1
|
Shen L, Wang J, Li Y, Sun C, Teng M, Ye X, Feng X. Transcription Factor STAT3-Activated LDHB Promotes Tumor Properties of Endometrial Cancer Cells by Inducing MDH2 Expression. Mol Biotechnol 2025; 67:562-574. [PMID: 38381377 DOI: 10.1007/s12033-024-01067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
The pathogenesis of endometrial cancer (EC) involves the regulation of lactate dehydrogenases. However, the role and mechanism of lactate dehydrogenase-B (LDHB) in EC progression have not been studied. The mRNA levels of LDHB and malate dehydrogenase 2 (MDH2) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blotting and immunohistochemistry assays. Cell proliferation, apoptosis, and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine, transwell, and flow cytometry assay, respectively. Glycolysis was investigated using Glucose Assay Kit, CheKine™ Micro Lactate Assay Kit, and ADP/ATP ratio assay kit. An in vivo tumor formation assay was conducted to disclose the effect of LDHB on tumor growth in vivo. The associations among signal transducer and activator of transcription 3 (STAT3), LDHB, and MDH2 were predicted through JASPAR or GeneMANIA online database and identified by chromatin immunoprecipitation assay, dual-luciferase reporter assay, and co-immunoprecipitation assay. LDHB expression was increased in EC tissues and cells in comparison with normal endometrial tissues and human endometrial stromal cells. LDHB had the potential as a biomarker to predict the prognosis of EC patients. In addition, LDHB knockdown inhibited the proliferation, invasion, and glycolysis and promoted apoptosis of RL95-2 and Ishikawa cells. LDHB knockdown inhibited tumor property of Ishikawa cells in vivo. STAT3 bound to the promoter region of LDHB, and STAT3 silencing-induced effects were relieved after LDHB upregulation. LDHB interacted with and regulated MDH2 expression. Moreover, MDH2 overexpression rescued LDHB knockdown-induced effects on EC cell phenotypes. STAT3-activated LDHB promoted endometrial cancer cell malignancy by inducing MDH2 production.
Collapse
Affiliation(s)
- Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Yanxia Li
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Cuizhen Sun
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Minjie Teng
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaohe Ye
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaomin Feng
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Road, East Lake Eco-Tourism Scenic Spot, Wuhan City, 430070, Hubei, China.
| |
Collapse
|
2
|
Li S, Han H, Yang K, Li X, Ma L, Yang Z, Zhao YX. Emerging role of metabolic reprogramming in the immune microenvironment and immunotherapy of thyroid cancer. Int Immunopharmacol 2025; 144:113702. [PMID: 39602959 DOI: 10.1016/j.intimp.2024.113702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
The metabolic reprogramming of cancer cells is a hallmark of many malignancies. To meet the energy acquisition needs of tumor cells for rapid proliferation, tumor cells reprogram their nutrient metabolism, which is caused by the abnormal expression of transcription factors and signaling molecules related to energy metabolic pathways as well as the upregulation and downregulation of abnormal metabolic enzymes, receptors, and mediators. Thyroid cancer (TC) is the most common endocrine tumor, and immunotherapy has become the mainstream choice for clinical benefit after the failure of surgical, endocrine, and radioiodine therapies. TC change the tumor microenvironment (TME) through nutrient competition and metabolites, causing metabolic reprogramming of immune cells, profoundly changing immune cell function, and promoting immune evasion of tumor cells. A deeper understanding of how metabolic reprogramming alters the TME and controls immune cell fate and function will help improve the effectiveness of TC immunotherapy and patient outcomes. This paper aims to elucidate the metabolic communication that occurs between immune cells around TC and discusses how metabolic reprogramming in TC affects the immune microenvironment and the effectiveness of anti-cancer immunotherapy. Finally, targeting key metabolic checkpoints during metabolic reprogramming, combined with immunotherapy, is a promising strategy.
Collapse
Affiliation(s)
- Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China.
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| | - Yong-Xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
3
|
Duan Z, Wang J, Liu S, Xu Q, Chen H, Li C, Hui M, Chen N. Positive selection in cilia-related genes may facilitate deep-sea adaptation of Thermocollonia jamsteci. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175358. [PMID: 39127215 DOI: 10.1016/j.scitotenv.2024.175358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Deep-sea hydrothermal vents are characterized by high hydrostatic pressure, hypoxia, darkness and toxic substances. However, how organisms adapt to such extreme marine ecosystems remain poorly understood. We hypothesize that adaptive evolution plays an essential role in generating novelty for evolutionary adaptation to the deep-sea environment because adaptive evolution has been found to be critical for species origin and evolution. In this project, the chromosome-level genome of the deep-sea hydrothermal vent gastropod T. jamsteci was constructed for the first time to examine molecular mechanisms of its adaptation to the deep-sea environment. The genome size was large (2.54 Gb), ranking at the top of all species in the Vetigastropoda subclass, driven primarily by the bursts of transposable elements (TEs). The transposition of TEs may also trigger chromosomal changes including both inter-chromosomal fusions and intra-chromosomal activities involving chromosome inversions, rearrangements and fusions, as revealed by comparing the genomes of T. jamsteci and its closely related shallow-sea species Gibbula magus. Innovative changes including the expansion of the ABC transporter gene family that may facilitate detoxification, duplication of genes related to endocytosis, immunity, apoptosis, and anti-apoptotic domains that may help T. jamsteci fight against microbial pathogens, were identified. Furthermore, comparative analysis identified positive selection signals in a large number of genes including the hypoxia up-regulated protein 1, which is a chaperone that may promote adaptation of the T. jamsteci to hypoxic deepsea environments, hox2, Rx2, Pax6 and cilia-related genes BBS1, BBS2, BBS9 and RFX4. Notably, because of the critical importance of cilia and IFT in development, positive selection in cilia-related genes may play a critical role in facilitating T. jamsteci to adapt to the high-pressure deep-sea ecosystem. Results from this study thus revealed important molecular clues that may facilitate further research on the adaptation of molluscs to deep-sea hydrothermal vents.
Collapse
Affiliation(s)
- Zelin Duan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Shuya Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min Hui
- Laoshan Laboratory, Qingdao 266237, China; Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Nansheng Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; College of Basic Medical Sciences, China Three Gorges University, Yichang 443000, China.
| |
Collapse
|
4
|
Monaco V, Iacobucci I, Canè L, Cipollone I, Ferrucci V, de Antonellis P, Quaranta M, Pascarella S, Zollo M, Monti M. SARS-CoV-2 uses Spike glycoprotein to control the host's anaerobic metabolism by inhibiting LDHB. Int J Biol Macromol 2024; 278:134638. [PMID: 39147351 DOI: 10.1016/j.ijbiomac.2024.134638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
The SARS-CoV-2 pandemic, responsible for approximately 7 million deaths worldwide, highlights the urgent need to understand the molecular mechanisms of the virus in order to prevent future outbreaks. The Spike glycoprotein of SARS-CoV-2, which is critical for viral entry through its interaction with ACE2 and other host cell receptors, has been a focus of this study. The present research goes beyond receptor recognition to explore Spike's influence on cellular metabolism. AP-MS interactome analysis revealed an interaction between the Spike S1 domain and lactate dehydrogenase B (LDHB), which was further confirmed by co-immunoprecipitation and immunofluorescence, indicating colocalisation in cells expressing the S1 domain. The study showed that Spike inhibits the catalytic activity of LDHB, leading to increased lactate levels in HEK-293T cells overexpressing the S1 subunit. In the hypothesised mechanism, Spike deprives LDHB of NAD+, facilitating a metabolic switch from aerobic to anaerobic energy production during infection. The Spike-NAD+ interacting region was characterised and mainly involves the W436 within the RDB domain. This novel hypothesis suggests that the Spike protein may play a broader role in altering host cell metabolism, thereby contributing to the pathophysiology of viral infection.
Collapse
Affiliation(s)
- Vittoria Monaco
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Ilaria Iacobucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Luisa Canè
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; Department of Translational Medical Sciences, University of Naples "Federico II", 80131 Naples, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Miriana Quaranta
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Stefano Pascarella
- Sapienza Università di Roma, Department of Biochemical Sciences "A. Rossi Fanelli", Rome 00185, Italy
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), "Federico II" University of Naples, Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., 80131 Naples, Italy.
| |
Collapse
|
5
|
Cai S, Xia Q, Duan D, Fu J, Wu Z, Yang Z, Yu C. Creatine kinase mitochondrial 2 promotes the growth and progression of colorectal cancer via enhancing Warburg effect through lactate dehydrogenase B. PeerJ 2024; 12:e17672. [PMID: 38952967 PMCID: PMC11216189 DOI: 10.7717/peerj.17672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mitochondrial creatine kinase (MtCK) plays a pivotal role in cellular energy metabolism, exhibiting enhanced expression in various tumors, including colorectal cancer (CRC). Creatine kinase mitochondrial 2 (CKMT2) is a subtype of MtCK; however, its clinical significance, biological functions, and underlying molecular mechanisms in CRC remain elusive. Methods We employed immunohistochemical staining to discern the expression of CKMT2 in CRC and adjacent nontumor tissues of patients. The correlation between CKMT2 levels and clinical pathological factors was assessed. Additionally, we evaluated the association between CKMT2 and the prognosis of CRC patients using Kaplan-Meier survival curves and Cox regression analysis. Meanwhile, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression levels of CKMT2 in different CRC cell lines. Finally, we explored the biological functions and potential molecular mechanisms of CKMT2 in CRC cells through various techniques, including qRT-PCR, cell culture, cell transfection, western blot, Transwell chamber assays, flow cytometry, and co-immunoprecipitation. Results We found that CKMT2 was significantly overexpressed in CRC tissues compared with adjacent nontumor tissues. The expression of CKMT2 is correlated with pathological types, tumor size, distant metastasis, and survival in CRC patients. Importantly, CKMT2 emerged as an independent prognostic factor through Cox regression analysis. Experimental downregulation of CKMT2 expression in CRC cell lines inhibited the migration and promoted apoptosis of these cells. Furthermore, we identified a novel role for CKMT2 in promoting aerobic glycolysis in CRC cells through interaction with lactate dehydrogenase B (LDHB). Conclusion In this study, we found the elevated expression of CKMT2 in CRC, and it was a robust prognostic indicator in CRC patients. CKMT2 regulates glucose metabolism via amplifying the Warburg effect through interaction with LDHB, which promotes the growth and progression of CRC. These insights unveil a novel regulatory mechanism by which CKMT2 influences CRC and provide promising targets for future CRC therapeutic interventions.
Collapse
Affiliation(s)
- Shasha Cai
- Laboratory Medicine, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Qingqing Xia
- Laboratory Medicine, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Darong Duan
- Laboratory Medicine, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Junhui Fu
- General Surgery, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Zhenxing Wu
- Gastroenterology, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Zaixing Yang
- Laboratory Medicine, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| | - Changfa Yu
- Laboratory Medicine, Taizhou First People’s Hospital, Huangyan Hospital of Wenzhou Medical University, Taizhou, China
| |
Collapse
|
6
|
Shen J, Ma Z, Yang J, Qu T, Xia Y, Xu Y, Zhou M, Liu W. CircPHGDH downregulation decreases papillary thyroid cancer progression through miR-122-5p/PKM2 axis. BMC Cancer 2024; 24:511. [PMID: 38654205 PMCID: PMC11036668 DOI: 10.1186/s12885-024-12199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Although papillary thyroid carcinoma (PTC) has a favorable prognosis, it could affect patient life quality and become a serious threat because of invasion and metastasis. Many investigations have suggested that circular RNAs (circRNAs) are involved in different cancer regulations. Nevertheless, circRNAs role in invasive PTC remains unclear. METHODS In the present investigation, next-generation sequencing was applied to explore abnormal circRNA expression. The expression of circRNA phosphoglycerate dehydrogenase (circPHGDH) in PTC cell lines and tissues were examined. Then, we investigated regulatory mechanism and circPHGDH downstream targets using bioinformatics analysis and luciferase reporting analysis. Then transwell migration, Cell Counting Kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used for cells migration and proliferation analysis. In vivo metastasis and tumorigenesis assays were also employed to evaluate the circPHGDH role in PTC. RESULTS The data showcased that circPHGDH expression increased in both PTC cell lines and tissues, which suggested that circPHGDH functions in PTC progression. circPHGDH downregulation suppressed PTC invasion and proliferation in both in vivo and in vitro experiments. Bioinformatics and luciferase reporter results confirmed that both microRNA (miR)-122-5p and pyruvate kinase M2 subtype (PKM2) were downstream targets of circPHGDH. PKM2 overexpression or miR-122-5p suppression reversed PTC cell invasion and proliferation post silencing circPHGDH by restoring aerobic glycolysis. CONCLUSION Taken together, our research found that circPHGDH downregulation reduced PTC progression via miR-122-5p/PKM2 axis regulation mediated by aerobic glycolysis.
Collapse
Affiliation(s)
- Jiying Shen
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Zhirong Ma
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Jin Yang
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Tianzhen Qu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Yu Xia
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Yingjie Xu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Ming Zhou
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China
| | - Weiwei Liu
- Department of General Surgery, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, 200336, Shanghai, China.
| |
Collapse
|
7
|
Nguyen PN. Biomarker discovery with quantum neural networks: a case-study in CTLA4-activation pathways. BMC Bioinformatics 2024; 25:149. [PMID: 38609844 PMCID: PMC11265126 DOI: 10.1186/s12859-024-05755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Biomarker discovery is a challenging task due to the massive search space. Quantum computing and quantum Artificial Intelligence (quantum AI) can be used to address the computational problem of biomarker discovery from genetic data. METHOD We propose a Quantum Neural Networks architecture to discover genetic biomarkers for input activation pathways. The Maximum Relevance-Minimum Redundancy criteria score biomarker candidate sets. Our proposed model is economical since the neural solution can be delivered on constrained hardware. RESULTS We demonstrate the proof of concept on four activation pathways associated with CTLA4, including (1) CTLA4-activation stand-alone, (2) CTLA4-CD8A-CD8B co-activation, (3) CTLA4-CD2 co-activation, and (4) CTLA4-CD2-CD48-CD53-CD58-CD84 co-activation. CONCLUSION The model indicates new genetic biomarkers associated with the mutational activation of CLTA4-associated pathways, including 20 genes: CLIC4, CPE, ETS2, FAM107A, GPR116, HYOU1, LCN2, MACF1, MT1G, NAPA, NDUFS5, PAK1, PFN1, PGAP3, PPM1G, PSMD8, RNF213, SLC25A3, UBA1, and WLS. We open source the implementation at: https://github.com/namnguyen0510/Biomarker-Discovery-with-Quantum-Neural-Networks .
Collapse
Affiliation(s)
- Phuong-Nam Nguyen
- Faculty of Computer Science, PHENIKAA University, Yen Nghia, Ha Dong, Hanoi, 12116, Vietnam.
| |
Collapse
|
8
|
Mann MJ, Melendez-Suchi C, Vorndran HE, Sukhoplyasova M, Flory AR, Irvine MC, Iyer AR, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum function. Mol Biol Cell 2024; 35:ar59. [PMID: 38446639 PMCID: PMC11064666 DOI: 10.1091/mbc.e24-01-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
GRP170 (Hyou1) is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds nonnative proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of mouse embryonic fibroblasts obtained from mice in which LoxP sites were engineered in the Hyou1 loci (Hyou1LoxP/LoxP). A doxycycline-regulated Cre recombinase was stably introduced into these cells. Induction of Cre resulted in depletion of Grp170 protein which culminated in cell death. As Grp170 levels fell we observed a portion of BiP fractionating with insoluble material, increased binding of BiP to a client with a concomitant reduction in its turnover, and reduced solubility of an aggregation-prone BiP substrate. Consistent with disrupted BiP functions, we observed reactivation of BiP and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and provide hypotheses as to why mutations in the Hyou1 locus are linked to human disease.
Collapse
Affiliation(s)
- Melissa J. Mann
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Chris Melendez-Suchi
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Maria Sukhoplyasova
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Ashley R. Flory
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Mary Carson Irvine
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Anuradha R. Iyer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
9
|
Gao Y, Tao W, Wang S, Duan R, Zhang Z. AKR1C3 silencing inhibits autophagy-dependent glycolysis in thyroid cancer cells by inactivating ERK signaling. Drug Dev Res 2024; 85:e22142. [PMID: 38349266 DOI: 10.1002/ddr.22142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 02/15/2024]
Abstract
Thyroid cancer is a highly differentiated and poorly malignant tumor. Interfering with glycolysis has become an effective means of controlling cancer progression and autophagy is negatively correlated with glycolysis. Aldo-keto reductase family 1 member C3 (AKR1C3) has been demonstrated to be highly expressed in thyroid cancer tissue and the higher AKR1C3 expression predicted the worse prognosis. We aimed to explore whether AKR1C3 could affect thyroid cancer progression by regulating autophagy-dependent glycolysis. AKR1C3 expression in thyroid cancer cells was detected by western blot. Then, AKR1C3 was knocked down by transfection with short hairpin RNA specific to AKR1C3 in the absence or presence of 3-methyladenine (3-MA) or PMA treatment. Cell cycle and apoptosis was detected by flow cytometry. Immunofluorescence staining was used to analyze LC3B expression. Extracellular acidification, glucose uptake and lactic acid secretion were detected. To evaluate the tumorigenicity of AKR1C3 insufficiency on thyroid cancer in vivo, TPC-1 cells with AKR1C3 knockdown were injected subcutaneously into nude mice. Then, cyclinD1 and Ki67 expression in tumorous tissues was measured by immunohistochemical analysis. Apoptosis was assessed by terminal-deoxynucleoitidyl transferase mediated nick end labeling staining. Additionally, the expression of proteins related to cell cycle, apoptosis, glycolysis, autophagy, and extracellular signal-regulated kinase (ERK) signaling in cells and tumor tissues was assessed by western blot. Highly expressed AKR1C3 was observed in thyroid cancer cells. AKR1C3 knockdown induced cell cycle arrest and apoptosis of TPC-1 cells. Besides, autophagy was activated and glycolysis was inhibited following AKR1C3 silencing, and 3-MA treatment restored the impacts of AKR1C3 silencing on glycolysis. The further experiments revealed that AKR1C3 insufficiency inhibited ERK signaling and PMA application reversed AKR1C3 silencing-induced autophagy in TPC-1 cells. The in vivo results suggested that AKR1C3 knockdown inhibited the development of subcutaneous TPC-1 tumors in nude mice and inactivated the ERK signaling. Collectively, AKR1C3 silencing inhibited autophagy-dependent glycolysis in thyroid cancer by inactivating ERK signaling.
Collapse
Affiliation(s)
- Ying Gao
- Department of Breast and Thyroid Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Weijie Tao
- Department of Breast and Thyroid Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Shoujun Wang
- Department of Breast and Thyroid Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Ran Duan
- Department of Breast and Thyroid Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Zhendong Zhang
- Department of Breast and Thyroid Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
Wang S, Wu X, Wu X, Cheng J, Chen Q, Qi Z. Systematic analysis of the role of LDHs subtype in pan-cancer demonstrates the importance of LDHD in the prognosis of hepatocellular carcinoma patients. BMC Cancer 2024; 24:156. [PMID: 38291366 PMCID: PMC10829303 DOI: 10.1186/s12885-024-11920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Lactate dehydrogenase (LDHs) is an enzyme involved in anaerobic glycolysis, including LDHA, LDHB, LDHC and LDHD. Given the regulatory role in the biological progression of certain tumors, we analyzed the role of LDHs in pan-cancers. METHODS Cox regression, Kaplan-Meier curves, Receiver Operating Characteristic (ROC) curves, and correlation of clinical indicators in tumor patients were used to assess the prognostic significance of LDHs in pan-cancer. The TCGA, HPA, TIMER, UALCAN, TISIDB, and Cellminer databases were used to investigate the correlation between the expression of LDHs and immune subtypes, immune checkpoint genes, methylation levels, tumor mutational load, microsatellite instability, tumor-infiltrating immune cells and drug sensitivity. The cBioPortal database was also used to identify genomic abnormalities of LDHs in pan-cancer. A comprehensive assessment of the biological functions of LDHs was performed using GSEA. In vitro, HepG2 and Huh7 cells were transfected with LDHD siRNA and GFP-LDHD, the proliferation capacity of cells was examined using CCK-8, EdU, and colony formation assays; the migration and invasion of cells was detected by wound healing and transwell assays; western blotting was used to detect the levels of MMP-2, MMP-9, E-cadherin, N-cadherin and Akt phosphorylation. RESULTS LDHs were differentially expressed in a variety of human tumor tissues. LDHs subtypes can act as pro-oncogenes or anti-oncogenes in different types of cancer and have an impact on the prognosis of patients with tumors by influencing their clinicopathological characteristics. LDHs were differentially expressed in tumor immune subtypes and molecular subtypes. In addition, LDHs expression correlated with immune checkpoint genes, tumor mutational load, and microsatellite instability. LDHD was identified to play an important role in the prognosis of HCC patients, according to a comprehensive analysis of LDHs in pan-cancer. In HepG2 and Huh7 cells, knockdown of LDHD promoted cell proliferation, migration, and invasion, promoted the protein expression levels of MMP-2, MMP-9, N-cadherin, and Akt phosphorylation, but inhibited the protein expression level of E-cadherin. In addition, LDHD overexpression showed the opposite changes. CONCLUSION LDHs subtypes can be used as potential prognostic markers for certain cancers. Prognostic and immunotherapeutic analysis indicated that LDHD plays an important role in the prognosis of HCC patients. In vitro experiments revealed that LDHD can affect HCC proliferation, migration, and invasion by regulating MMPs expression and EMT via Akt signaling pathway, which provides a new perspective on the anti-cancer molecular mechanism of LDHD in HCC.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
- Department of Pathology, Fuyang People's Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P.R. China
| | - Xingwei Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
- Clinical Laboratory, Traditional Chinese Hospital of Lu'an, Anhui University of Chinese Medicine, Lu'an 237000, Anhui, P.R. China
| | - Xiaoming Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Jin Cheng
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
- Department of Gastroenterology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Qianyi Chen
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, No.22 Wenchang West Road, Wuhu, Anhui, 241002, P.R. China.
- Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui, 241002, P.R. China.
| |
Collapse
|
11
|
Zhu S, Pang Y, Zhang X, Yang C, Gao J, Fang P, Zhang Y, Yao Y, Ju F, Ye F, Zhu H, Liao P, Yao L, Dai L, Xu J, Wu B, Pan J, Wu Y. Alteration of Thyroid Hormones in Mouse Models of Alzheimer's Disease and Aging. Neuroendocrinology 2024; 114:411-422. [PMID: 38228117 DOI: 10.1159/000536089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
INTRODUCTION Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunying Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Fang
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yaohui Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunjin Yao
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fangyu Ju
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Liao
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lufeng Yao
- Department of Orthopaedic Surgery, Ningbo No. 6 Hospital, Ningbo, China
| | - Lulu Dai
- Department of Ultrasound, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pan
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yijun Wu
- Department of Thyroid Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Fu W, Song Y, Zhao R, Zhao J, Yue Y, Zhang R. Proteomics analysis of serum and urine identifies VCP and CTSA as potential biomarkers associated with multiple myeloma. Clin Chim Acta 2024; 552:117701. [PMID: 38081446 DOI: 10.1016/j.cca.2023.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/26/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
AIMS We analyzed the differentially expressed proteins (DEPs) in serum and urine in order to provide new potential biomarkers for MM. METHODS Data-Independent Acquisition-based proteomics of serum and urine was performed to identify potential biomarkers for MM patients. Then we performed Western Blotting (WB), ELISA along with their ROC curve analysis to confirm DEPs. RESULTS A total of 1653 proteins in serum and 4519 proteins in urine were identified using Data-Dependent Acquisition method. VCP was the only protein that showed significant differences in different comparison groups in both serum and urine. Pathway analysis revealed that protein processing in the endoplasmic reticulum was the most relevant pathway associated with MM. Furthermore, the increased expression of HSP90B1, VCP, CTSA, HYOU1, PDIA4, and RAB7A was detected by WB. The results of ELISA indicated that a combination of VCP and CTSA provided a high area under curve (AUC) value of 0.883 (95 % CI, 0.769-0.997, p < 0.001) to diagnose NDMM. The combination of VCP, CTSA, ALB, and HGB exhibited better performance (AUC = 0.981), with 100 % specificity and 86.7 % sensitivity. CONCLUSION These findings suggest VCP and CTSA exhibit potential as biomarkers for MM, which may be helpful in the molecular mechanisms and pathogenesis upon further investigation.
Collapse
Affiliation(s)
- Wenxuan Fu
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yichuan Song
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yuhong Yue
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Mann MJ, Melendez-Suchi C, Sukhoplyasova M, Flory AR, Carson Irvine M, Iyer AR, Vorndran H, Guerriero CJ, Brodsky JL, Hendershot LM, Buck TM. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.563191. [PMID: 37905119 PMCID: PMC10614942 DOI: 10.1101/2023.10.19.563191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
GRP170, a product of the Hyou1 gene, is required for mouse embryonic development, and its ablation in kidney nephrons leads to renal failure. Unlike most chaperones, GRP170 is the lone member of its chaperone family in the ER lumen. However, the cellular requirement for GRP170, which both binds non-native proteins and acts as nucleotide exchange factor for BiP, is poorly understood. Here, we report on the isolation of embryonic fibroblasts from mice in which LoxP sites were engineered in the Hyou1 loci ( Hyou1 LoxP/LoxP ). A doxycycline-regulated Cre recombinase was also stably introduced into these cells. Induction of Cre resulted in excision of Hyou1 and depletion of Grp170 protein, culminating in apoptotic cell death. As Grp170 levels fell we observed increased steady-state binding of BiP to a client, slowed degradation of a misfolded BiP substrate, and BiP accumulation in NP40-insoluble fractions. Consistent with disrupted BiP functions, we observed reactivation of BiP storage pools and induction of the unfolded protein response (UPR) in futile attempts to provide compensatory increases in ER chaperones and folding enzymes. Together, these results provide insights into the cellular consequences of controlled Grp170 loss and insights into mutations in the Hyou1 locus and human disease.
Collapse
|
14
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
15
|
Jayathirtha M, Jayaweera T, Whitham D, Petre BA, Neagu AN, Darie CC. Two-Dimensional Polyacrylamide Gel Electrophoresis Coupled with Nanoliquid Chromatography-Tandem Mass Spectrometry-Based Identification of Differentially Expressed Proteins and Tumorigenic Pathways in the MCF7 Breast Cancer Cell Line Transfected for Jumping Translocation Breakpoint Protein Overexpression. Int J Mol Sci 2023; 24:14714. [PMID: 37834160 PMCID: PMC10572688 DOI: 10.3390/ijms241914714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The identification of new genes/proteins involved in breast cancer (BC) occurrence is widely used to discover novel biomarkers and understand the molecular mechanisms of BC initiation and progression. The jumping translocation breakpoint (JTB) gene may act both as a tumor suppressor or oncogene in various types of tumors, including BC. Thus, the JTB protein could have the potential to be used as a biomarker in BC, but its neoplastic mechanisms still remain unknown or controversial. We previously analyzed the interacting partners of JTBhigh protein extracted from transfected MCF7 BC cell line using SDS-PAGE complemented with in-solution digestion, respectively. The previous results suggested the JTB contributed to the development of a more aggressive phenotype and behavior for the MCF7 BC cell line through synergistic upregulation of epithelial-mesenchymal transition (EMT), mitotic spindle, and fatty acid metabolism-related pathways. In this work, we aim to complement the previously reported JTB proteomics-based experiments by investigating differentially expressed proteins (DEPs) and tumorigenic pathways associated with JTB overexpression using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Statistically different gel spots were picked for protein digestion, followed by nanoliquid chromatography-tandem mass spectrometry (nLC-MS/MS) analysis. We identified six DEPs related to the JTBhigh condition vs. control that emphasize a pro-tumorigenic (PT) role. Twenty-one proteins, which are known to be usually overexpressed in cancer cells, emphasize an anti-tumorigenic (AT) role when low expression occurs. According to our previous results, proteins that have a PT role are mainly involved in the activation of the EMT process. Interestingly, JTB overexpression has been correlated here with a plethora of significant upregulated and downregulated proteins that sustain JTB tumor suppressive functions. Our present and previous results sustain the necessity of the complementary use of different proteomics-based methods (SDS-PAGE, 2D-PAGE, and in-solution digestion) followed by tandem mass spectrometry to avoid their limitations, with each method leading to the delineation of specific clusters of DEPs that may be merged for a better understanding of molecular pathways and neoplastic mechanisms related to the JTB's role in BC initiation and progression.
Collapse
Affiliation(s)
- Madhuri Jayathirtha
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Taniya Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| | - Brîndușa Alina Petre
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
- Laboratory of Biochemistry, Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 11, 700506 Iasi, Romania
- Center for Fundamental Research and Experimental Development in Translation Medicine—TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Bvd., No. 20A, 700505 Iasi, Romania;
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA; (M.J.); (T.J.); (D.W.); (B.A.P.)
| |
Collapse
|
16
|
Zhang Y, Zhang T, Zhao Y, Wu H, Zhen Q, Zhu S, Hou S. Lactate dehydrogenase D serves as a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma. BMC Cancer 2023; 23:759. [PMID: 37587457 PMCID: PMC10428593 DOI: 10.1186/s12885-023-11221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Lung cancer is reported to be the leading cause of death in males and females, globally. Increasing evidence highlights the paramount importance of Lactate dehydrogenase D (LDHD) in different types of cancers, though it's role in lung adenocarcinoma (LUAD) is still inadequately explored. In this study, we aimed to investigate and determine the relationship between LDHD and LUAD. METHODS The collection of the samples was guided by The Cancer Genome Atlas (TCGA) datasets and Gene Expression Omnibus (GEO). To ascertain various aspects around LDHD function, we analyzed different expression genes (DEGs), functional enrichment, and protein-protein interaction (PPI) networks. The predictive values for LDHD were collectively determined using the Kaplan-Meier method, Cox regression analysis, and a nomogram. Evaluation of the immune infiltration analysis was completed using Estimate and ssGSEA. The prediction of the immunotherapy response was based on TIDE and IPS. The LDHD expression levels in LUAD were validated through Western blot, qPCR, and immunohistochemistry methods. Wound healing and transwell assays were also performed to illustrate the aggressive features in LUAD cell lines. RESULTS The results showed that LDHD was generally downregulated in LUAD patients, with the low LDHD group presenting a decline in OS, DSS, and PFI. Enriched pathways, which include pyruvate metabolism, central carbon metabolism, and oxidative phosphorylation were observed through KEGG analysis. It was also noted that the expression of LDHD expression was inversely related to immune cell infiltration and typical checkpoints. The high LDHD group's response to immunotherapy was remarkable, particularly in CTAL4 + /PD1- therapy. In vitro studies revealed that the overexpression of LDHD caused tumor migration and invasion to be suppressed. CONCLUSION In conclusion, our study revealed that LDHD might be an effective predictor of prognosis and immune filtration, possibly leading to better choices for immunotherapy.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Tianyi Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yingdong Zhao
- Liaocheng Third People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hongdi Wu
- Department of Fundamental, Air Force Communications NCO Academy, Dalian, Liaoning, 116000, China
| | - Qiang Zhen
- College of Pharmacy, Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Suwei Zhu
- Department of Critical-Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Shaoshuai Hou
- Department of Pharmacy, Tengzhou Central People's Hospital, Tengzhou, Shandong, 277500, China.
| |
Collapse
|
17
|
Siculella L, Giannotti L, Di Chiara Stanca B, Spedicato F, Calcagnile M, Quarta S, Massaro M, Damiano F. A comprehensive understanding of hnRNP A1 role in cancer: new perspectives on binding with noncoding RNA. Cancer Gene Ther 2023; 30:394-403. [PMID: 36460805 DOI: 10.1038/s41417-022-00571-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
The heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is the most abundant and ubiquitously expressed member of the heterogeneous nuclear ribonucleoproteins family (hnRNPs). hnRNP A1 is an RNA-binding protein associated with complexes active in diverse biological processes such as RNA splicing, transactivation of gene expression, and modulation of protein translation. It is overexpressed in several cancers, where it actively promotes the expression and translation of several key proteins and regulators associated with tumorigenesis and cancer progression. Interesting recent studies have focused on the RNA-binding property of hnRNP A1 and revealed previously under-explored functions of hnRNP A1 in the processing of miRNAs, and loading non-coding RNAs into exosomes. Here, we will report the recent advancements in our knowledge of the role of hnRNP A1 in the biological processes underlying cancer proliferation and growth, with a particular focus on metabolic reprogramming.
Collapse
Affiliation(s)
- Luisa Siculella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Laura Giannotti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Benedetta Di Chiara Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Spedicato
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce, Italy
| | - Fabrizio Damiano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
18
|
Yao L, Blasi J, Shippy T, Brice R. Transcriptomic analysis reveals the immune response of human microglia to a soy protein and collagen hybrid bioscaffold. Heliyon 2023; 9:e13352. [PMID: 36825181 PMCID: PMC9941947 DOI: 10.1016/j.heliyon.2023.e13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory reactions resulting from spinal cord injury cause significant secondary damage. Microglial cells activate CD4+ T cells via major histocompatibility complex class II (MHCII) molecules. The activated T cells lead to neural tissue damage and demyelination at early stages of spinal cord injury. Control of the inflammatory response may attenuate the injury process. In this study, we compared gene expression in human microglia grown on soy protein-collagen hybrid scaffolds versus collagen scaffolds. Differentially expressed genes (DEGs) were subjected to gene ontology (GO) and pathway enrichment assays. Among down-regulated genes, the "antigen processing and presentation" pathway shows enrichment, primarily due to the down-regulation of MHCII molecules. The DEGs in this pathway show enrichment of binding sites for several transcription factors, with CIITA and IRF8 being the top candidates. The down-regulation of MHCII along with the significant enrichment of the GO term "focal adhesion" among the up-regulated genes helps explain the higher motility of microglial cells on the hybrid scaffold compared with that on the collagen scaffold. Up-regulated genes associated with "focal adhesion" include DNM2, AHNAK, and HYOU1, which have been previously implicated in increased cell motility. Overall, our study indicates that the use of hybrid scaffolds containing soy protein and collagen may modulate the immune response of wounded neural tissue.
Collapse
Affiliation(s)
- Li Yao
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States,Corresponding author.
| | - Jacques Blasi
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States
| | - Teresa Shippy
- KSU Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, United States
| | - Ryan Brice
- Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, KS 67260, United States
| |
Collapse
|
19
|
Wang W, Jiang X, Xia F, Chen X, Li G, Liu L, Xu Q, Zhu M, Chen C. HYOU1 promotes cell proliferation, migration, and invasion via the PI3K/AKT/FOXO1 feedback loop in bladder cancer. Mol Biol Rep 2023; 50:453-464. [PMID: 36348197 DOI: 10.1007/s11033-022-07978-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Hypoxia up-regulated 1 (HYOU1) was identified as a proto-oncogene and involved in tumorigenesis and progression in several cancer. Nonetheless, the biological function and mechanism of HYOU1 in bladder cancer (BCa) remian unclear. METHODS The HYOU1 level in BCa tissues and cells was examined using RT-qPCR and western blot methods. The relationship between HYOU1 expression and clinicopathologic characteristics of BCa was analyzed. The biological role of HYOU1 on BCa cell proliferation, apoptosis, migration and invasion were analyzed via counting kit-8 (CCK-8), flow cytometry, wound healing and Transwell assays, respectively. The association between HYOU1 and the PI3K/AKT/Forkhead box O1 (FOXO1) signalling was assessed via western blot assay, meanwhile the the association of FOXO1 with HYOU1 was also investigated. RESULTS HYOU1 was up-regulated in BCa tissues and cell lines, and the high level of HYOU1 was associated with bladder cancer histological grade and pathologic stage. Moreover, patients with high expression of HYOU1 showed poor overall survival from Kaplan-Meier Plotter. HYOU1 depletion impeded cell proliferation, migration and invasion, and induced cell apoptosis, while HYOU1 overexpression promoted cell proliferation, migration and invasion. Mechanically, our results showed that HYOU1 knockdown repressed PI3K/AKT/FOXO1 pathway and HYOU1 was negative regulated by FOXO1 in BCa. Significantly, we confirmed that the HYOU1/PI3K-AKT/FOXO1 negative feedback loop was involved in BCa cell proliferation, migration and invasion. CONCLUSION These findings revealed that HYOU1 acted as a pro-oncogene on BCa progression, and it will be a possible target for BCa treatment.
Collapse
Affiliation(s)
- Weiguo Wang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xinjie Jiang
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Fei Xia
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Xudong Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Guojun Li
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Lizhuan Liu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Qiang Xu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Min Zhu
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China
| | - Cheng Chen
- Deparment of urology, Xiangya Changde Hospital, Moon Avenue, West of Langzhou North Road, 415000, Changde, Hunan, P.R. China.
| |
Collapse
|
20
|
MiR-221-3p Facilitates Thyroid Cancer Cell Proliferation and Inhibit Apoptosis by Targeting FOXP2 Through Hedgehog Pathway. Mol Biotechnol 2022; 64:919-927. [DOI: 10.1007/s12033-022-00473-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
|
21
|
Wang JM, Jiang JY, Zhang DL, Du X, Wu T, Du ZX. HYOU1 facilitates proliferation, invasion and glycolysis of papillary thyroid cancer via stabilizing LDHB mRNA. J Cell Mol Med 2021; 25:4814-4825. [PMID: 33792181 PMCID: PMC8107106 DOI: 10.1111/jcmm.16453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/05/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
HYOU1 is upregulated in many kinds of cancer cells, and its high expression is associated with tumour invasiveness and poor prognosis. However, the role of HYOU1 in papillary thyroid cancer (PTC) development and progression remains to be elucidated. Here, we reported that HYOU1 was highly expressed in human PTC and associated with poor prognosis. HYOU1 silencing suppressed the proliferation, migration and invasion of PTC cells. Mechanistic analyses showed that HYOU1 silencing promoted oxidative phosphorylation while inhibited aerobic glycolysis via downregulating LDHB at the posttranscriptional level. We further confirmed that the 3'UTR of LDHB mRNA is the indirect target of HYOU1 silencing and HYOU1 silencing increased miR‐375‐3p levels. While LDHB overexpression significantly suppressed the inhibitory effects of HYOU1 silencing on aerobic glycolysis, proliferation, migration and invasion in PTC cells. Taken together, our findings suggest that HYOU1 promotes glycolysis and malignant progression in PTC cells via upregulating LDHB expression, providing a potential target for developing novel anticancer agents.
Collapse
Affiliation(s)
- Jia-Mei Wang
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China.,Clinical medical laboratory, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Jing-Yi Jiang
- Department of Biochemistry & Molecular Biology, China Medical University, Shenyang, China
| | - Da-Lin Zhang
- Department of Thyroid Surgery, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Xin Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Tong Wu
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhen-Xian Du
- Department of Endocrinology & Metabolism, The 1st Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|