1
|
Shang D, Zhang XL, Liu H, Tu Z, Tan Tan X. Suppressing endothelial senescence: A comprehensive analysis of metformin's mechanisms and implications. Life Sci 2025:123730. [PMID: 40409583 DOI: 10.1016/j.lfs.2025.123730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Endothelial cell senescence serves as a pivotal driver of vascular dysfunction and cardiovascular pathogenesis. Metformin, a first-line antidiabetic agent, has expanded beyond its traditional role in glycemic control, with accumulating evidence underscoring its anti-aging properties. Endothelial dysfunction constitutes a central pathological basis for the development and progression of cardiovascular disease (CVD), and the restoration of endothelial function has been demonstrated to significantly mitigate cardiovascular event risks. Preclinical and clinical studies indicate that metformin-whether administered as monotherapy or in combination regimens-has demonstrated significant potential in the treatment of CVD by ameliorating endothelial dysfunction. Emerging evidence indicates metformin attenuates endothelial senescence and enhances cellular function via pleiotropic mechanisms, thereby preserving endothelial function and retarding cardiovascular disease (CVD) progression. This review systematically elucidates current understanding of metformin's senescence-inhibitory mechanisms in endothelial cells and evaluates its translational potential for CVD intervention, which may provide novel strategies for next-generation CVD pharmacotherapeutics.
Collapse
Affiliation(s)
- Dongsheng Shang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu University Staff Hospital, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xue Li Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaoli Tan Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
2
|
Bracken OV, De Maeyer RPH, Akbar AN. Enhancing immunity during ageing by targeting interactions within the tissue environment. Nat Rev Drug Discov 2025; 24:300-315. [PMID: 39875569 DOI: 10.1038/s41573-024-01126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Immunity declines with age. This results in a higher risk of age-related diseases, diminished ability to respond to new infections and reduced response to vaccines. The causes of this immune dysfunction are cellular senescence, which occurs in both lymphoid and non-lymphoid tissue, and chronic, low-grade inflammation known as 'inflammageing'. In this Review article, we highlight how the processes of inflammation and senescence drive each other, leading to loss of immune function. To break this cycle, therapies are needed that target the interactions between the altered tissue environment and the immune system instead of targeting each component alone. We discuss the relative merits and drawbacks of therapies that are directed at eliminating senescent cells (senolytics) and those that inhibit inflammation (senomorphics) in the context of tissue niches. Furthermore, we discuss therapeutic strategies designed to directly boost immune cell function and improve immune surveillance in tissues.
Collapse
Affiliation(s)
| | - Roel P H De Maeyer
- Division of Medicine, University College London, London, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Arne N Akbar
- Division of Medicine, University College London, London, UK.
| |
Collapse
|
3
|
Li J, Yang J, Liu Z, Li X. Effect of metformin on the level of aqueous humor inflammatory cytokines in patients with cataract. Sci Rep 2025; 15:3672. [PMID: 39880848 PMCID: PMC11779954 DOI: 10.1038/s41598-024-81424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/26/2024] [Indexed: 01/31/2025] Open
Abstract
This study investigated the content of inflammatory cytokines in the aqueous humor (AH) of cataract patients with type 2 diabetes (T2DM) and explored the effect of metformin on the level of cytokines. AH was collected from patients undergoing phacoemulsification and intraocular lens implantation in Peking University Third Hospital. Levels of cytokines were measured by Cytometric Bead Assay (CBA) Flex Set. Differences in level of AH cytokines were compared between patients using metformin and non-metformin medicine as blood sugar control drug for T2DM and age-related cataract patients without T2DM. A total of 67 patients were included, including 19 healthy controls, 33 patients in the metformin group, and 15 patients in the non-metformin group. The results showed that IL-6 levels were significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.019 and 0.014, respectively). IFN-γ levels were also significantly higher in the non-metformin group than the metformin group and the healthy control group (p = 0.031 and 0.003, respectively). The levels of IL-10 in non-metformin group were significantly higher than those in the healthy control group (p = 0.008), whereas the levels of IL-10 showed no significant difference between metformin group and healthy controls. Metformin can reduce the level of cytokines in AH to a certain extent in cataract patients combined with T2DM. It is suggested that metformin may have preventive and therapeutic effects on the development of age-related cataract.
Collapse
Affiliation(s)
- Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Jiarui Yang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Dong S, Zhang J, Fu Y, Tang G, Chen J, Sun D, Qi Y, Zhou N. METTL3-mediated m6A modification of SIRT1 mRNA affects the progression of diabetic cataracts through cellular autophagy and senescence. J Transl Med 2024; 22:865. [PMID: 39334185 PMCID: PMC11429169 DOI: 10.1186/s12967-024-05691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The increasing incidence of diabetes mellitus has established diabetic cataracts (DC) as a significant worldwide public health issue. The mechanisms underlying DC remain unknown, and effective prevention and treatment strategies are lacking. Accordingly, we aimed to explore the role and mechanism behind N6-methyladenosine (m6A) in DC progression. METHODS Methyltransferase-like 3 (METTL3), p21, Beclin1, LC3, and p62 expression levels were measured in human tissues. This study assessed total m6A levels and common m6A-regulated biomarkers in both in vitro and in vivo DC models. Autophagy flux was detected in vitro through Ad-mCherry-GFP-LC3B and Monodansylcadaverine (MDC) staining. Cellular senescence was assessed utilizing the senescence-associated β-galactosidase (SA-β-Gal) assay. Furthermore, the effect of METTL3 on SIRT1 mRNA modification was demonstrated, and its mechanism was elucidated using RT-qPCR, western blot, RNA stability assays, and RIP analysis. RESULTS METTL3, p21, and p62 expression levels were elevated in lens epithelial cells (LECs) from DC patients, while Beclin1 and LC3 levels were reduced. Silencing METTL3-mediated m6A modifications restored high-glucose-induced autophagy inhibition and prevented premature senescence in LECs. Notably, SIRT1720 and Metformin significantly enhanced autophagosome generation and delayed cellular senescence. The m6A-reading protein YTHDF2 bound to m6A modifications, and YTHDF2 silencing significantly reduced METTL3-mediated SIRT1 inactivation. CONCLUSIONS METTL3 induces senescence in DC by destabilizing SIRT1 mRNA in an m6A-YTHDF2-dependent manner. The METTL3-YTHDF2-SIRT1 axis is a key target and potential pathogenic mechanism in DC.
Collapse
Affiliation(s)
- Su Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiajia Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Yushan Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Gege Tang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
5
|
Turkoglu B, Mansuroglu B. Investigating the Effects of Chelidonic Acid on Oxidative Stress-Induced Premature Cellular Senescence in Human Skin Fibroblast Cells. Life (Basel) 2024; 14:1070. [PMID: 39337855 PMCID: PMC11433492 DOI: 10.3390/life14091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigated the effects of chelidonic acid (CA) on hydrogen peroxide (H2O2) induced cellular senescence in human skin fibroblast cells (BJ). Cellular senescence is a critical mechanism that is linked to age-related diseases and chronic conditions. CA, a γ-pyrone compound known for its broad pharmacological activity, was assessed for its potential to mitigate oxidative stress and alter senescence markers. A stress-induced premature senescence (SIPS) model was designed in BJ fibroblast cells using the oxidative stress agent H2O2. After this treatment, cells were treated with CA, and the potential effect of CA on senescence was evaluated using senescence-related β-galactosidase, 4',6-diamino-2-phenylindole (DAPI), acridine-orange staining (AO), comet assay, molecular docking assays, gene expression, and protein analysis. These results demonstrate that CA effectively reduces senescence markers, including senescence-associated β-galactosidase activity, DNA damage, lysosomal activity, and oxidative stress indicators such as malondialdehyde. Molecular docking revealed CA's potential interactions with critical proteins involved in senescence signalling pathways, suggesting mechanisms by which CA may exert its effects. Gene expression and protein analyses corroborated the observed anti-senescent effects, with CA modulating p16, p21, and pRB1 expressions and reducing oxidative stress markers. In conclusion, CA appeared to have senolytic and senomorphic potential in vitro, which could mitigate and reverse SIPS markers in BJ fibroblasts.
Collapse
Affiliation(s)
| | - Banu Mansuroglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
6
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. Oxidative Stress and Cataract Formation: Evaluating the Efficacy of Antioxidant Therapies. Biomolecules 2024; 14:1055. [PMID: 39334822 PMCID: PMC11430732 DOI: 10.3390/biom14091055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
This comprehensive review investigates the pivotal role of reactive oxygen species (ROS) in cataract formation and evaluates the potential of antioxidant therapies in mitigating this ocular condition. By elucidating the mechanisms of oxidative stress, the article examines how ROS contribute to the deterioration of lens proteins and lipids, leading to the characteristic aggregation, cross-linking, and light scattering observed in cataracts. The review provides a thorough assessment of various antioxidant strategies aimed at preventing and managing cataracts, such as dietary antioxidants (i.e., vitamins C and E, lutein, and zeaxanthin), as well as pharmacological agents with antioxidative properties. Furthermore, the article explores innovative therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, designed to bolster antioxidant defenses in ocular tissues. Concluding with a critical analysis of current research, the review offers evidence-based recommendations for optimizing antioxidant therapies. The current literature on the use of antioxidant therapies to prevent cataract formation is sparse. There is a lack of evidence-based conclusions; further clinical studies are needed to endorse the use of antioxidant strategies in patients to prevent cataractogenesis. However, personalized treatment plans considering individual patient factors and disease stages can be applied. This article serves as a valuable resource, providing insights into the potential of antioxidants to alleviate the burden of cataracts.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada
| | - Kevin Y Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Gurleen K Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J4K 0A8, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
7
|
Liu F, Han R, Nie S, Cao Y, Zhang X, Gao F, Wang Z, Xing L, Ouyang Z, Sui L, Mi W, Wu X, Sun L, Hu M, Liu D. Metformin rejuvenates Nap1l2-impaired immunomodulation of bone marrow mesenchymal stem cells via metabolic reprogramming. Cell Prolif 2024; 57:e13612. [PMID: 38348888 PMCID: PMC11216924 DOI: 10.1111/cpr.13612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 07/03/2024] Open
Abstract
Ageing and cell senescence of mesenchymal stem cells (MSCs) limited their immunomodulation properties and therapeutic application. We previously reported that nucleosome assembly protein 1-like 2 (Nap1l2) contributes to MSCs senescence and osteogenic differentiation. Here, we sought to evaluate whether Nap1l2 impairs the immunomodulatory properties of MSCs and find a way to rescue the deficient properties. We demonstrated that metformin could rescue the impaired migration properties and T cell regulation properties of OE-Nap1l2 BMSCs. Moreover, metformin could improve the impaired therapeutic efficacy of OE-Nap1l2 BMSCs in the treatment of colitis and experimental autoimmune encephalomyelitis in mice. Mechanistically, metformin was capable of upregulating the activation of AMPK, synthesis of l-arginine and expression of inducible nitric oxide synthase in OE-Nap1l2 BMSCs, leading to an increasing level of nitric oxide. This study indicated that Nap1l2 negatively regulated the immunomodulatory properties of BMSCs and that the impaired functions could be rescued by metformin pretreatment via metabolic reprogramming. This strategy might serve as a practical therapeutic option to rescue impaired MSCs functions for further application.
Collapse
Affiliation(s)
- Fan Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Ruohui Han
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Shaochen Nie
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Yuxin Cao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Xinming Zhang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Feng Gao
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhengyang Wang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Liangyu Xing
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Zhaoguang Ouyang
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Lei Sui
- Department of ProsthodonticsTianjin Medical University School of StomatologyTianjinChina
| | - Wenyi Mi
- Tianjin Institute of Immunology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of EducationTianjin Medical University General Hospital, Tianjin Medical UniversityTianjinChina
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell BiologyTianjin Medical UniversityTianjinChina
| | - Lu Sun
- Department of Periodontics and Oral MedicineUniversity of Michigan School of DentistryAnn ArborMichiganUSA
- Periodontal and Implant Microsurgery Academy (PiMA)University of Michigan School of DentistryAnn ArborMichiganUSA
| | - Meilin Hu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| | - Dayong Liu
- Department of Endodontics and Laboratory of Stem Cells Endocrine ImmunologyTianjin Medical University School of StomatologyTianjinChina
| |
Collapse
|
8
|
Chen Y, Ye Z, Chen H, Li Z. Breaking Barriers: Nanomedicine-Based Drug Delivery for Cataract Treatment. Int J Nanomedicine 2024; 19:4021-4040. [PMID: 38736657 PMCID: PMC11086653 DOI: 10.2147/ijn.s463679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/27/2024] [Indexed: 05/14/2024] Open
Abstract
Cataract is a leading cause of blindness globally, and its surgical treatment poses a significant burden on global healthcare. Pharmacologic therapies, including antioxidants and protein aggregation reversal agents, have attracted great attention in the treatment of cataracts in recent years. Due to the anatomical and physiological barriers of the eye, the effectiveness of traditional eye drops for delivering drugs topically to the lens is hindered. The advancements in nanomedicine present novel and promising strategies for addressing challenges in drug delivery to the lens, including the development of nanoparticle formulations that can improve drug penetration into the anterior segment and enable sustained release of medications. This review introduces various cutting-edge drug delivery systems for cataract treatment, highlighting their physicochemical properties and surface engineering for optimal design, thus providing impetus for further innovative research and potential clinical applications of anti-cataract drugs.
Collapse
Affiliation(s)
- Yilin Chen
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zi Ye
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Haixu Chen
- Institute of Geriatrics, National Clinical Research Center for Geriatrics Diseases, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhaohui Li
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
- Senior Department of Ophthalmology, The Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Ye X, Wang Y, Tian Y, Bi R, Li M, Yang C, Zhang L, Gao Y. Metformin alleviates junctional epithelium senescence via the AMPK/SIRT1/autophagy pathway in periodontitis induced by hyperglycemia. Heliyon 2024; 10:e27478. [PMID: 38496895 PMCID: PMC10944230 DOI: 10.1016/j.heliyon.2024.e27478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
The junctional epithelium (JE) serves a crucial protective role in the periodontium. High glucose-related aging results in accelerated barrier dysfunction of the gingival epithelium, which may be associated with diabetic periodontitis. Metformin, an oral hypoglycemic therapeutic, has been proposed as a anti-aging agent. This study aimed to clarify the effect of metformin on diabetic periodontitis and explore its mechanism in ameliorating senescence of JE during hyperglycemia. The db/db mice was used as a diabetic model mice and alterations in the periodontium were observed by hematoxylin-eosin staining and immunohistochemistry. An ameloblast-like cell line (ALC) was cultured with high glucose to induce senescence. Cellular senescence and oxidative stress were evaluated by SA-β-gal staining and Intracellular reactive oxygen species (ROS) levels. Senescence biomarkers, P21 and P53, and autophagy markers, LC3-II/LC3-I, were measured by western blotting and quantitative real-time PCR. To construct a stable SIRT1 (Sirtuin 1) overexpression cell line, we transfected ALCs with lentiviral vectors overexpressing the mouse SIRT1 gene. Cellular senescence was increased in the JE of db/db mice and the periodontium was destroyed, which could be alleviated by metformin. Moreover, oxidative stress and cellular senescence in a high glucose environment were reduced by metformin in in-vitro assays. The autophagy inhibitor 3-MA and SIRT1 inhibitor EX-527 could dampen the effects of metformin. Overexpression of SIRT1 resulted in increased autophagy and decreased oxidative stress and cellular senescence. Meanwhile, AMPK (AMP-activated protein kinase) inhibition reversed the anti-senescence effects of metformin. Overall, these results suggest that metformin alleviates periodontal damage in db/db mice and cellular senescence in ALCs under high glucose conditions via the AMPK/SIRT1/autophagy pathway.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256699, Shandong, China
| | - Yumin Wang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yanying Tian
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256699, Shandong, China
| | - Ruonan Bi
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256699, Shandong, China
| | - Mingyue Li
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256699, Shandong, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Binzhou, 256699, Shandong, China
| |
Collapse
|
11
|
Shu X, Liu Y, He F, Gong Y, Li J. A bibliometric and visualized analysis of the pathogenesis of cataracts from 1999 to 2023. Heliyon 2024; 10:e26044. [PMID: 38390089 PMCID: PMC10881887 DOI: 10.1016/j.heliyon.2024.e26044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Research on the pathogenesis of cataracts is ongoing and the number of publications on this topic is increasing annually. This study offers an overview of the research status, popular topics, and scholarly tendencies in the field of cataract pathogenesis over recent decades,which helps to guide future research directions, and optimize resource allocation. In the present study, we performed a bibliometric analysis of cataract pathogenesis. Publications from January 1, 1999, to December 20, 2023, were collected from the Web of Science Core Collection (WoSCC), and the extracted data were quantified and analyzed. We analyzed and presented the data using Microsoft Excel, VOSviewer, CiteSpace, and Python. In all, 4006 articles were evaluated based on various characteristics, including publication year, authors, countries, institutions, journals, citations, and keywords. This study utilized VOSviewer to conduct visualized analysis, including co-authorship, co-citation, co-occurrence, and network visualization. The CiteSpace software was used to identify keywords with significant bursts of activity. The number of annual global publications climbed from 76 to 277 between 1999 and 2023, a 264.47% rise. Experimental Eye Research published the most manuscripts (178 publications), whereas Investigative Ophthalmology & Visual Science received the most citations (6675 citations). The most influential and productive country, institution, and author were the United States (1244 publications, 54,456 citations), University of California system (136 publications, 5401 citations), and Yao Ke (49 publications, 838 citations), respectively. The top 100 ranked keywords are divided into four clusters through co-occurrence analysis: (1) secondary cataracts, (2) oxidative stress, (3) gene mutations and protein abnormalities, and (4) alteration of biological processes in lens epithelial cells. Further discussions on the four subtopics outline the research topics and trends. In conclusion, the specific mechanism of cataract formation remains a popular topic for future research and should be explored in greater depth.
Collapse
Affiliation(s)
- Xinjie Shu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yingying Liu
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Fanfan He
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Yu Gong
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| | - Jiawen Li
- Department of Ophthalmology, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, No. 55, University Town Central Road, Shapingba District, Chongqing, 401331, People's Republic of China
| |
Collapse
|
12
|
Fu Y, Wu R, Dong S, Chen J, Zhou N. Metformin protects human lens epithelial cells from high glucose-induced senescence and autophagy inhibition by upregulating SIRT1. Graefes Arch Clin Exp Ophthalmol 2024; 262:477-485. [PMID: 37644328 DOI: 10.1007/s00417-023-06218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
PURPOSE The aim of this study is to explore whether metformin (MET) protects the human lens epithelial cells (HLECs) from high glucose-induced senescence and to identify the underlying mechanisms. METHODS A cellular senescence model was established by treating HLE-B3 cells with D-glucose and then intervened with MET. Concentrations of high glucose (HG) and MET were detected using CCK-8 and western blot. qRT-PCR, western blot, and senescence-associated β-galactosidase (SA-β-gal) were performed to verify the protective effect of MET on senescent HLE-B3 cells. Additionally, western blot and qRT-PCR were conducted to detect the effects of MET on autophagy-related markers p62 and LC3, as well as SIRT1. RESULTS In vitro, we observed apparent senescence in human lens epithelial cells (HLECs) under high glucose conditions. This was characterized by increased senescence-associated genes p21 and p53. However, the addition of MET significantly reduced the occurrence of HLECs senescence. We also observed that high glucose inhibited both autophagy and SIRT1, which could be restored by MET. Moreover, we verified that the anti-senescence effect of MET was mediated by SIRT1 using SIRT1 activators and inhibitors. CONCLUSION We have demonstrated that autophagy and SIRT1 activity are inhibited in HLE-B3 cells using the HG induced senescence model. Furthermore, our results showed that MET can delay senescence by activating SIRT1 and autophagy. These findings suggest that MET may be a promising candidate for alleviating cataract development and provide a direction for further investigation into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yushan Fu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ruitong Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Su Dong
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Nan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
13
|
Zhang K, Di G, Li B, Ge H, Bai Y, Bian W, Wang D, Chen P. AQP5 deficiency promotes the senescence of lens epithelial cells through mitochondrial dysfunction. Biochem Biophys Res Commun 2023; 680:184-193. [PMID: 37742347 DOI: 10.1016/j.bbrc.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Cataract is lens opacity, which is a common blinding eye disease worldwide. Aquaporin 5 (AQP5) is expressed in the human and mouse lenses. This study aimed to investigate the underlying mechanisms of AQP5 in the senescence of lens epithelial cells (LECs). Primary LECs were isolated and cultured from Aqp5+/+ and Aqp5-/- mice. Western blot or immunofluorescence staining of p16, Ki67, MitoSOX, JC-1 and phalloidin was used in the experiments to evaluate the changes in the primary LECs. The primary Aqp5-/- LECs showed increased p16 expression and mitochondrial reactive oxygen species, decreased mitochondrial membrane potential and activity, and cytoskeletal disorders. When the cells were pretreated with Mito-TEMPO, the Aqp5-/- mice showed decreased p16 expression, reduced mitochondrial dysfunction and cytoskeletal disorders. Our results revealed that AQP5 deficiency promotes the senescence of primary LECs through mitochondrial dysfunction. This provides a new perspective for the treatment of cataracts by regulating AQP5 expression.
Collapse
Affiliation(s)
- Kaier Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Bin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Huanhuan Ge
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Ying Bai
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Wenhan Bian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| | - Dianqiang Wang
- Qingdao Aier Eye Hospital, Qingdao, Shandong Province, 266400, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China.
| |
Collapse
|
14
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
15
|
Abdelgawad IY, Agostinucci K, Sadaf B, Grant MKO, Zordoky BN. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. FRONTIERS IN AGING 2023; 4:1170434. [PMID: 37168843 PMCID: PMC10164964 DOI: 10.3389/fragi.2023.1170434] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Introduction: Doxorubicin (DOX), a chemotherapeutic drug, induces senescence and increases the secretion of senescence-associated secretory phenotype (SASP) in endothelial cells (ECs), which contributes to DOX-induced inflammaging. Metformin, an anti-diabetic drug, demonstrates senomorphic effects on different models of senescence. However, the effects of metformin on DOX-induced endothelial senescence have not been reported before. Senescent ECs exhibit a hyper-inflammatory response to lipopolysachharide (LPS). Therefore, in our current work, we identified the effects of metformin on DOX-induced endothelial senescence and LPS-induced hyper-inflammation in senescent ECs. Methods: ECs were treated with DOX ± metformin for 24 h followed by 72 h incubation without DOX to establish senescence. Effects of metformin on senescence markers expression, SA-β-gal activity, and SASP secretion were assessed. To delineate the molecular mechanisms, the effects of metformin on major signaling pathways were determined. The effect of LPS ± metformin was determined by stimulating both senescent and non-senescent ECs with LPS for an additional 24 h. Results: Metformin corrected DOX-induced upregulation of senescence markers and decreased the secretion of SASP factors and adhesion molecules. These effects were associated with a significant inhibition of the JNK and NF-κB pathway. A significant hyper-inflammatory response to LPS was observed in DOX-induced senescent ECs compared to non-senescent ECs. Metformin blunted LPS-induced upregulation of pro-inflammatory SASP factors. Conclusion: Our study demonstrates that metformin mitigates DOX-induced endothelial senescence phenotype and ameliorates the hyper-inflammatory response to LPS. These findings suggest that metformin may protect against DOX-induced vascular aging and endothelial dysfunction and ameliorate infection-induced hyper-inflammation in DOX-treated cancer survivors.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
16
|
Ma Y, Liu Y, Shu B, Yang J, Lv L, Zhou L, Wang L, Shi Z. CircMAP3K4 protects human lens epithelial cells from H 2O 2-induced dysfunction by targeting miR-193a-3p/PLCD3 axis in age-related cataract. Cell Cycle 2023; 22:303-315. [PMID: 36071682 PMCID: PMC9851233 DOI: 10.1080/15384101.2022.2114587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 08/11/2022] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) have shown pivotal regulatory roles in multiple human ocular diseases, including age-related cataract (ARC). Here, we explored the role of circRNA mitogen-activated protein kinase kinase kinase 4 (circMAP3K4, hsa_circ_0078619) in ARC pathology and its associated mechanism. The expression of RNAs and proteins was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, senescence, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, senescence-associated-β-galactosidase (SA-β-Gal) staining, 5-ethynyl-20-deoxyuridine (EdU) assay, and flow cytometry. The oxidative stress status of SRA01/04 cells was analyzed using the commercial kits. The interaction between microRNA-193a-3p (miR-193a-3p) and circMAP3K4 or phospholipase C delta 3 (PLCD3) was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay. CircMAP3K4 was significantly down-regulated in ARC patients and H2O2-induced SRA01/04 cells. H2O2 treatment restrained the viability and proliferation and promoted the senescence, apoptosis, and oxidative stress of SRA01/04 cells, and circMAP3K4 overexpression protected SRA01/04 cells from H2O2-induced dysfunction. MiR-193a-3p was a direct target of circMAP3K4, and circMAP3K4 overexpression-mediated protective effects in H2O2-induced SRA01/04 cells were largely reversed by the accumulation of miR-193a-3p. MiR-193a-3p interacted with the 3' untranslated region (3'UTR) of PLCD3, and PLCD3 knockdown largely overturned miR-193a-3p silencing-induced protective effects in H2O2-induced SRA01/04 cells. CircMAP3K4 up-regulated the expression of PLCD3 via sponging miR-193a-3p in SRA01/04 cells. In conclusion, circMAP3K4 protected SRA01/04 cells from H2O2-induced dysfunction in ARC through mediating miR-193a-3p/PLCD3 axis.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Yi Liu
- College of Medical Technology and Engineering, Zhengzhou Railway Vocational Technology College, Zhengzhou, China
| | - Baotong Shu
- Department of Medical Technology, Henan Medical College, Zhengzhou, Henan, China
| | - Jianguo Yang
- Department of ophtalmology, Ningbo Eye Hospital West Branch, Ningbo, China
| | - Liang Lv
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lixiao Zhou
- Department of Ophthalmology, Zhengzhou University, Affiliated Hospital 5, Zhengzhou, Henan, China
| | - Lichun Wang
- Department of Ophthalmology, Zhengzhou Second People’s Hospital, Zhengzhou, China
| | - Zongli Shi
- Department of ophtalmology, Chang Zhou Banshang Eye Hospital, Changzhou, China
| |
Collapse
|
17
|
Wang Y, Tseng Y, Chen K, Wang X, Mao Z, Li X. Reduction in Lens Epithelial Cell Senescence Burden through Dasatinib Plus Quercetin or Rapamycin Alleviates D-Galactose-Induced Cataract Progression. J Funct Biomater 2022; 14:jfb14010006. [PMID: 36662053 PMCID: PMC9862066 DOI: 10.3390/jfb14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Senescent cells accumulate in aged organisms and promote the progression of age-related diseases including cataracts. Therefore, we aimed to study the therapeutic effects of senescence-targeting drugs on cataracts. In this study, a 28-day D-galactose-induced cataract rat model was used. The opacity index, a grading based on slit-lamp observations, was used to assess lens cloudiness. Furthermore, the average lens density (ALD), lens density standard deviation (LDSD), and maximum lens density (MLD) obtained from Scheimpflug images were used to assess lens transparency. Immunohistochemical stainings for p16 and γH2AX were used as hallmarks of senescence. We treated rat cataract models with the senolytic drug combination dasatinib plus quercetin (D+Q) and senescence-associated secretory phenotype (SASP) inhibitors. In comparison to control lenses, D-galactose-induced cataract lenses showed a higher opacity index, ALD, LDSD, and MLD values, as well as accumulation of senescent lens epithelial cells (LECs). After D+Q treatment, ALD, LDSD, and MLD values on day 21 were significantly lower than those of vehicle-treated model rats. The expression levels of p16 and γH2AX were also reduced after D+Q administration. In addition, the SASP inhibitor rapamycin decreased the opacity index, ALD, LDSD, and MLD values on day 21. In conclusion, D+Q alleviated D-galactose-induced cataract progression by reducing the senescent LEC burden in the early stage of cataract.
Collapse
Affiliation(s)
- Yinhao Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Yulin Tseng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Keyu Chen
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
| | - Xinglin Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
| | - Zebin Mao
- Department of Biochemistry and Molecular Biology, Health Science Center, Peking University, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerves, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Z.M.); (X.L.)
| |
Collapse
|
18
|
Dupak R, Hrnkova J, Simonova N, Kovac J, Ivanisova E, Kalafova A, Schneidgenova M, Prnova MS, Brindza J, Tokarova K, Capcarova M. The consumption of sea buckthorn (Hippophae rhamnoides L.) effectively alleviates type 2 diabetes symptoms in spontaneous diabetic rats. Res Vet Sci 2022; 152:261-269. [PMID: 36063603 DOI: 10.1016/j.rvsc.2022.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
Sea buckthorn (Hippophae rhamnoides L.) is described by various beneficial effects as it contains several bioactive substances characterized by antioxidant effects. These effects are closely related to the reduction of oxidative stress that is involved in the development of the disease. One such diseases is Diabetes mellitus, the prevalence of which is growing and is associated primarily with diet, lack of exercise and/or genetics. This study intends to examine the effects of sea buckthorn and metformin on body weight, water and feed intake, glycaemia, insulinemia, sorbitol accumulation and cataract development in Zucker diabetic fatty rats, which represent an animal model of type 2 Diabetes mellitus, as well as to characterize the individual content of bioactive substances and the antioxidant activity of sea buckthorn. Particular concentrations were applied (500 and 1000 mg.kg-1 body weight of sea buckthorn, and combinations with 150 mg.kg-1 body weight of metformin) by gastric gavage. The total antioxidant capacity and bioactive compounds were determined by spectrophotometric analysis. The best results of the study showed suppression of hyperglycaemia, water intake, decreased sorbitol levels in the lens of the eyes after sea buckthorn treatment. Determination of bioactive compounds showed significantly higher values in dry berries when compared to fresh berries of sea buckthorn and high total antioxidant capacity. Our results represent an interest in sea buckthorn and its potential use in the treatment of Diabetes mellitus as well as other experimental studies.
Collapse
Affiliation(s)
- Rudolf Dupak
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jana Hrnkova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Nikoleta Simonova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Jan Kovac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Eva Ivanisova
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Anna Kalafova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Monika Schneidgenova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Science, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Jan Brindza
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Katarina Tokarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Marcela Capcarova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovak Republic.
| |
Collapse
|
19
|
Chhunchha B, Kubo E, Singh DP. Obligatory Role of AMPK Activation and Antioxidant Defense Pathway in the Regulatory Effects of Metformin on Cellular Protection and Prevention of Lens Opacity. Cells 2022; 11:3021. [PMID: 36230981 PMCID: PMC9563310 DOI: 10.3390/cells11193021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Increasing levels of oxidative-stress due to deterioration of the Nrf2 (NFE2-related factor)/ARE (antioxidant response element) pathway is found to be a primary cause of aging pathobiology. Metformin having anti-aging effects can delay/halt aging-related diseases. Herein, using lens epithelial cell lines (LECs) of human (h) or mouse (m) and aging h/m primary LECs along with lenses as model systems, we demonstrated that Metformin could correct deteriorated Bmal1/Nrf2/ARE pathway by reviving AMPK-activation, and transcriptional activities of Bmal1/Nrf2, resulting in increased antioxidants enzymatic activity and expression of Phase II enzymes. This ensued reactive oxygen species (ROS) mitigation with cytoprotection and prevention of lens opacity in response to aging/oxidative stress. It was intriguing to observe that Metformin internalized lens/LECs and upregulated OCTs (Organic Cation Transporters). Mechanistically, we found that Metformin evoked AMPK activation-dependent increase of Bmal1, Nrf2, and antioxidants transcription by promoting direct E-Box and ARE binding of Bmal1 and Nrf2 to the promoters. Loss-of-function and disruption of E-Box/ARE identified that Metformin acted by increasing Bmal1/Nrf2-mediated antioxidant expression. Data showed that AMPK-activation was a requisite for Bmal1/Nrf2-antioxidants-mediated defense, as pharmacologically inactivating AMPK impeded the Metformin's effect. Collectively, the results for the first-time shed light on the hitherto incompletely uncovered crosstalk between the AMPK and Bmal1/Nrf2/antioxidants mediated by Metformin for blunting oxidative/aging-linked pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
20
|
Biliverdin Reductase A Protects Lens Epithelial Cells against Oxidative Damage and Cellular Senescence in Age-Related Cataract. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5628946. [PMID: 35910837 PMCID: PMC9325611 DOI: 10.1155/2022/5628946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Age-related cataract (ARC) is the common cause of blindness globally. Reactive oxygen species (ROS), one of the greatest contributors to aging process, leads to oxidative damage and senescence of lens epithelial cells (LECs), which are involved in the pathogenesis of ARC. Biliverdin reductase A (BVRA) has ROS-scavenging ability by converting biliverdin (BV) into bilirubin (BR). However, little is known about the protective effect of BVRA against ARC. In the present study, we measured the expression level of BVRA and BR generation in human samples. Then, the antioxidative property of BVRA was compared between the young and senescent LECs upon stress condition. In addition, we evaluated the effect of BVRA on attenuating H2O2-induced premature senescence in LECs. The results showed that the mRNA expression level of BVRA and BR concentration were decreased in both LECs and lens cortex of age-related nuclear cataract. Using the RNA interference technique, we found that BVRA defends LECs against oxidative stress via (i) restoring mitochondrial dysfunction in a BR-dependent manner, (ii) inducing heme oxygenase-1 (HO-1) expression directly, and (iii) promoting phosphorylation of ERK1/2 and nuclear delivery of nuclear factor erythroid 2-related factor 2 (Nrf2). Intriguingly, the antioxidative effect of BVRA was diminished along with the reduced BR concentration and repressed nuclear translocation of BVRA and Nrf2 in senescent LECs, which would be resulted from the decreased BVRA activity and impaired nucleocytoplasmic trafficking. Eventually, we confirmed that BVRA accelerates the G1 phase transition and prevents against H2O2-induced premature senescence in LECs. In summary, BVRA protects LECs against oxidative stress and cellular senescence in ARC by converting BV into BR, inducing HO-1 expression, and activating the ERK/Nrf2 pathway. This trial is registered with ChiCTR2000036059.
Collapse
|
21
|
Li Z, Liu L, Yang Y, Zheng H, Cai Y, Ma Y, Gu R, Xu K, Zhang R, Xu P. Metformin Ameliorates Senescence of Adipose-Derived Mesenchymal Stem Cells and Attenuates Osteoarthritis Progression via the AMPK-Dependent Autophagy Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4620254. [PMID: 35693701 PMCID: PMC9187432 DOI: 10.1155/2022/4620254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is one of the most serious age-related diseases worldwide that drastically affects the quality of life of patients. Despite advancements in the treatment of arthritis, especially with adipose-derived mesenchymal stem cells (ADSCs), senescence-induced alterations in ADSCs negatively affect the treatment outcomes. This study was aimed at mechanistically exploring whether metformin could ameliorate the senescence of ADSCs and at exploring the effect of metformin-preconditioned ADSCs in an experimental OA mouse model. In this study, an H2O2-induced mouse ADSC senescent model was established. Cell proliferation, senescence, and autophagy were investigated in vitro. Moreover, the effects of intra-articular injection of metformin-preconditioned ADSCs were investigated in vivo. Metformin could promote autophagy and activate the AMPK/mTOR pathway in ADSCs. The metformin-enhanced autophagy could improve the survival and reduce the senescence of ADSCs. The protective effects of metformin against senescence were partially blocked by 3-methyladenine and compound C. Injection of metformin-preconditioned ADSCs slowed OA progression and reduced OA pain in mice. The results suggest that metformin activates the AMPK/mTOR-dependent autophagy pathway in ADSCs against H2O2-induced senescence, while metformin-preconditioned ADSCs can potentially inhibit OA progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanni Yang
- Department of Clinical Medicine of Traditional Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haishi Zheng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yao Ma
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ruiying Gu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Shukal DK, Malaviya PB, Sharma T. Role of the AMPK signalling pathway in the aetiopathogenesis of ocular diseases. Hum Exp Toxicol 2022; 41:9603271211063165. [PMID: 35196887 DOI: 10.1177/09603271211063165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) plays a precise role as a master regulator of cellular energy homeostasis. AMPK is activated in response to the signalling cues that exhaust cellular ATP levels such as hypoxia, ischaemia, glucose depletion and heat shock. As a central regulator of both lipid and glucose metabolism, AMPK is considered to be a potential therapeutic target for the treatment of various diseases, including eye disorders. OBJECTIVE To review all the shreds of evidence concerning the role of the AMPK signalling pathway in the pathogenesis of ocular diseases. METHOD Scientific data search and review of available information evaluating the influence of AMPK signalling on ocular diseases. RESULTS Review highlights the significance of AMPK signalling in the aetiopathogenesis of ocular diseases, including cataract, glaucoma, diabetic retinopathy, retinoblastoma, age-related macular degeneration, corneal diseases, etc. The review also provides the information on the AMPK-associated pathways with reference to ocular disease, which includes mitochondrial biogenesis, autophagy and regulation of inflammatory response. CONCLUSION The study concludes the role of AMPK in ocular diseases. There is growing interest in the therapeutic utilization of the AMPK pathway for ocular disease treatment. Furthermore, inhibition of AMPK signalling might represent more pertinent strategy than AMPK activation for ocular disease treatment. Such information will guide the development of more effective AMPK modulators for ocular diseases.[Formula: see text].
Collapse
Affiliation(s)
- Dhaval K Shukal
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Pooja B Malaviya
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India.,76793Manipal Academy of Higher Education, Mangalore, Karnataka, India
| | - Tusha Sharma
- 534329Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad, Gujarat, India
| |
Collapse
|