1
|
Li Y, Li X, Xu T, Chen D, Zhou F, Wang X. Deciphering Shared Gene Signatures and Immune Infiltration Characteristics Between Gestational Diabetes Mellitus and Preeclampsia by Integrated Bioinformatics Analysis and Machine Learning. Reprod Sci 2025:10.1007/s43032-025-01847-1. [PMID: 40374866 DOI: 10.1007/s43032-025-01847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/07/2025] [Indexed: 05/18/2025]
Abstract
Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common and serious disorders of pregnancy that threaten maternal safety and perinatal outcomes. Generally, GDM is recognized as an independent risk factor for the development of preeclampsia, while a history of preeclampsia in primiparous women is also a risk factor for GDM in subsequent pregnancies. However, the intricate underlying mechanisms of GDM and PE remain elusive. This study developed a diagnostic prediction model for GDM and PE. It investigated the correlation between shared signature genes and immune infiltration characteristics, by employing bioinformatic analysis combined with a machine learning strategy. The microarray datasets GSE103552 and GSE74341 from the Gene Expression Omnibus (GEO) database were used to obtain differentially expressed genes (DEGs). Then, signature genes were identified from the common DEGs via the methods of random forest (RF) algorithms, and artificial neural network (ANN) models. Furthermore, the immune infiltration patterns associated with GDM and PE were explored and validated in the training and testing sets. Moreover, to uncover the molecular mechanisms involved, an mRNA-miRNA network of target genes was constructed, and potential therapeutic drugs for GDM and PE were explored by querying the Connectivity Map (CMap) database. We obtained 45 DEGs by intersecting upregulated and downregulated DEGs from the GSE103552 and GSE74341 datasets. The results of GO annotation indicated that these 45 DEGs were mainly enriched in the process of cell cycle, and KEGG enrichment analysis indicated significant associations with immune signal transduction pathways and immune-related infectious disease. Six signature genes, namely TRA2A, NPM3, PHF5A, SNORD1C, PLXNA3, and C14orf142, were determined by machine learning models, and a diagnostic prediction model for GDM and PE was constructed based on these key genes, validating the highest prediction in the testing set. Moreover, we found increased infiltration of iDCs and T cell co-inhibition in the GDM group, while neutrophil, Th2 cell, and HLA levels were found to have decreased significantly. The PE group showed a significant increase in mast cells. In addition, the identified key genes were found to have potential associations with various immunocytes, immune functions, and checkpoints in the training and testing sets. Then, a miRNA-gene network analysis predicted several key miRNAs-miR-204, miR-23abc, miR-9, miR-205, and miR-455-5p-that might play significant roles in regulating these DEGs. In addition, the research also identified four potential therapeutic compounds for GDM (prima-1-met, geranylgeraniol, MLN-8054, and LY-364947), along with other drugs (deferiprone, peucedanin, MPEP, and IWR-1-endo) that could be targeted for treating PE. In summary, this work identified six signature genes (TRA2A, NPM3, PHF5A, SNORD1C, PLXNA3, and C14orf142) as potential genetic biomarkers for the diagnostic prediction of GDM and PE. A diagnostic prediction model was constructed based on these key genes, demonstrating strong performance when validated with an independent dataset. Moreover, we investigated the similarities and differences between the two diseases in terms of immune infiltration landscape and analyzed the correlations between key genes and the immune infiltration landscape, which provided insights into the molecular mechanisms underlying the development of GDM and PE. This understanding could pave the way for breakthroughs in identifying new immunotherapeutic targets and strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Yaqian Li
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Xueqi Li
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Tingting Xu
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Daijuan Chen
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, Sichuan University West China Second University Hospital, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| |
Collapse
|
2
|
Wu Z, Zhan W, Wu L, Yu L, Xie X, Yu F, Kong W, Bi S, Liu S, Yin G, Zhou J. The Roles of Forkhead Box O3a (FOXO3a) in Bone and Cartilage Diseases - A Narrative Review. Drug Des Devel Ther 2025; 19:1357-1375. [PMID: 40034405 PMCID: PMC11874768 DOI: 10.2147/dddt.s494841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Bone and cartilage diseases are significantly associated with musculoskeletal disability. However, no effective drugs are available to cure them. FOXO3a, a member of the FOXO family, has been implicated in cell proliferation, ROS detoxification, autophagy, and apoptosis. The biological functions of FOXO3a can be modulated by post-translational modifications (PTMs), such as phosphorylation and acetylation. Several signaling pathways, such as MAPK, NF-κB, PI3K/AKT, and AMPK/Sirt1 pathways, have been implicated in the development of bone and cartilage diseases by mediating the expression of FOXO3a. In particular, FOXO3a acts as a transcriptional factor in mediating the expression of various genes, such as MnSOD, CAT, BIM, BBC3, and CDK6. FOXO3a plays a critical role in the metabolism of bone and cartilage. In this article, we mainly discussed the biological functions of FOXO3a in bone and cartilage diseases, such as osteoporosis (OP), osteoarthritis (OA), rheumatoid arthritis (RA), ankylosing spondylitis (AS), and intervertebral disc degeneration (IDD). FOXO3a can promote osteogenic differentiation, induce osteoblast proliferation, inhibit osteoclast activity, suppress chondrocyte apoptosis, and reduce inflammatory responses. Collectively, up-regulation of FOXO3a expression shows beneficial effects, and FOXO3a has become a potential target for bone and cartilage diseases.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wang Zhan
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Longhuo Wu
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Luhu Yu
- Department of Clinical Laboratory, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Fang Yu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shengrong Bi
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Shiwei Liu
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| | - Guoqiang Yin
- Department of Joint Surgery, Ganzhou Hospital Affiliated to Nanchang University, Ganzhou, 341000, People’s Republic of China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, 341000, People’s Republic of China
| |
Collapse
|
3
|
Bukowska P, Bralewska M, Pietrucha T, Sakowicz A. Nutraceuticals as Modulators of Molecular Placental Pathways: Their Potential to Prevent and Support the Treatment of Preeclampsia. Int J Mol Sci 2024; 25:12167. [PMID: 39596234 PMCID: PMC11594370 DOI: 10.3390/ijms252212167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Preeclampsia (PE) is a serious condition characterized by new-onset hypertension and proteinuria or organ dysfunction after the 20th week of gestation, making it a leading cause of maternal and fetal mortality worldwide. Despite extensive research, significant gaps remain in understanding the mechanisms underlying PE, contributing to the ineffectiveness of current prevention and treatment strategies. Consequently, premature cesarean sections often become the primary intervention to safeguard maternal and fetal health. Emerging evidence indicates that placental insufficiency, driven by molecular disturbances, plays a central role in the development of PE. Additionally, the maternal microbiome may be implicated in the pathomechanism of preeclampsia by secreting metabolites that influence maternal inflammation and oxidative stress, thereby affecting placental health. Given the limitations of pharmaceuticals during pregnancy due to potential risks to fetal development and concerns about teratogenic effects, nutraceuticals may provide safer alternatives. Nutraceuticals are food products or dietary supplements that offer health benefits beyond basic nutrition, including plant extracts or probiotics. Their historical use in traditional medicine has provided valuable insights into their safety and efficacy, including for pregnant women. This review will examine how the adoption of nutraceuticals can enhance dysregulated placental pathways, potentially offering benefits in the prevention and treatment of preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
4
|
Chen H, Wang SH, Li HL, Zhou XB, Zhou LW, Chen C, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. The attenuation of gut microbiota-derived short-chain fatty acids elevates lipid transportation through suppression of the intestinal HDAC3-H3K27ac-PPAR-γ axis in gestational diabetes mellitus. J Nutr Biochem 2024; 133:109708. [PMID: 39059479 DOI: 10.1016/j.jnutbio.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Gut flora is considered to modulate lipid transport from the intestine into the bloodstream, and thus may potentially participate in the development of GDM. Although previous studies have shown that the intestinal microbiota influences lipid transport and metabolism in GDM, the precise mechanisms remain elusive. To address this, we used a high-fat diet (HFD)-induced GDM mouse model and conducted 16s rRNA sequencing and fecal metabolomics to assess gut microbial community shifts and associated metabolite changes. Western blot, ELISA, and chromatin immunoprecipitation (ChIP) were utilized to elucidate how gut microbiota affect intestinal lipid transport and the insulin sensitivity of hepatic, adipose, and skeletal muscle tissues. We found that HFD impaired the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) in pregnant mice. 16s rRNA sequencing demonstrated profound compositional changes, especially in the relative abundances of Firmicutes and Bacteroidetes. Metabolomics analysis presented a decline in the concentration of short-chain fatty acids (SCFAs) in the GDM group. Western blot analyses showed an upregulation of HDAC3 and a concurrent reduction in H3K27 acetylation in the intestine. ChIP-qPCR showed that PPAR-γ was inhibited, which in turn activated lipid-transporter CD36. ELISA and insulin signaling pathway detection in insulin-target organs showed high concentrations of circulating fatty acids and triglycerides and insulin resistance in insulin-target organs. Our results suggest that gut microbiota is closely associated with the development of GDM, partly because decreased gut flora-associated SCFAs activate CD36 by suppressing the HDAC3-H3K27ac-PPAR-γ axis to transport excessive fatty acids and triglycerides into blood circulation, thereby dysregulating the insulin sensitivity of insulin target organs.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong-Li Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xiao-Bo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Lin-Wei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Toby Mansell
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; College of Life Sciences, University of Leicester, Great Britain, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Zhu S, Liu N, Gong H, Liu F, Yan G. Identification of biomarkers and sex differences in the placenta of fetal growth restriction. J Obstet Gynaecol Res 2023; 49:2324-2336. [PMID: 37553225 DOI: 10.1111/jog.15735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 08/10/2023]
Abstract
AIM Fetal growth restriction (FGR) can lead to short-term and long-term impairments in the fetus. The placenta functions as an exchanger for substance transport, playing a critical role in fetal growth. However, the mechanism from the placental standpoint is still not fully understood. In this study, we aimed to investigate the pathophysiological mechanisms in the placenta that mediated the development of FGR and sex differences. METHODS We analyzed the gene expression profiles of GSE100415 containing specific normotensive FGR placental samples and GSE114691 with canonical samples using three different methods, differentially expressed gene analysis, weighted gene co-expression network analysis, and gene set enrichment analysis. Gene enrichment was performed, including the gene ontology and pathway from the Kyoto Encyclopedia of Genes and Genomes. The important process was then validated in pregnant Wistar rats subcutaneously administered dexamethasone (0.2 mg/kg/d) or saline from gestation Day 9 to 21. RESULTS Our results revealed little difference between the comparison of normal and normotensive FGR placental samples but confirmed the sex difference. Further analyses of the canonical samples identified the occurrence of vascular dysfunction, which was validated by the calculation of the vascular lumen area, showing that the vascular lumen in the FGR group was more than in the control. We also discovered 17 significantly expressed genes from the involved eigengenes. CONCLUSION Our study provides an important theoretical and experimental basis to reevaluate the development of FGR from the placental standpoint and suggests a series of biomarkers for future clinical use.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Niying Liu
- Department of Obstetrics and Gynecology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei, China
| | - Hongjun Gong
- Department of Obstetrics and Gynecology, Hubei Province Dongxihu District Maternal and Child Health Care Hospital, Wuhan, Hubei, China
| | - Fulin Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
- Université Paris Cité, Paris, France
| | - Ge Yan
- Department of Obstetrics and Gynecology, Hubei Province Dongxihu District Maternal and Child Health Care Hospital, Wuhan, Hubei, China
| |
Collapse
|
6
|
Liu J, Yang W. Mechanism of histone deacetylase HDAC2 in FOXO3-mediated trophoblast pyroptosis in preeclampsia. Funct Integr Genomics 2023; 23:152. [PMID: 37160584 DOI: 10.1007/s10142-023-01077-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Histone deacetylase 2 (HDAC2) has been demonstrated to regulate trophoblast behaviors. However, its role in trophoblast pyroptosis remains unknown. This study sought to analyze the molecular mechanism of HDAC2 in trophoblast pyroptosis in PE. Expression levels of HDAC2, forkhead box O3 (FOXO3), and protein kinase R-like endoplasmic reticulum kinase (PERK) in placenta tissues and HTR8/SVneo cells and H3K27ac levels in cells were determined. Levels of IL-1β and IL-18 in placenta tissues were determined, and their correlation with HDAC2 was analyzed. Cell proliferation, migration, and invasion were evaluated, and levels of pyroptosis-associated proteins and cytokines were determined. The enrichments of H3K27 acetylation (H3K27ac) and FOXO3 in the FOXO3/PERK promoter region were determined. HDAC2 was downregulated, and FOXO3, PERK, IL-1β, and IL-18 levels were elevated in PE placenta tissues. In HTR8/SVneo cells, HDAC2 downregulation suppressed cell proliferation, migration, and invasion and increased pyroptosis. HDAC2 erased H3K27ac in the FOXO3 promoter region and repressed FOXO3, and FOXO3 bound to the PERK promoter and increased PERK transcription. Functional rescue experiments revealed that silencing FOXO3 or PERK counteracted HDAC2 downregulation-induced cell pyroptosis. Overall, HDAC2 downregulation enhanced H3K27ac to activate FOXO3 and PERK, leading to the occurrence of trophoblast pyroptosis in PE.
Collapse
Affiliation(s)
- Jia Liu
- Department of Obstetrics, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Weihui Yang
- Department of Obstetrics, Hunan Provincial People's Hospital, First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
7
|
Frost JM, Amante SM, Okae H, Jones EM, Ashley B, Lewis RM, Cleal JK, Caley MP, Arima T, Maffucci T, Branco MR. Regulation of human trophoblast gene expression by endogenous retroviruses. Nat Struct Mol Biol 2023; 30:527-538. [PMID: 37012406 PMCID: PMC10113160 DOI: 10.1038/s41594-023-00960-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters. Using epigenomic data from primary human trophoblast and trophoblast stem-cell lines, we identified multiple endogenous retrovirus families with regulatory potential that lie close to genes with preferential expression in trophoblast. These largely primate-specific elements are associated with inter-species gene expression differences and are bound by transcription factors with key roles in placental development. Using genetic editing, we demonstrate that several elements act as transcriptional enhancers of important placental genes, such as CSF1R and PSG5. We also identify an LTR10A element that regulates ENG expression, affecting secretion of soluble endoglin, with potential implications for preeclampsia. Our data show that transposons have made important contributions to human trophoblast gene regulation, and suggest that their activity may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jennifer M Frost
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Samuele M Amante
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Eleri M Jones
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brogan Ashley
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane K Cleal
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew P Caley
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tania Maffucci
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
8
|
Chen H, Wang SH, Chen C, Yu XY, Zhu JN, Mansell T, Novakovic B, Saffery R, Baker PN, Han TL, Zhang H. A novel role of FoxO3a in the migration and invasion of trophoblast cells: from metabolic remodeling to transcriptional reprogramming. Mol Med 2022; 28:92. [PMID: 35941589 PMCID: PMC9358829 DOI: 10.1186/s10020-022-00522-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background The forkhead box O3a protein (FoxO3a) has been reported to be involved in the migration and invasion of trophoblast, but its underlying mechanisms unknown. In this study, we aim to explore the transcriptional and metabolic regulations of FoxO3a on the migration and invasion of early placental development.
Methods Lentiviral vectors were used to knock down the expression of FoxO3a of the HTR8/SVneo cells. Western blot, matrigel invasion assay, wound healing assay, seahorse, gas-chromatography-mass spectrometry (GC–MS) based metabolomics, fluxomics, and RNA-seq transcriptomics were performed. Results We found that FoxO3a depletion restrained the migration and invasion of HTR8/SVneo cells. Metabolomics, fluxomics, and seahorse demonstrated that FoxO3a knockdown resulted in a switch from aerobic to anaerobic respiration and increased utilization of aromatic amino acids and long-chain fatty acids from extracellular nutrients. Furthermore, our RNA-seq also demonstrated that the expression of COX-2 and MMP9 decreased after FoxO3a knockdown, and these two genes were closely associated with the migration/invasion progress of trophoblast cells. Conclusions Our results suggested novel biological roles of FoxO3a in early placental development. FoxO3a exerts an essential effect on trophoblast migration and invasion owing to the regulations of COX2, MMP9, aromatic amino acids, energy metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Shi-Han Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin-Yang Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Jia-Nan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Toby Mansell
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Characteristic DNA methylation profiles of chorionic villi in recurrent miscarriage. Sci Rep 2022; 12:11673. [PMID: 35896560 PMCID: PMC9329430 DOI: 10.1038/s41598-022-15656-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dysregulation of transcriptional programs that are tightly regulated by DNA methylation during placental and fetal development at different gestational stages, may cause recurrent miscarriage. Here, we examined genome-wide DNA methylation in chorionic villi and decidual tissues from patients suffering RM and from healthy women who had undergone artificial abortion (n = 5 each). We found that 13,426 and 5816 CpG sites were differentially methylated in chorionic villi and decidua, respectively. DNA methylation profiles of chorionic villi, but not decidua, in RM patients was clearly distinct from AA controls. Among the differentially methylated genes, the enhancer region of SPATS2L was significantly more highly methylated in RM patients (n = 19) than AA controls (n = 19; mean methylation level, 52.0%-vs.-28.9%, P < 0.001), resulting in reduced expression of SPATS2L protein in the former. Functionally, depletion of SPATS2L in extravillous trophoblast cells decreased their invasion and migration abilities. Our data indicate that particularly the chorionic villi in RM patients exhibit distinct DNA methylation profiles compared with normal pregnancies and that this changed DNA methylation status may impede the progression of embryo development via the altered expression of genes such as SPATS2L in the villi.
Collapse
|
10
|
Cheng TL, Chen CH, Wu MH, Lai CH, Lee KH, Lin SH, Shiau AL, Wu CL, Kang L. Upregulation of Fibrinogen-Like 1 Expression Contributes to Reducing the Progression of Preeclampsia. Front Cell Dev Biol 2021; 9:757643. [PMID: 34957095 PMCID: PMC8692364 DOI: 10.3389/fcell.2021.757643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Fibrinogen-like 1 (FGL1) is involved in liver injury and liver regeneration, but its role in placenta and preeclampsia (PE) remains unclear. We assessed FGL1 expression in serum and placenta from L-NAME-induced PE-like mouse and in women with (n = 38) and without (n = 42) PE. For the mouse study, pregnant C57Bl/6 mouse (n = 6/group) were subcutaneously administered L-NAME with or without FGL1 once daily starting on days 7–14 of pregnancy and were sacrificed on gestational day (GD) 20. Maternal body weight, blood pressure, and urinary protein were assessed during GDs 8–20. The weight and length of the placenta and fetus were assessed. The placental structure was evaluated using hematoxylin staining. In the human study, the sera of the pregnant women during the late trimester were assessed with enzyme-linked immunosorbent assays (ELISAs). FGL1 expression in human trophoblast cell lines under L-NAME stimulation was measured using Western blotting and immunofluorescence staining. The detected FGL1 protein levels in serum and placenta were both significantly upregulated in patients and mouse with PE compared with those in the non-PE groups. FGL1 treatment decreased maternal hypertension and proteinuria, decreased fetal weight in mouse with PE, downregulated proinflammatory cytokine (interleukin-1b and interleukin-6) levels, and maintained the balance between antiangiogenic (fms-like tyrosine kinase-1) and proangiogenic (placental growth factor) substances in the placenta. L-NAME-upregulated FGL1 expression was inhibited following overexpression of FoxO3a. In summary, FoxO3a reduction is a potential pathophysiological mechanism leading to upregulated placental FGL1 expression that may play a pivotal role in preventing PE progression.
Collapse
Affiliation(s)
- Tsung-Lin Cheng
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Han Lai
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ko-Hung Lee
- An-an Women and Children Clinic, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- College of Medicine, Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
11
|
Chen H, Tang X, Han TL, Zhu JN, Zhou W, Baker PN, Chen C, Zhang H. Potential role of FoxO3a in the regulation of trophoblast development and pregnancy complications. J Cell Mol Med 2021; 25:4363-4372. [PMID: 33811439 PMCID: PMC8093966 DOI: 10.1111/jcmm.16499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
The forkhead box O3a protein (FoxO3a) has been reported to regulate tumour invasion and migration, but little is known about the molecular mechanism or its role in trophoblast invasion and migration into the uterus. In this study, we aim to explore its role in trophoblast development and placenta‐related pregnancy complications and the potential mechanism. Levels of FoxO3a and its phosphorylated form (p‐FoxO3a) in placental tissue from healthy pregnant women and pre‐eclampsia patients were first compared. Then, HTR‐8/SVneo cells were transfected with lentiviral vectors to deplete and overexpress FoxO3a. Western blot, immunohistochemistry, Cell Counting Kit‐8, wound‐healing assay, Matrigel invasion assay, cell apoptosis, cell cycle assay, RNA sequencing, qRT‐PCR and ChIP‐qPCR were performed on the cells to study the potential role of FoxO3a and the underlying mechanism. We found the expression of FoxO3a was decreased, whereas p‐FoxO3a was increased in pre‐eclampsia placentae. FoxO3a depletion significantly reduced transcription of the promoter region of intercellular cell adhesion molecule‐1 (ICAM1) gene in ChIP assays and led to reduced invasion and migration of trophoblast cells, arrested cell cycle in G1 phase and increased apoptosis under oxidative stress. Our results suggested that FoxO3a may play a role in the regulation of trophoblast invasion and migration during placental development, which may be because of its affinity to the ICAM1 promotor.
Collapse
Affiliation(s)
- Hao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Xin Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia-Nan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Wei Zhou
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, China
| | - Philip N Baker
- Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK
| | - Chang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Canada-China-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|