1
|
Gao P, Gao X, Lin L, Zhang M, Luo D, Chen C, Li Y, He Y, Liu X, Shi C, Yang R. Identification of PRKCQ-AS1 as a Keratinocyte-Derived Exosomal lncRNA That Promotes Th17 Differentiation and IL-17 secretion in Psoriasis Through Bioinformatics, Machine Learning Algorithms, and Cell Experiments. J Inflamm Res 2025; 18:6557-6582. [PMID: 40433053 PMCID: PMC12107390 DOI: 10.2147/jir.s521553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Background Psoriasis is an immune-mediated skin disease where Th17 cell differentiation and IL-17 secretion play critical roles. This study investigates key exosomal ncRNAs regulating the Th17/IL-17 axis in psoriasis and their mechanisms. Methods We integrated bulk RNA sequencing datasets from the GEO database to construct and evaluate exosome-related patterns. Subsequently, exosome-related ncRNAs in psoriasis lesions were identified primarily through weighted gene co-expression network analysis and five machine learning algorithms. Additionally, large-scale integrated single-cell RNA sequencing data and genome-wide association study (GWAS) data were included to investigate the mechanisms of key ncRNA, primarily through immune infiltration analysis, gene set enrichment analysis (GSEA), co-expression analysis, and Mendelian randomization. Finally, the mechanisms of key ncRNA were confirmed primarily through cell co-culture and lentiviral transfection, assessed by immunofluorescence, qRT-PCR, and Western blot. Results We identified 10 exosome-related ncRNAs, including PRKCQ-AS1, and constructed five machine learning models with excellent diagnostic performance, emphasizing PRKCQ-AS1's significance. Mendelian randomization demonstrated a causal relationship between PRKCQ-AS1 and psoriasis. Immune infiltration analysis and GSEA indicated that PRKCQ-AS1 influences the infiltration pattern of CD4+T cells, promotes Th17 differentiation, and is related to STAT3. The expression distribution in single-cell RNA sequencing data suggested that exosomal PRKCQ-AS1 may originate from keratinocytes, and co-expression analysis supported its role in STAT3 activation within lymphocytes. Co-culture experiments confirmed that keratinocytes in psoriasis models, as well as keratinocytes overexpressing PRKCQ-AS1, can upregulate PRKCQ-AS1 levels in CD4+T cells via exosomes, promoting Th17 cell differentiation and IL-17 secretion. Consistent results and STAT3 signaling pathway activation were detected in CD4+T cells overexpressing PRKCQ-AS1. Conclusion PRKCQ-AS1 is an exosomal lncRNA from keratinocytes in psoriasis, promoting Th17 differentiation and IL-17 secretion through STAT3 activation. This finding deepens the understanding of psoriasis pathogenesis and provides a basis for targeted therapies.
Collapse
Affiliation(s)
- Pengfei Gao
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
- Biomedical Big Data Center, Nanfang College, Guangzhou, People’s Republic of China
| | - Xiaolu Gao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Long Lin
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Ming Zhang
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
- Biomedical Big Data Center, Nanfang College, Guangzhou, People’s Republic of China
| | - Dongqiang Luo
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chuyan Chen
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Yujie Li
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Yufeng He
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Xianmiao Liu
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Chunyu Shi
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Ruisi Yang
- School of Yunkang Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Wen J, Wu Y, Luo Q. DNA methyltransferases-associated long non-coding RNA PRKCQ-AS1 regulate DNA methylation in myelodysplastic syndrome. Int J Lab Hematol 2024; 46:878-884. [PMID: 38679027 DOI: 10.1111/ijlh.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Myelodysplastic syndrome (MDS) is a group of clonal hematopoietic stem cell disorders. DNA hypermethylation is considered to be the key mechanism of pathogenesis for MDS. Studies have demonstrated that DNA methylation can be regulated by the co-effect between long non-coding RNAs (lncRNAs) and DNA methyltransferases (DNMTs). The aim of this study was to identify DNMTs-associated differentially expressed (DE) lncRNAs, which may be a novel diagnostic and therapeutic target for MDS. METHODS Two gene expression profile datasets (GSE4619 and GSE19429) were downloaded from the Gene Expression Omnibus (GEO) database. Systematic bioinformatics analysis was conducted. Then we verified the expression of PRKCQ-AS1 in MDS patients and features in SKM-1 cells. RESULTS Bioinformatics analysis revealed that the DNMT-associated DE-lncRNA PRKCQ-AS1 was functionally related to DNA methylation. The target genes of PRKCQ-AS1 associated with DNA methylation are mainly methionine synthetase (MTR) and ten-eleven-translocation 1 (TET1). Moreover, the high expression of PRKCQ-AS1 was verified in real MDS cases. Further cellular analysis in SKM-1 cells revealed that overexpressed PRKCQ-AS1 promoted methylation levels of long interspersed nuclear element 1 (LINE-1) and cell proliferation, and apparently elevated both mRNA and protein levels of MTR and TET1, while knockdown of PRKCQ-AS1 showed opposite trend in SKM-1 cells. CONCLUSION DNMT-associated DE-lncRNA PRKCQ-AS1 may affects DNA methylation levels by regulating MTR and TET1.
Collapse
Affiliation(s)
- Jian Wen
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Yongbin Wu
- Department of Laboratory Medicine, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| | - Quanfang Luo
- Department of Hematology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
3
|
Agrawal A, Vindal V. Competing endogenous RNAs in head and neck squamous cell carcinoma: a review. Brief Funct Genomics 2024; 23:335-348. [PMID: 37941447 DOI: 10.1093/bfgp/elad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Our understanding of RNA biology has evolved with recent advances in research from it being a non-functional product to molecules of the genome with specific regulatory functions. Competitive endogenous RNA (ceRNA), which has gained prominence over time as an essential part of post-transcriptional regulatory mechanism, is one such example. The ceRNA biology hypothesis states that coding RNA and non-coding RNA co-regulate each other using microRNA (miRNA) response elements. The ceRNA components include long non-coding RNAs, pseudogene and circular RNAs that exert their effect by interacting with miRNA and regulate the expression level of its target genes. Emerging evidence has revealed that the dysregulation of the ceRNA network is attributed to the pathogenesis of various cancers, including the head and neck squamous cell carcinoma (HNSCC). This is the most prevalent cancer developed from the mucosal epithelium in the lip, oral cavity, larynx and pharynx. Although many efforts have been made to comprehend the cause and subsequent treatment of HNSCC, the morbidity and mortality rate remains high. Hence, there is an urgent need to understand the holistic progression of HNSCC, mediated by ceRNA, that can have immense relevance in identifying novel biomarkers with a defined therapeutic intervention. In this review, we have made an effort to highlight the ceRNA biology hypothesis with a focus on its involvement in the progression of HNSCC. For the identification of such ceRNAs, we have additionally highlighted a number of databases and tools.
Collapse
Affiliation(s)
- Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Meng W, Fenton CG, Johnsen KM, Taman H, Florholmen J, Paulssen RH. DNA methylation fine-tunes pro-and anti-inflammatory signalling pathways in inactive ulcerative colitis tissue biopsies. Sci Rep 2024; 14:6789. [PMID: 38514698 PMCID: PMC10957912 DOI: 10.1038/s41598-024-57440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
DNA methylation has been implied to play a role in the immune dysfunction associated with inflammatory bowel disease (IBD) and the disease development of ulcerative colitis (UC). Changes of the DNA methylation and correlated gene expression in patient samples with inactive UC might reveal possible regulatory features important for further treatment options for UC. Targeted bisulfite sequencing and whole transcriptome sequencing were performed on mucosal biopsies from patients with active UC (UC, n = 14), inactive UC (RM, n = 20), and non-IBD patients which served as controls (NN, n = 11). The differentially methylated regions (DMRs) were identified by DMRseq. Correlation analysis was performed between DMRs and their nearest differentially expressed genes (DEGs). Principal component analysis (PCA) was performed based on correlated DMR regulated genes. DMR regulated genes then were functional annotated. Cell-type deconvolutions were performed based on methylation levels. The comparisons revealed a total of 38 methylation-regulated genes in inactive UC that are potentially regulated by DMRs (correlation p value < 0.1). Several methylation-regulated genes could be identified in inactive UC participating in IL-10 and cytokine signalling pathways such as IL1B and STAT3. DNA methylation events in inactive UC seem to be fine-tuned by the balancing pro- and anti- inflammatory pathways to maintain a prevailed healing process to restore dynamic epithelium homeostasis.
Collapse
Affiliation(s)
- Wei Meng
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Christopher G Fenton
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway
| | - Kay-Martin Johnsen
- Gastroenterology and Nutrition Research Group, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Hagar Taman
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway
| | - Jon Florholmen
- Gastroenterology and Nutrition Research Group, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Department of Medical Gastroenterology, University Hospital of North Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway.
- Genomics Support Centre Tromsø, Department of Clinical Medicine, Faculty of Health Sciences, UiT- The Arctic University of Norway, Sykehusveien 44, 9037, Tromsø, Norway.
| |
Collapse
|
5
|
Yang Y, Zheng X, Lv H, Tang B, Bi Y, Luo Q, Yao D, Chen H, Lu C. A bibliometrics study on the status quo and hot topics of pathogenesis of psoriasis based on Web of Science. Skin Res Technol 2024; 30:e13538. [PMID: 38174774 PMCID: PMC10765367 DOI: 10.1111/srt.13538] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease. Great progress has been made in the pathogenesis of psoriasis in recent years, but there is no bibliometric study on the pathogenesis of psoriasis. The purpose of this study was to use bibliometrics method to analyze the research overview and hot spots of pathogenesis of psoriasis in recent 10 years, so as to further understand the development trend and frontier of this field. METHODS The core literatures on the pathogenesis of psoriasis were searched in the Web of Science database, and analyzed by VOSviewer, CiteSpace, and Bibliometrix in terms of the annual publication volume, country, institution, author, journal, keywords, and so on. RESULTS A total of 3570 literatures were included. China and the United States were the main research countries in this field, and Rockefeller University was the main research institution. Krueger JG, the author, had the highest number of publications and the greatest influence, and Boehncke (2015) was the most cited local literature. J INVEST DERMATOL takes the top spot in terms of the number of Dermatol articles and citation frequency. The main research hotspots in the pathogenesis of psoriasis are as follows: (1) The interaction between innate and adaptive immunity and the related inflammatory loop dominated by Th17 cells and IL-23/IL-17 axis are still the key mechanisms of psoriasis; (2) molecular genetic studies represented by Long Non-Coding RNA (LncRNA); (3) integrated research of multi-omics techniques represented by gut microbiota; and (4) Exploring the comorbidity mechanism of psoriasis represented by Metabolic Syndrome (MetS). CONCLUSION This study is a summary of the current research status and hot trend of the pathogenesis of psoriasis, which will provide some reference for the scholars studying the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Haiying Lv
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Danni Yao
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese MedicineGuangzhouChina
- State Key Laboratory of Dampness Syndrome of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine)GuangzhouChina
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine SyndromeGuangzhouChina
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine DermatologyGuangzhouChina
- Guangdong‐Hong Kong‐Macau Joint Lab on Chinese Medicine and Immune Disease ResearchGuangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
6
|
Stacey VM, Kõks S. Genome-Wide Differential Transcription of Long Noncoding RNAs in Psoriatic Skin. Int J Mol Sci 2023; 24:16344. [PMID: 38003532 PMCID: PMC10671291 DOI: 10.3390/ijms242216344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/11/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) may contribute to the formation of psoriatic lesions. The present study's objective was to identify long lncRNA genes that are differentially expressed in patient samples of psoriasis through computational analysis techniques. By using previously published RNA sequencing data from psoriatic and healthy patients (n = 324), we analysed the differential expression of lncRNAs to determine transcripts of heightened expression. We computationally screened lncRNA transcripts as annotated by GENCODE across the human genome and compared transcription in psoriatic and healthy samples from two separate studies. We observed 54 differentially expressed genes as seen in two independent datasets collected from psoriasis and healthy patients. We also identified the differential expression of LINC01215 and LINC1206 associated with the cell cycle pathway and psoriasis pathogenesis. SH3PXD2A-AS1 was identified as a participant in the STAT3/SH3PXD2A-AS1/miR-125b/STAT3 positive feedback loop. Both the SH3PXD2A-AS1 and CERNA2 genes have already been recognised as part of the IFN-γ signalling pathway regulation. Additionally, EPHA1-AS1, CYP4Z2P and SNHG12 gene upregulation have all been previously linked to inflammatory skin diseases. Differential expression of various lncRNAs affects the pathogenesis of psoriasis. Further characterisation of lncRNAs and their functions are important for developing our understanding of psoriasis.
Collapse
Affiliation(s)
- Valerie M. Stacey
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| |
Collapse
|
7
|
Hassan M M, ElTahlawi S, Shaker OG, Magdy M. The role of glucose-dependent insulinotropic polypeptide 3 (G1P-3) and nucleolar phosphoprotein-1 (NPM1) in pathogenesis of psoriasis. Indian J Dermatol Venereol Leprol 2023; 89:828-833. [PMID: 37067145 DOI: 10.25259/ijdvl_1215_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/01/2022] [Indexed: 01/28/2023]
Abstract
Background Psoriasis is a multifactorial, hyperproliferative, chronic inflammatory skin disease affecting males and females equally. Aims To study the expression of certain non-coding RNAs, Interferon Alpha Inducible Protein 6 (IFI6), previously named Glucose-dependent Insulinotropic Polypeptide 3 (G1P-3), and nucleolar phosphoprotein (in serum and tissue), and to attempt to elucidate their role in the pathogenesis of psoriasis, which in turn might help in treatment. Methods Twenty patients with psoriasis and 20 healthy subjects were included in this study. Serum and skin biopsies were obtained from all participants. Molecular biology techniques were employed to estimate the expression levels of long noncoding G1P-3 and nucleolar phosphoprotein in serum and skin biopsy. Results Psoriasis patients had a mean age of 41.85 ± 12.29. The median serum G1P-3 level of the patients' group (3.330) was significantly higher than that of the control group (1.085) (P ≤ 0.001). Tissue G1P-3 level of the patients' group (6.495) was also significantly higher compared to that of controls (1.040) (P ≤ 0.001). Similarly, for nucleolar phosphoprotein, the median serum level of patients' group (2.030) was significantly higher than that of controls (1.040) (P ≤ 0.001) and median tissue level (5.425) was also significantly higher than that of controls (1.040) (P ≤ 0.001). Limitations In this study, only outpatients were included and follow-up was not well-handled. For future work, follow-up can be considered. Conclusion Long non-coding G1P-3 as well as nucleolar phosphoprotein may be considered as genetic markers for psoriasis susceptibility. In future, these might provide a novel direction for advances in psoriasis treatment.
Collapse
Affiliation(s)
- Mohamed Hassan M
- Department of Dermatology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| | - Samar ElTahlawi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Magdy
- Department of Dermatology, Faculty of Medicine, Fayoum University, Faiyum, Egypt
| |
Collapse
|
8
|
Nakamura-García AK, Espinal-Enríquez J. Pseudogenes in Cancer: State of the Art. Cancers (Basel) 2023; 15:4024. [PMID: 37627052 PMCID: PMC10452131 DOI: 10.3390/cancers15164024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudogenes are duplicates of protein-coding genes that have accumulated multiple detrimental alterations, rendering them unable to produce the protein they encode. Initially disregarded as "junk DNA" due to their perceived lack of functionality, research on their biological roles has been hindered by this assumption. Nevertheless, recent focus has shifted towards these molecules due to their abnormal expression in cancer phenotypes. In this review, our objective is to provide a thorough overview of the current understanding of pseudogene formation, the mechanisms governing their expression, and the roles they may play in promoting tumorigenesis.
Collapse
|
9
|
Fu Z, He Y, Gao L, Tong X, Zhou L, Zeng J. STAT2/Caspase3 in the diagnosis and treatment of psoriasis. Eur J Clin Invest 2023; 53:e13959. [PMID: 36708067 DOI: 10.1111/eci.13959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Psoriasis is a classic chronic recurrent inflammatory skin disease characterized by skin inflammation and abnormal biological behaviour of keratinocytes. Although Signal Transducer And Activator Of Transcription 2 (STAT2) was found to play an important role in the Janus kinase (JAK)-STAT signalling pathway and contribute to the pathogenesis of psoriasis, its exact role in psoriasis remains unclear. METHODS Using bioinformatics analysis, we identified the key pathways that significantly impacted psoriatic lesions. After identifying the critical molecule gene differentially expressed in multiple public databases using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis, clinical samples were collected to validate the gene's significance. Its functions and underlying mechanism were also investigated in vitro. Lastly, we evaluated the diagnostic and therapeutic power of the target gene using the receiver operating characteristic curve (ROC), and gene association was assessed using Spearman correlation. RESULTS A significant correlation was found between cysteine-aspartic acid protease3 (Caspase3) and STAT2, and functional enrichment analysis revealed that they were both significantly up-regulated in psoriatic skin lesions compared to non-lesional tissues. Functional analysis revealed that Caspase3 functioned downstream of STAT2 in psoriasis. Lastly, we found that Caspase3 and STAT2 could be potential biomarkers for diagnosing and treating psoriasis. CONCLUSIONS In summary, STAT2 overexpression contributes to psoriasis progression by regulating Capase3 phosphorylation to induce excessive apoptosis of keratinocytes. Meanwhile, STAT2 and Capase3 were identified as promising biomarkers for the diagnosis and treatment of psoriasis and could be used for individualized treatments.
Collapse
Affiliation(s)
- Zhibing Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi He
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Garg P, Jamal F, Srivastava P. Deciphering the role of precursor miR-12136 and miR-8485 in the progression of intellectual disability (ID). IBRO Neurosci Rep 2022; 13:393-401. [PMID: 36345471 PMCID: PMC9636553 DOI: 10.1016/j.ibneur.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
The short, non-coding RNAs known as miRNA modulate the expression of human protein-coding genes. About 90 % of genes in humans are controlled by the expression of miRNA. The dysfunction of these miRNA target genes leads to many human diseases, including neurodevelopmental disorders as well. Intellectual disability (ID) is a neurodevelopmental disorder that is characterized by adaptive behavior and intellectual functioning which includes logical reasoning, ability in learning, practical intelligence, and verbal skills. Identification of miRNA involved in ID and their associated target genes can help in the identification of diagnostic biomarkers related to ID at a very early age. The present study is an attempt to identify miRNA and their associated target genes that play an important role in the development of intellectual disability patients through the meta-analysis of available transcriptome data. A total of 6 transcriptomic studies were retrieved from NCBI and were subjected to quality check and trimming before alignment. The normalization and identification of differentially expressed miRNA were carried out using the EdgeR package of R studio. Further, the gene targets of downregulated miRNA were identified using miRDB. The system biology approaches were also applied to the study to identify the hub target genes and the diseases associated with main miRNAs.
Collapse
Affiliation(s)
- Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Farrukh Jamal
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, U.P., India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| |
Collapse
|
11
|
Network analysis of long non-coding RNA expression profiles in common warts. Heliyon 2022; 8:e11790. [DOI: 10.1016/j.heliyon.2022.e11790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/15/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
|
12
|
Xu J, Li J. Construction of a three commitment points for S phase entry cell cycle model and immune-related ceRNA network to explore novel therapeutic options for psoriasis. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:13483-13525. [PMID: 36654055 DOI: 10.3934/mbe.2022630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
While competing endogenous RNAs (ceRNAs) play pivotal roles in various diseases, the proliferation and differentiation of keratinocytes are becoming a research focus in psoriasis. Therefore, the three commitment points for S phase entry (CP1-3) cell cycle model has pointed to a new research direction in these areas. However, it is unclear what role ceRNA regulatory mechanisms play in the interaction between keratinocytes and the immune system in psoriasis. In addition, the ceRNA network-based screening of potential therapeutic agents for psoriasis has not been explored. Therefore, we used multiple bioinformatics approaches to construct a ceRNA network for psoriasis, identified CTGF as the hub gene, and constructed a ceRNA subnetwork, after which validation datasets authenticated the results' accuracy. Subsequently, we used multiple online databases and the single-sample gene-set enrichment analysis algorithm, including the CP1-3 cell cycle model, to explore the mechanisms accounting for the increased proliferation and differentiation of keratinocytes and the possible roles of the ceRNA subnetwork in psoriasis. Next, we performed cell cycle and cell trajectory analyses based on a single-cell RNA-seq dataset of psoriatic skin biopsies. We also used weighted gene co-expression network analysis and single-gene batch correlation analysis-based gene set enrichment analysis to explore the functions of CTGF. Finally, we used the Connectivity Map to identify MS-275 (entinostat) as a novel treatment for psoriasis, SwissTargetPrediction to predict drug targets, and molecular docking to investigate the minimum binding energy and binding sites of the drug to target proteins.
Collapse
Affiliation(s)
- Jingxi Xu
- North Sichuan Medical College, Nanchong 637000, China
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| | - Jiangtao Li
- Department of Rheumatology and Immunology, The First People's Hospital of Yibin, Yibin 644000, China
| |
Collapse
|
13
|
Deng J, Schieler C, Borghans JAM, Lu C, Pandit A. Finding Gene Regulatory Networks in Psoriasis: Application of a Tree-Based Machine Learning Approach. Front Immunol 2022; 13:921408. [PMID: 35874668 PMCID: PMC9301015 DOI: 10.3389/fimmu.2022.921408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disorder. Although it has been studied extensively, the molecular mechanisms driving the disease remain unclear. In this study, we utilized a tree-based machine learning approach to explore the gene regulatory networks underlying psoriasis. We then validated the regulators and their networks in an independent cohort. We identified some key regulators of psoriasis, which are candidates to serve as potential drug targets and disease severity biomarkers. According to the gene regulatory network that we identified, we suggest that interferon signaling represents a key pathway of psoriatic inflammation.
Collapse
Affiliation(s)
- Jingwen Deng
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Carlotta Schieler
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - José A. M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chuanjian Lu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| | - Aridaman Pandit
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Chuanjian Lu, ; Aridaman Pandit,
| |
Collapse
|
14
|
Ding Y, Ge Y, Wang D, Liu Q, Sun S, Hua L, Deng J, Luan S, Cheng H, Xie Q, Gong Y, Zhang T. LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway. Mol Cells 2022; 45:388-402. [PMID: 35680373 PMCID: PMC9200663 DOI: 10.14348/molcells.2022.2232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/18/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022] Open
Abstract
Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.
Collapse
Affiliation(s)
- Yaodong Ding
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Ge
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shuchen Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaojiao Deng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihai Luan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Haixia Cheng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Tao Zhang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
15
|
Zhu Y, Shan D, Guo L, Chen S, Li X. Immune-Related lncRNA Pairs Clinical Prognosis Model Construction for Hepatocellular Carcinoma. Int J Gen Med 2022; 15:1919-1931. [PMID: 35237066 PMCID: PMC8882675 DOI: 10.2147/ijgm.s343350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) plays an essential regulatory role in the occurrence and development of hepatocellular carcinoma (HCC). This paper aims to establish an immune-related lncRNA (irlncRNA) pairs model independent of expression level for risk assessment and prognosis prediction of HCC. Methods Transcriptome data and corresponding clinical data were downloaded from TCGA. HCC patients were randomly divided into training group and test group. Univariate Cox regression analysis, LASSO regression analysis, and stepwise multiple Cox regression analysis were used to establish a prognostic model. The prediction ability of the model was verified by ROC curves. Next, the patients were divided into low-risk and high-risk groups. We compared the differences between the two groups in survival rate, clinicopathological characteristics, tumor immune cell infiltration status, chemotherapeutic drug sensitivity and immunosuppressive molecules. Results A prognosis prediction model was established based on 7 irlncRNA pairs, namely irlncRNA pairs (IRLP). ROC curves of the training group and test group showed that the IRLP model had high sensitivity and specificity for survival prediction. Kaplan–Meier analysis showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group. Immune cell infiltration analysis showed that the high-risk group was significantly correlated with various immune cell infiltration. Finally, there were statistically significant differences in chemosensitivity and molecular marker expression between the two groups. Conclusion The prognosis prediction model established by irlncRNA pairs has a certain guiding significance for the prognosis prediction of HCC. It may provide valuable clinical applications in antitumor immunotherapy.
Collapse
Affiliation(s)
- Yinghui Zhu
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Dezhi Shan
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
| | - Lianyi Guo
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shujia Chen
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Xiaofei Li
- Department of Digestology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
- Correspondence: Xiaofei Li, Jinzhou, Liaoning, 121000, People’s Republic of China, Email
| |
Collapse
|
16
|
Shi Y, Liu JB, Deng J, Zou DZ, Wu JJ, Cao YH, Yin J, Ma YS, Da F, Li W. The role of ceRNA-mediated diagnosis and therapy in hepatocellular carcinoma. Hereditas 2021; 158:44. [PMID: 34758879 PMCID: PMC8582193 DOI: 10.1186/s41065-021-00208-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide due to its high degree of malignancy, high incidence, and low survival rate. However, the underlying mechanisms of hepatocarcinogenesis remain unclear. Long non coding RNA (lncRNA) has been shown as a novel type of RNA. lncRNA by acting as ceRNA can participate in various biological processes of HCC cells, such as tumor cell proliferation, migration, invasion, apoptosis and drug resistance by regulating downstream target gene expression and cancer-related signaling pathways. Meanwhile, lncRNA can predict the efficacy of treatment strategies for HCC and serve as a potential target for the diagnosis and treatment of HCC. Therefore, lncRNA serving as ceRNA may become a vital candidate biomarker for clinical diagnosis and treatment. In this review, the epidemiology of HCC, including morbidity, mortality, regional distribution, risk factors, and current treatment advances, was briefly discussed, and some biological functions of lncRNA in HCC were summarized with emphasis on the molecular mechanism and clinical application of lncRNA-mediated ceRNA regulatory network in HCC. This paper can contribute to the better understanding of the mechanism of the influence of lncRNA-mediated ceRNA networks (ceRNETs) on HCC and provide directions and strategies for future studies.
Collapse
Affiliation(s)
- Yi Shi
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Da-Zhi Zou
- Department of Spine Surgery, Longhui County People's Hospital, Longhui, 422200, Hunan, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, 226100, China
| | - Ya-Hong Cao
- Department of Respiratory, Nantong Traditional Chinese Medicine Hospital, Nantong, 226019, Jiangsu Province, China
| | - Jie Yin
- Department of General Surgery, Haian people's Hospital, Haian, 226600, Jiangsu, China
| | - Yu-Shui Ma
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China.
| | - Fu Da
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, 226631, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Wen Li
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, Hunan, China. .,National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| |
Collapse
|
17
|
Lin J, Li X, Zhang F, Zhu L, Chen Y. Transcriptome wide analysis of long non-coding RNA-associated ceRNA regulatory circuits in psoriasis. J Cell Mol Med 2021; 25:6925-6935. [PMID: 34080300 PMCID: PMC8278092 DOI: 10.1111/jcmm.16703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/25/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play critical roles in regulating immune‐associated diseases and chronic inflammatory disorders. Here, we found that lncRNAs involve in the pathogenesis of psoriasis through integrative analysis of RNA‐seq data sets from a psoriasis cohort. Then, lncRNA‐protein‐coding genes (PCGs) co‐expression network analysis demonstrated that lncRNAs extensively interact with IFN‐γ signalling pathway‐associated genes. Further, we validated 3 lncRNAs associate with IFN‐γ signalling pathway activation upon IFN‐γ stimulated in HaCaT cells, and loss of function experiments indicate their functional roles in the activation of inflammatory cytokine genes. Additionally, microRNA target screening analysis showed that lncRNAs may regulate JAK/STAT pathway activity through complete endogenous RNA (ceRNA) mechanism. Further experimental validation of PRKCQ‐AS1/STAT1/miR‐545‐5p regulatory circuitry showed that lncRNAs regulate the expression of JAK/STAT signalling pathway genes through competing for miR‐545‐5p. In summary, our results demonstrated that dysregulation of lncRNA‐JAK/STAT pathway axis promotes the inflammation level in psoriasis and thus provide potential therapeutic targets for psoriasis treatments.
Collapse
Affiliation(s)
- Jingxia Lin
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuefei Li
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangfei Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zhu
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongfeng Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|