment with glucocorticoids significantly impacts bone health, with glucocorticoid-induced osteoporosis (GIOP) being the most prevalent consequence. Previous studies have established that Atractylenolide I (Atr I) possesses anti-inflammatory, antioxidant and anti-tumor properties, however, its specific effects on osteoclastogenesis and GIOP are still unclear. In this study, our in vitro results revealed that Atr I inhibited RANKL-stimulated osteoclast differentiation in a dose-dependent manner, disrupted the structure of the F-actin belt in mature osteoclasts, blocked RANKL-induced ROS production, and suppressed the expression of osteoclast-associated genes. Mechanistically, the findings indicated that Atr I inhibited the RANKL-induced activation of the NF-κB signaling pathway. In vivo, the micro-CT, bone histomorphometric analysis and histological data demonstrated that Dex administration led to significant bone loss, accompanied by a considerable increase in the number of osteoclasts on the bone surface. Conversely, treatment with Atr I effectively prevented these Dex-induced alterations. Taken together, this study suggests that Atr I may hold potential as a therapeutic agent for the treatment of GIOP.
Collapse
Affiliation(s)
- Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Deng
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chen Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Binlan Fu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Min Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinglan Li
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liangliang Xu
- Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Bin Wang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Huang Y, Li T, An Y, Lu D, Lan W, Zeng P, Li L, Ma W. Molecular mechanism of osteoclast differentiation of PBMC in patients with rheumatoid arthritis. Clin Rheumatol 2025; 44:999-1008. [PMID: 39826045 DOI: 10.1007/s10067-025-07322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis. METHODS Blood samples were collected from 20 patients with RA, including 15 females and 5 males. Peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation. Osteoclast differentiation was induced using a medium containing RANKL and M-CSF for 14 days, with medium changes every 2 days. After 14 days, osteoclasts were identified by TRAP staining, and multinucleated TRAP-positive cells were counted as osteoclasts. Subsequently, transcriptome sequencing was performed using the Illumina Novaseq 6000 platform, and differential expression analysis was conducted using the DESeq2 package in R. Differentially expressed genes were selected with a significance threshold of p < 0.05 and a fold change ≥ 2 (|Log2FC|≥ 1). Bioinformatics analysis was performed using R, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. RESULTS TRAP staining showed successful induction of PBMCs into osteoclasts. Transcriptome sequencing revealed a significant number of differentially expressed genes (DEGs) in the induced groups compared with the control group. GO analysis showed that these DEGs were predominantly associated with biological processes related to the transmission of chemokine signals, reactions to living organisms, and bolstering neutrophil-driven defense mechanisms. KEGG analysis showed that these DEGs were enriched by primary signaling pathways, including interactions between cytokines and their receptors, chemokine signaling pathway, cell cycle regulation, neutrophil extracellular trap formation, and TNF signaling pathway. CONCLUSIONS Osteoclast differentiation of PBMC from patients with RA involves various gene alterations, multiple biological processes, and signaling pathways, providing insight into the potential mechanism of PBMC osteoclast differentiation in RA. Key Points • A total of 1841 DEGs were obtained between the induced group and the normal group. • These DEGs were involved in multiple biological processes and signaling pathways.
Collapse
Affiliation(s)
- Ying Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Taiheng Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yang An
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Daomin Lu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Weiya Lan
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Ping Zeng
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Long Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Wukai Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China.
| |
Collapse
|
3
|
Zhang X, Tian B, Cong X, Ning Z. Corilagin inhibits angiotensin II-induced atrial fibrosis and fibrillation in mice through the PI3K-Akt pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:717-724. [PMID: 38645493 PMCID: PMC11024412 DOI: 10.22038/ijbms.2024.73281.15928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/17/2023] [Indexed: 04/23/2024]
Abstract
Objectives Corilagin (Cor) is reported as beiing hepatoprotective, anti-inflammatory, antibacterial, and anti-oxidant, while the effect on atrial fibrosis remains unknown. Therefore, we investigated the protective effect of Cor in angiotensin II (Ang II)-induced atrial fibrosis and atrial fibrillation (AF). Materials and Methods C57BL/6 mice (male, 8-10 weeks, n = 40) were subcutaneously infused either with saline or Ang II (2.0 mg/kg/day) and Cor (30 mg/kg) intraperitoneally injected 2 hr before Ang II infusion for 4 weeks. Mice were grouped into the control group (n=8), Cor group (n=8), Ang II group (n=8), and Ang II + Cor group (n=8). Morphological, histological, and biochemical examinations were performed. In vivo, transesophageal burst pacing was used to generate AF. Results Cor treatment markedly reduced Ang II-induced AF development in mice. Ang II + Cor therapy potentially decreased the atrial fibrotic area. It significantly decreased the increase in smooth muscle alpha-actin (α-SMA), CTGF, Collagen I, and Collagen III expressions brought on by Ang II treatment. Moreover, Ang II + Cor treatment remarkably decreased the malondialdehyde (MDA) content, whereas superoxide dismutase (SOD) and catalase (CAT) activities were potentially increased (all, P<0.001). In addition, Ang II + Cor significantly reduced Ang II-induced interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) concentrations in atrial tissues. Furthermore, Cor significantly inhibited Ang II-induced p-PI3K, p-Akt, and NF-κB p-p65 protein expression in atrial tissues. Conclusion Our data speculated that Cor could have a protective effect against Ang II-induced atrial fibrosis and AF via down-regulation of the PI3K-Akt pathway.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Cardiovascular Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Bei Tian
- Cardiovascular Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xinpeng Cong
- Cardiovascular Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Zhongping Ning
- Cardiovascular Department, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
4
|
Li S, Li X, Yang X, Lei Y, He M, Xiang X, Wu Q, Liu H, Wang J, Wang Q. Corilagin enhances the anti-tumor activity of 5-FU by downregulating the expression of GRP 78. Sci Rep 2023; 13:22661. [PMID: 38114593 PMCID: PMC10730900 DOI: 10.1038/s41598-023-49604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
Colorectal cancer is one of the most common malignancies worldwide. Although initially effective, patients who receive chemotherapy ultimately experience various complications and develop chemo-resistance, leading to cancer recurrence. Therefore, we aimed to find a drug with good efficacy and low toxicity that could enhance the treatment with 5-Fluorouracil (a commonly used clinical drug) and reduce its dosing. Corilagin, an anti-tumor natural product, has received widespread attention. Glucose regulated protein 78 (GRP78) is overexpressed in colorectal cancer cells and plays a key role in the proliferation, migration and drug resistance of cancer cells. Importantly, GRP78 can affect the apoptosis induced by 5-fluorouracil in CRC cells. In the present study, we determined the synergistic anti-tumor activity of the combination treatment by cell proliferation assay, apoptosis assay, fluorescent staining, cell cycle analysis, WB and PCR assays. This synergistic effect was associated with S-phase blockade, intracellular reactive oxygen species production and downregulation of GRP78. Taken together, our results indicate that Corilagin acts as a potentiator of 5-fluorouracil and may have therapeutic potential for patients with CRC.
Collapse
Grants
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 2022KYCX1-A04 the Scientific Research and Innovation Fund of Wuhan Asia General Hospital
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20YJA880053 2020 General Planning Fund Project for Humanities and Social Sciences of the Ministry of Education, China
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- 20D026 Key research project of philosophy and social sciences of Hubei Provincial Department of Education in 2020
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
- OHIC2022G05 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology
Collapse
Affiliation(s)
- Simin Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xinquan Li
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiliang Yang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yumeng Lei
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Mingxin He
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaochen Xiang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qingming Wu
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Hongyun Liu
- School of Basic Medicine, Hubei University of Science and Technology, Wuhan, 437100, China.
| | - Jiadun Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
5
|
Yang B, Zhu Q, Wang X, Mao J, Zhou S. Using network pharmacology and molecular docking verification to explore the mechanism of ursolic acid in the treatment of osteoporosis. Medicine (Baltimore) 2022; 101:e32222. [PMID: 36626454 PMCID: PMC9750584 DOI: 10.1097/md.0000000000032222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/17/2022] [Indexed: 01/11/2023] Open
Abstract
Whether ursolic acid is an effective drug in treatment of osteoporosis (OP) and how it exhibit activity effect on OP is unclear. To investigated the potential molecular mechanism of ursolic acid in the treatment of OP and figured out its possible mechanism is necessary. The target genes of ursolic acid were screened by using the database of traditional chinese medicine systems pharmacology, PubMed database and UniProt database. OP-related target genes were searched by GeneCards database, and utilized online mapping tool to obtain common target genes of component-disease. String database was used to construct a protein-protein interaction (PPI) network of component-disease common target genes and perform topological analysis to screen core target genes. DAVID database was performed gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for component-disease shared target genes. Using the core target protein as the receptor and ursolic acid as the ligand, the molecular docking was performed using AutoDockVina 1.1.2 software. A total of 52 ursolic acid-related target genes and 4657 OP-related target genes were excavated, with a total of collective 43 target genes. The above-mentioned PPI network with shared target genes contains 43 nodes and 510 edges, with an average node degree value of 23.32. A total of 24 core target genes were obtained, mainly including tumor protein p53 (TP53), vascular endothelial growth factor A (VEGFA), interleukin-6 (IL6), tumor necrosis factor (TNF), caspase3 (CASP3), matrix metallo protein (MMP9), transcription factor AP-1 (JUN), activator of transcription 3 (STAT3), mitogen-activated protein kinase 8 (MAPK8), and prostaglandin endoperoxidase 2 (PTGS2), respectively. According to KEGG enrichment analysis, there are 126 treatment of OP signaling pathway were enriched. GO enrichment analysis revealed that 313 biological processes were identified. The molecular docking result showed that the binding energies were all lower than -5 kcal/mol, indicating strong binding activity to the protein by the 6 core target gene. The therapeutic effect of ursolic acid on OP may be achieved by regulating TP53, JUN, IL6, VEGFA, CASP3, and MAPK8 genes, respectively. It exhibits possible biological function in the treatment of OP mainly involve positive regulation of apoptotic process, response to drug, incytoplasm, cytosol, protein binding, identical protein binding. Its mechanism may related to multiple therapeutic targets and signaling pathways such as cancer pathway, hepatitis B, and TNF signaling pathway.
Collapse
Affiliation(s)
- Bowen Yang
- Department of Orthopedics, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Qiuwen Zhu
- Department of Nephrology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Xiaodong Wang
- Department of Pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jingxin Mao
- Department of Pharmacology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Shuqing Zhou
- Department of Orthopedics, Jiangjin Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
6
|
A Comparison of the Antiosteoporotic Effects of Cornelian Cherry (Cornus mas L.) Extracts from Red and Yellow Fruits Containing Different Constituents of Polyphenols and Iridoids in Osteoblasts and Osteoclasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4122253. [PMID: 36225173 PMCID: PMC9550449 DOI: 10.1155/2022/4122253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
Abstract
Methods Polyphenolic and iridoid constituents of extracts were analyzed qualitatively and quantitatively using the ultraperformance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry. Primary cultured osteoblasts isolated from mouse calvarias and osteoclast-lineage primary cultured monocytes isolated from mouse bone marrow were used for the assessment of osteoblast and osteoclast differentiation. In the osteoblast culture, cellular viability, alkaline phosphatase (ALP) activity, ALP staining, and mRNA expression of Alpl and Runx2 were examined. In the osteoclast culture, the examined parameters were cellular viability, tartrate-resistant acid phosphatase (TRAP) activity and staining, and mRNA expression of Nfatc1, Ctsk, and Acp. Results A total of 41 main compounds of iridoids, anthocyanins, hydrolysable tannins, phenolic acids, and flavonols were identified in the three extracts. RED EXT1 contained most of the tested polyphenols and iridoids and was the only extract containing anthocyanins. YL EXT2 contained only one iridoid, loganic acid and gallic acid. YL EXT3 comprised a mixture of iridoids and polyphenols. RED EXT1, YL EXT 2, and to a lesser extent YL EXT3 promoted osteoblast differentiation increasing significantly ALP activity and the amount of ALP-positive stained cells. All extracts upregulated mRNA expression of Alpl and Runx2. RED EXT1 caused the most significant decrease in TRAP activity and the numbers of TRAP-positive multinucleated cells. RED EXT1 caused also the most significant downregulation of mRNA expression of osteoclast related genes Nfatc1, Ctsk, and Acp5. Extracts from yellow fruits, mostly YL EXT2 caused lower, but still significant inhibitory effect on TRAP and osteoclast related genes. Conclusions The main conclusion of our study is that all three extracts, especially RED EXT1 from red cornelian cherry fruits, possess the antiosteoporotic potential and may be a promising phytomedicine candidate for the prevention and treatment of osteoporosis.
Collapse
|
7
|
Trimethylamine-N-Oxide Promotes Osteoclast Differentiation and Bone Loss via Activating ROS-Dependent NF-κB Signaling Pathway. Nutrients 2022; 14:nu14193955. [PMID: 36235607 PMCID: PMC9573743 DOI: 10.3390/nu14193955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO), an important gut microbiota (GM)-derived metabolite, has been shown to be abnormally increased in osteoporosis. However, the role and underlying mechanism of TMAO in regulating bone loss during osteoporosis have not been fully investigated. In the current study, we found that 100–400 μM TMAO dose-dependently enhanced TRAP-positive osteoclasts, F-actin ring formation, and resorption area on bovine bone slices and up-regulated osteoclast-related gene expression (Calcr, Traf6, Dcstamp, Acp5, C-Fos, and NFATc1). Western blotting validated that TMAO not only activated NF-κB signaling pathway but also stimulated c-Fos and NFATc1 protein expression in a dose-dependent manner. Furthermore, BAY 11-7082, an NF-κB inhibitor, pretreatment markedly suppressed TRAP-positive osteoclast formation and osteoclast-related genes under TMAO treatment. BAY 11-7082 also inhibited p-p65/p65, c-Fos, and NFATc1 protein expression promoted by TMAO. Moreover, TMAO significantly increased ROS production, which was inhibited by N-acetylcysteine (NAC), an ROS antagonist. In addition, we proved that NAC pretreatment could inhibit TMAO-promoted NF-κB activation. NAC also suppressed TRAP-positive osteoclast formation, osteoclast-related gene expression, and protein expression of c-Fos and NFATc1 under TMAO treatment. In vivo studies showed significantly decreased bone mass and increased TRAP-positive osteoclasts in TMAO-treated C57BL/6 mice. Moreover, western-blotting and immunohistochemical staining showed that TMAO administration markedly stimulated NF-κB p65 expression. Additionally, TMAO administration significantly promoted the gene and protein expression of C-Fos and NFATc1. In conclusion, TMAO could promote osteoclast differentiation and induce bone loss in mice by activating the ROS-dependent NF-κB signaling pathway.
Collapse
|
8
|
Wei L, Chen W, Huang L, Wang H, Su Y, Liang J, Lian H, Xu J, Zhao J, Liu Q. Alpinetin ameliorates bone loss in LPS-induced inflammation osteolysis via ROS mediated P38/PI3K signaling pathway. Pharmacol Res 2022; 184:106400. [PMID: 35988868 DOI: 10.1016/j.phrs.2022.106400] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Bone loss occurs in several inflammatory diseases because of chronic persistent inflammation that activates osteoclasts (OCs) to increase bone resorption. Currently available antiresorptive drugs have severe side effects or contraindications. Herein, we explored the effects and mechanism of Alpinetin (Alp) on receptor activator of nuclear factor κB ligand (RANKL)-mediated OCs differentiation, function, and in inflammatory osteolysis of mice. METHOD Primary mouse bone marrow-derived macrophages (BMMs) induced by RANKL and macrophage colony-stimulating factor (M-CSF) were utilized to test the impact of Alp on OCs differentiation, function, and intracellular reactive oxygen species (ROS) production, respectively. Expression of oxidant stress relevant factors and OCs specific genes were assessed via real-time quantitative PCR. Further, oxidative stress-related factors, NF-κB, MAPK, PI3K/AKT/GSK3-β, and NFATc1 pathways were examined via Western blot. Finally, LPS-induced mouse calvarial osteolysis was used to investigate the effect of Alp on inflammatory osteolysis in vivo. RESULT Alp suppressed OCs differentiation and resorption function, and down-regulated the ROS production. Alp inhibited IL-1β, TNF-α and osteoclast-specific gene transcription. It also blocked the gene and protein expression of Nox1 and Keap1, but enhanced Nrf2, CAT, and HO-1 protein levels. Additionally, Alp suppressed the phosphorylation of PI3K and P38, and restrained the expression of osteoclast-specific gene Nfatc1 and its auto-amplification, hence minimizing LPS-induced osteolysis in mice. CONCLUSION Alp is a novel candidate or therapeutics for the osteoclast-associated inflammatory osteolytic ailment.
Collapse
Affiliation(s)
- Linhua Wei
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Orthopaedics, Affiliated Infectious Diseases Hospital of Guangxi Medical University, The Fourth People's Hospital of Nanning, Nanning, Guangxi, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Linke Huang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Department of Orthopaedics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Hui Wang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Haoyu Lian
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Qian Liu
- Guangxi Key Laboratory of Regenerative Medicine, Orthopaedic Department, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
Tan S, Su Y, Huang L, Deng S, Yan G, Yang X, Chen R, Xian Y, Liang J, Liu Q, Cheng J. Corilagin attenuates osteoclastic osteolysis by enhancing HO‐1 and inhibiting ROS. J Biochem Mol Toxicol 2022; 36:e23049. [PMID: 35307913 DOI: 10.1002/jbt.23049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Shaolin Tan
- Department of Trauma Orthopedic and Hand Surgery The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
- Department of Orthopaedics The Second Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Yuangang Su
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Linke Huang
- Research Centre for Regenerative Medicine, Department of Orthopaedic The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
- Department of Orthopaedics The Second Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Siyu Deng
- Department of Trauma Orthopedic and Hand Surgery The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Guohua Yan
- Department of Trauma Orthopedic and Hand Surgery The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Xue Yang
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Runfeng Chen
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Yansi Xian
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Jiamin Liang
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Qian Liu
- Research Centre for Regenerative Medicine, Department of Orthopaedic The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
- Guangxi Key Laboratory of Regenerative Medicine Guangxi Medical University Nanning Guangxi China
| | - Jianwen Cheng
- Department of Trauma Orthopedic and Hand Surgery The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
- Research Centre for Regenerative Medicine, Department of Orthopaedic The First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
10
|
Shen Y, Teng L, Qu Y, Liu J, Zhu X, Chen S, Yang L, Huang Y, Song Q, Fu Q. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114791. [PMID: 34737112 DOI: 10.1016/j.jep.2021.114791] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA). AIM OF THE STUDY The present study aimed to evaluate the potential pharmacological mechanisms of anti-proliferation and anti-inflammation effects of COR in RA. MATERIALS AND METHODS In vitro, MH7A cells model induced by IL-1β was used. The anti-proliferation activity of COR was assessed by Cell Counting Kit-8 (CCK-8) assay, and the anti-migration and anti-invasion activity of COR was determined by wound healing assay and transwell assay, respectively. Furthermore, apoptosis assay by flow cytometer was used to measure the pro-apoptotic effect of COR. The mRNA expressions of Bax, Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS were measured by qRT-PCR, and related protein were further verified by ELISA kits or Western blot. Moreover, protein levels associated with NF-κB and MAPK signaling pathways of p65, P-p65, IκBα, P-IκBα, ERK1/2, P-ERK1/2, JNK, P-JNK1/2/3, p38, and P-p38 were determined by Western blot. The nuclear translocation of NF-κB-p65 was detected by immunofluorescent staining. In vivo, adjuvant-induced arthritis (AIA) rat model was used, and the body weight, paw swelling, and arthritis score during the entire period were measured. Histopathological analysis of joints of synovial tissues was also determined. The expression of pro-inflammatory cytokines in serum including IL-6, TNF-α, IL-1β, and IL-17 were measured. RESULTS The in vitro results showed that COR could dose-dependently inhibit the proliferation, migration, and invasion of IL-1β-induced MH7A cells, as well as promote its apoptosis. Moreover, it also suppressed the over-expression of Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS while up-regulated the level of Bax. Besides, the ratios of P-p65/p65, P-IκBα/IκBα, P-ERK/ERK, P-JNK/JNK, and P-p38/p38 were decreased, and the nuclear translocation of p65 induced by IL-1β was blocked by COR. In vivo results indicated that COR significantly reduced the paw swelling and arthritis score in AIA rats, and inhibited synovial tissue hyperplasia and erosion, as well as inflammatory cells infiltration. It also decreased the serum pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, and IL-17) production. CONCLUSION These results revealed that COR exerted anti-rheumatoid arthritis effect, and its underlying mechanisms may be related to inhibiting the proliferation, migration, and invasion of synovial fibroblasts, enhancing cell apoptosis, and suppressing inflammatory responses via downregulating NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yue Shen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Teng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuhan Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jie Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xudong Zhu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shan Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Longfei Yang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yuehui Huang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qin Song
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
11
|
Jin X, Li Y, Yang Y, Shen H, Chen J, Xu B, Xu J. Thioacetamide promotes osteoclast transformation of bone marrow macrophages by influencing PI3K/AKT pathways. J Orthop Surg Res 2022; 17:53. [PMID: 35093114 PMCID: PMC8800259 DOI: 10.1186/s13018-022-02938-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoclast cell increase is a major risk factor for osteoporosis and degenerative bone and joint diseases. At present, RANKL and M-CSF are commonly used to induce osteoclastogenesis. Thioacetamide (TAA) can lead to many types of liver and kidney damage, but less attention has been paid to the association of TAA with bone damage. In this work, we investigated the effects of TAA on the osteoclastogenesis and differentiation of bone marrow macrophages (BMMs).
Methods
BMMs of SD rat suckling mice were taken for primary culture. CCK-8 was used to detect the toxic effects of TAA on BMMs, and flow cytometry was used to detect the effects of TAA on the cell cycle, cell viability, apoptosis and intracytoplasmic Ca2+ concentration of BMMs. TRAP staining was used to detect the effect of RANKL and M-CSF and TAA on osteoclast differentiation of BMMs. Western Blot was used to detect the expression level of PI3K/AKT pathway and osteoclast-specific proteins (TRAP and cathepsin K).
Results
The results suggested that TAA inhibited the proliferation of BMMs, while enhancing osteoclastogenesis at 0.5 mg/mL and 1 mg/mL as assayed by TRAP staining. Exposed to TAA, BMMs could differentiate into osteoclast-like cells with overexpression of cathepsin K and TRAP proteins. Western blot results showed that TAA can activate the expression levels of P-PI3K, P-AKT, P-P38, and P-JNK, accompanied by apoptosis of BMMs and increase in intracellular Ca2+.
Conclusion
TAA may induce osteoclast formation in BMMs by activating the expression of PI3K/AKT pathway proteins, which is comparable to the classic osteoclast differentiation inducer RANKL and M-CSF. This suggests that we may find a cheap osteoclast inducer.
Collapse
|
12
|
Jia S, He D, Liang X, Cheng P, Liu J, Chen M, Wang C, Zhang H, Meng C. Corilagin induces apoptosis and inhibits autophagy of HL‑60 cells by regulating miR‑451/HMGB1 axis. Mol Med Rep 2021; 25:34. [PMID: 34850958 PMCID: PMC8669704 DOI: 10.3892/mmr.2021.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Corilagin is the primary active component of the Euphorbia phyllanthus plant and has significant anti-cancer properties. However, the biological effects and mechanisms of corilagin on acute myeloid leukemia (AML) have not been clarified. The Cell Counting Kit-8 and Carboxyfluorescein Diacetate Succinimidyl Ester assay results showed that corilagin significantly inhibited proliferation of the AML cell line HL-60 in a time- and dose-dependent manner. Western blotting and flow cytometry analysis were performed to determine the levels of apoptosis in HL-60 cells. The protein levels of cleaved caspase-3 and Bak were upregulated, while Bcl-xl was downregulated in cells treated with corilagin. The percentage of early- and late-stage apoptotic cells increased following corilagin treatment in a dose-dependent manner, indicating that the intrinsic mitochondrial apoptosis pathway was activated by corilagin. Simultaneously, western blotting and immunofluorescence results revealed that autophagy was suppressed; this was accompanied by a decrease in light chain 3-II (LC3-II) conversion and autophagosomes. MicroRNA (miRNA/miR) profile analysis showed that corilagin elevated the expression of the tumor suppressor miR-451, while the mRNA and protein levels of high mobility group protein B1 (HMGB1), the target of miR-451, decreased following exposure to corilagin. Knockdown of miR-451 decreased the downregulation of HMGB1 caused by corilagin, indicating negative regulation of HMGB1 by miR-451 during corilagin treatment. Furthermore, knockdown of miR-451 also attenuated corilagin-induced proliferation inhibition of HL-60 cells, implying that miR-451 was essential for the proliferation inhibitory effect of corilagin. In conclusion, these results indicated that corilagin induced apoptosis and inhibited autophagy in HL-60 cells by regulating the miR-451/HMGB1 axis, and corilagin may be a novel therapeutic drug for the treatment of AML.
Collapse
Affiliation(s)
- Shu Jia
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Dongye He
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Xiao Liang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jilan Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Mingtai Chen
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Cuiling Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
13
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
14
|
Qu H, Zhang Y, He R, Lin N, Wang C. Anethole inhibits RANKL-induced osteoclastogenesis by downregulating ERK/AKT signaling and prevents ovariectomy-induced bone loss in vivo. Int Immunopharmacol 2021; 100:108113. [PMID: 34530203 DOI: 10.1016/j.intimp.2021.108113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023]
Abstract
Postmenopausal osteoporosis is a chronic population health hazard systemic metabolic disease caused by excessive bone resorption and reduced bone formation. The activity between osteoblast and osteoclast, with their mutual effects, influence the procedure of normal bone remodeling. Over-activated osteoclast differentiation and function play a crucial role in excessive bone resorption. Hence, therapy strategies targeting osteoclast activity may promote the bone mass preservation and delay the osteoporosis process. Natural compound (anethole) is emerging as potential therapeutics for various metabolic diseases. The purpose of this study is to investigate the potential effects of anethole on RANKL-induced osteoclast formation and function in vitro and in vivo. Here, in vitro TRAP staining assay was performed to investigate the inhibitory effect of anethole on osteoclast differentiation. Bone pits resorption assay revealed that osteoclast-mediated bone resorption was inhibited by anethole. At mRNA and protein levels, anethole significantly reduced the expression of osteoclast-specific genes expression in a concentration- or time-dependent manner, including NFATc1, MMP-9, DC-STAMP, c-F, TRAP, CTR, Cathepsin K, and V-ATPase d2. Furthermore, intracellular signaling transduction assay indicated that anethole inhibited osteoclast formation via blocking ERK and AKT signaling. GSK3β, the downstream signal of AKT, is simultaneously suppressed with anethole treatment. Based on ovariectomized (OVX) mice model, micro-CT and histological staining results suggested that anethole prevented estrogen deficiency-induced bone mass loss and increased osteoclast activity in vivo. In conclusion, our results show significant indications that anethole exhibits an osteoprotective effect and may be potential for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hao Qu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Yuankang Zhang
- Department of Orthopedics, XinJian District People's Hospital of Nanchang, Nanchang City, Jiangxi Province, China.
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Nong Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| | - Cong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
| |
Collapse
|
15
|
Zhu M, Shan J, Xu H, Xia G, Xu Q, Quan K, Liu X, Dai M. Glaucocalyxin A suppresses osteoclastogenesis induced by RANKL and osteoporosis induced by ovariectomy by inhibiting the NF-κB and Akt pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114176. [PMID: 33933570 DOI: 10.1016/j.jep.2021.114176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glaucocalyxin A (GLA), the most abundant active component of the aboveground sections of Rabdosia japonica (Burm. f.) Hara var. glaucocalyx (Maxim.) Hara, possesses various pharmacological activities, such as antioxidant, antithrombosis, anticoagulation, antibacterial, antitumor, anti-inflammatory activities. According to previous studies, inflammation is closely associated with osteoclast differentiation and activity. Although GLA has demonstrated effective anti-inflammatory properties, its effects on osteoclast differentiation remain unclear. AIM OF THE STUDY To examine the possible inhibitory effects of GLA and its molecular mechanisms in osteogenesis induced by RANKL as well as ovariectomy (OVX)-induced osteoporosis (OP) in mice. MATERIALS AND METHODS Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and a bone resorption pit assay were applied for identifying the effects of GLA on the differentiation of osteoclasts and the function of bone resorption. The mRNA expression of the genes related to osteoclast differentiation was measured by quantitative PCR. Protein expression of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), c-fos and phosphorylation of inhibitor of nuclear factor kappa B (IκBα), protein kinase B (AKT), c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 in RANKL-induced osteoclasts was determined using western blotting. The effect of GLA on OP was studied using a mouse model of OVX. RESULTS At nontoxic concentrations ≤0.5 μM in vitro, GLA suppressed the formation of osteoclasts induced by RANKL with the decreased number and area size of TRAP-positive multinuclear osteoclasts, and the resorption of bone function by reducing F-actin ring number and bone resorption pit areas. It also reduced the expression of the genes specific for osteoclasts, which included genes encoding NFATc1, cathepsin K, c-fos, TRAP, vacuolar-type ATPase d2, and dendritic cell-specific transmembrane protein. Moreover, GLA repressed NF-κB and Akt pathway activation induced by RANKL. Micro-CT analysis of femur samples indicated decreased bone loss and greater trabecular bone density after GLA treatment, which showed that GLA played a protective role by inhibiting bone loss in OVX-induced OP mice in vivo. CONCLUSIONS Our study is the first to show that GLA has significant therapeutic potential in OP, which is the disease of osteoclast increase caused by estrogen deficiency.
Collapse
Affiliation(s)
- Meisong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Jing Shan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Huaen Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Guoming Xia
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Qiang Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Kun Quan
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Xuqiang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Artificial Joints Engineering and Technology Research Center of Jiangxi Province, Nanchang, Jiangxi province, 330006, China.
| |
Collapse
|
16
|
Lu J, Ye C, Huang Y, Huang D, Tang L, Hou W, Kuang Z, Chen Y, Xiao S, Yishake M, He R. Corilagin suppresses RANKL-induced osteoclastogenesis and inhibits oestrogen deficiency-induced bone loss via the NF-κB and PI3K/AKT signalling pathways. J Cell Mol Med 2020; 24:10444-10457. [PMID: 32681612 PMCID: PMC7521306 DOI: 10.1111/jcmm.15657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022] Open
Abstract
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Chenyi Ye
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yanyong Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China.,Department of Orthopedic Surgery, The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Donghui Huang
- Department of Orthopedic Surgery, Hangzhou Third Hospital, Hangzhou, China
| | - Lan Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Weiduo Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Shining Xiao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| | - Mumingjiang Yishake
- Orthopedics Department, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongxin He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, China
| |
Collapse
|