1
|
Fu J, Zhou L, Li S, He W, Zheng J, Hou Z, He P. Let-7c-5p Down Regulates the Proliferation of Colorectal Cancer Through the MAPK-ERK-Signaling Pathway. Biochem Genet 2024; 62:3231-3243. [PMID: 38095736 DOI: 10.1007/s10528-023-10581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/28/2023] [Indexed: 02/18/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening cancers. Rapid cell proliferation is the leading cause of cancer-related death in CRC. MicroRNAs (miRNAs) have been identified to play essential roles in the proliferation of CRC. Differential expression of let-7c-5p in CRC was assessed using a GEO dataset, and confirmed through RT-qPCR using CRC subject tissues. Let-7c-5p-overexpressing HCT8 cell line was constructed by transfecting let-7c-5p. Bioinformatics analysis identified that DUSP7 is the target gene of let-7c-5p. Further experimental assays, including Cell Counting Kit-8 (CCK8), EdU staining, cell colony, and Western Blot assays, confirmed the target genes and pathway of let-7c-5p. Receiver operator characteristic curve (ROC) analysis was performed to evaluate the diagnostic value of let-7c-5p for CRC. Finally, survival analysis was performed to determine the effect of DUSP7 and let-7c-5p on the prognosis of CRC patients. RT-qPCR analysis showed that the expression level of let-7c-5p was significantly increased in CRC subject tissues compared to the adjacent tissue. Overexpression of let-7c-5p promoted cell proliferation in HCT8 cell line. Furthermore, the MAPK-ERK pathway's protein expression of p-ERK1/2 was downregulated, while the ratio of Bcl-2/Bax was increased by let-7c-5p transfection in HCT 8. ROC analysis demonstrated that the expressive level of let-7c-5p had higher diagnostic value for CRC. Survival curve analysis indicated that high expression of DUSP7 and low expression of let-7c-5p were associated with poor prognosis in CRC patients. The findings suggest that let-7c-5p exerts an antitumor function by inhibiting the DUSP7-mediated MAPK-ERK pathway. Both DUSP7 and let-7c-5p have the potential to serve as prognostic biomarkers in CRC patients.
Collapse
Affiliation(s)
- Juanjuan Fu
- School of Basic Medical Sciences of Chengde Medical University, Chengde, Hebei, China
| | - Longmei Zhou
- Department of Gastroenterology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Sijin Li
- Department of Gastroenterology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Wenjing He
- Kuancheng Manchu Autonomous County Hospital, Chengde, China
| | - Jining Zheng
- School of Basic Medical Sciences of Chengde Medical University, Chengde, Hebei, China
| | - Zhiping Hou
- School of Basic Medical Sciences of Chengde Medical University, Chengde, Hebei, China.
| | - Peiyuan He
- Department of Gastroenterology, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.
| |
Collapse
|
2
|
Ma X, Zheng J, He K, Wang L, Wang Z, Wang K, Liu Z, San Z, Zhao L, Wang L. TGFA expression is associated with poor prognosis and promotes the development of cervical cancer. J Cell Mol Med 2024; 28:e18086. [PMID: 38152044 PMCID: PMC10844698 DOI: 10.1111/jcmm.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023] Open
Abstract
Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the second most common cancers in women aged 20-39. While HPV screening can help with early detection of cervical cancer, many patients are already in the medium to late stages when they are identified. As a result, searching for novel biomarkers to predict CESC prognosis and propose molecular treatment targets is critical. TGFA is a polypeptide growth factor with a high affinity for the epidermal growth factor receptor. Several studies have shown that TGFA can improve cancer growth and progression, but data on its impact on the occurrence and advancement of CESC is limited. In this study, we used clinical data analysis and bioinformatics techniques to explore the relationship between TGFA and CESC. The results showed that TGFA was highly expressed in cervical cancer tissues and cells. TGFA knockdown can inhibit the proliferation, migration and invasion of cervical cancer cells. In addition, after TGFA knockout, the expression of IL family and MMP family proteins in CESC cell lines was significantly reduced. In conclusion, TGFA plays an important role in the occurrence and development of cervical cancer. Therefore, TGFA may become a new target for cervical cancer treatment.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Jingying Zheng
- Department of Gynecology and ObstetricsSecond Hospital of Jilin UniversityChangchunChina
| | - Kang He
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Liangjia Wang
- Department of Gynecology and ObstetricsSecond Hospital of Jilin UniversityChangchunChina
| | - Zeyu Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Kai Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Zunlong Liu
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Zhiqiang San
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Lijing Zhao
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| | - Lisheng Wang
- Department of RehabilitationSchool of NursingJilin UniversityChangchunChina
| |
Collapse
|
3
|
Patysheva MR, Prostakishina EA, Budnitskaya AA, Bragina OD, Kzhyshkowska JG. Dual-Specificity Phosphatases in Regulation of Tumor-Associated Macrophage Activity. Int J Mol Sci 2023; 24:17542. [PMID: 38139370 PMCID: PMC10743672 DOI: 10.3390/ijms242417542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
The regulation of protein kinases by dephosphorylation is a key mechanism that defines the activity of immune cells. A balanced process of the phosphorylation/dephosphorylation of key protein kinases by dual-specificity phosphatases is required for the realization of the antitumor immune response. The family of dual-specificity phosphatases is represented by several isoforms found in both resting and activated macrophages. The main substrate of dual-specificity phosphatases are three components of mitogen-activated kinase signaling cascades: the extracellular signal-regulated kinase ERK1/2, p38, and Janus kinase family. The results of the study of model tumor-associated macrophages supported the assumption of the crucial role of dual-specificity phosphatases in the formation and determination of the outcome of the immune response against tumor cells through the selective suppression of mitogen-activated kinase signaling cascades. Since mitogen-activated kinases mostly activate the production of pro-inflammatory mediators and the antitumor function of macrophages, the excess activity of dual-specificity phosphatases suppresses the ability of tumor-associated macrophages to activate the antitumor immune response. Nowadays, the fundamental research in tumor immunology is focused on the search for novel molecular targets to activate the antitumor immune response. However, to date, dual-specificity phosphatases received limited discussion as key targets of the immune system to activate the antitumor immune response. This review discusses the importance of dual-specificity phosphatases as key regulators of the tumor-associated macrophage function.
Collapse
Affiliation(s)
- Marina R. Patysheva
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Elizaveta A. Prostakishina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Arina A. Budnitskaya
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
| | - Olga D. Bragina
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia G. Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia; (M.R.P.); (E.A.P.); (A.A.B.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Mannheim Institute of Innate Immunosciences (MI3), University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 69117 Mannheim, Germany
| |
Collapse
|
4
|
Ma C, Liu M, Feng W, Rao H, Zhang W, Liu C, Xu Y, Wang Z, Teng Y, Yang X, Ni L, Xu J, Gao W, Lu B, Li L. Loss of SETD2 aggravates colorectal cancer progression caused by SMAD4 deletion through the RAS/ERK signalling pathway. Clin Transl Med 2023; 13:e1475. [PMID: 37962020 PMCID: PMC10644329 DOI: 10.1002/ctm2.1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGOUND Colorectal cancer (CRC) is a complex, multistep disease that arises from the interplay genetic mutations and epigenetic alterations. The histone H3K36 trimethyltransferase SET domain-containing 2 (SETD2), as an epigenetic signalling molecule, has a 5% mutation rate in CRC. SETD2 expression is decreased in the development of human CRC and mice treated with Azoxymethane /Dextran sodium sulfate (AOM/DSS). Loss of SETD2 promoted CRC development. SMAD Family member 4 (SMAD4) has a 14% mutation rate in CRC, and SMAD4 ablation leads to CRC. The co-mutation of SETD2 and SMAD4 predicted advanced CRC. However, little is known on the potential synergistic effect of SETD2 and SMAD4. METHODS CRC tissues from mice and SW620 cells were used as research subjects. Clinical databases of CRC patients were analyzed to investigate the association between SETD2 and SMAD4. SETD2 and SMAD4 double-knockout mice were established to further investigate the role of SETD2 in SMAD4-deficient CRC. The intestinal epithelial cells (IECs) were isolated for RNA sequencing and chromatin immunoprecipitation sequencing (ChIP-seq) to explore the mechanism and the key molecules resulting in CRC. Molecular and cellular experiments were conducted to analyze the role of SETD2 in SMAD4-deficient CRC. Finally, rescue experiments were performed to confirm the molecular mechanism of SETD2 in the development of SMAD4-dificient CRC. RESULTS The deletion of SETD2 promotes the malignant progression of SMAD4-deficient CRC. Smad4Vil-KO ; Setd2Vil-KO mice developed a more severe CRC phenotype after AOM/DSS induction, with a larger tumour size and a more vigorous epithelial proliferation rate. Further mechanistic findings revealed that the loss of SETD2 resulted in the down-regulation of DUSP7, which is involved in the inhibition of the RAS/ERK signalling pathway. Finally, the ERK1/2 inhibitor SCH772984 significantly attenuated the progression of CRC in Smad4Vil-KO ;Setd2Vil-KO mice, and overexpression of DUSP7 significantly inhibited the proliferation rates of SETD2KO ; SMAD4KO SW620 cells. CONCLUSIONS Our results demonstrated that SETD2 inhibits the RAS/ERK signaling pathway by facilitating the transcription of DUSP7 in SMAD4-deficient CRC, which could provide a potential therapeutic target for the treatment of advanced CRC.
Collapse
Affiliation(s)
- Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Min Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein SciencesBeijing Institute of LifeomicsBeijingChina
| | - Li Ni
- Department of NursingShanghai East Hospital, Tongji UniversityShanghaiChina
| | - Jin Xu
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| | - Bing Lu
- Department of General Surgery, Department of Colorectal Surgery, Shanghai East HospitalSchool of Medicine, Tongji UniversityShanghaiChina
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong UniversityShanghaiChina
- School of Biomedical Engineering and Med‐X Research Institute, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
5
|
Zhang J, Liu R, Xu A. Whole transcriptome sequencing analysis of blood plasma-derived exosomes from immune-related hearing loss. Int Immunopharmacol 2023; 120:110361. [PMID: 37244117 DOI: 10.1016/j.intimp.2023.110361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Early diagnosis of immune-related hearing loss and timely treatment can prevent structural damage to the inner ear and contribute to hearing retention. Exosomal miRNAs, lncRNAs and proteins have great prospects as novel biomarkers for clinical diagnosis. Our study aimed to investigate the molecular mechanisms of exosomes or exosomal ceRNA regulatory networks in immune-related hearing loss. METHODS An immune-related hearing loss mice model was constructed by injection with inner ear antigen, and then the blood plasma samples of the mice were collected for exosomes isolation by ultra-centrifugation. Subsequently, the different exosomes were sent for whole transcriptome sequencing using Illumina platform. Finally, a ceRNA pair was chosen for validation by RT-qPCR and dual luciferase reporter gene assay. RESULTS The exosomes were successfully extracted from the blood samples of the control and the immune-related hearing loss mice. After sequencing, 94 differentially expressed (DE) lncRNAs, 612 DEmRNAs, and 100 DEmiRNAs were found in the immune-related hearing loss-associated exosomes. Afterwards, ceRNA regulatory networks consisting of 74 lncRNAs, 28 miRNAs and 256 mRNAs were proposed, and the genes in the ceRNA regulatory networks were significantly enriched in 34 GO terms of biological processes and 9 KEGG pathways. Finally, Gm9866 and Dusp7 were significantly up-regulated, while miR-185-5p level was declined in the exosomes from immune-related hearing loss, and Gm9866, miR-185-5p and Dusp7 interacted with each other. CONCLUSIONS Gm9866-miR-185-5p-Dusp7 was confirmed to be closely correlated with the occurrence and progression of immune-related hearing loss.
Collapse
Affiliation(s)
- Juhong Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Chongqing General Hospital, Chongqing 401147, China; Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China
| | - Ruiyue Liu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; Department of Otolaryngology, Heze Municipal Hospital, Shandong 27400, China
| | - Anting Xu
- Department of Otolaryngology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250033, China; NHC Key Laboratory of Otolaryngology, Shandong University, Shandong 250033, China.
| |
Collapse
|
6
|
Song M, Meng Q, Jiang X, Liu J, Xiao M, Zhang Z, Wang J, Bai H. Phospholipase D1 promotes cervical cancer progression by activating the RAS pathway. J Cell Mol Med 2022; 26:4244-4253. [PMID: 35775110 PMCID: PMC9344829 DOI: 10.1111/jcmm.17439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/27/2022] Open
Abstract
This study aimed to further investigate the effect of PLD1 on the biological characteristics of human cervical cancer (CC) cell line, CASKI and the potential related molecular mechanism. CRISPR/Cas9 genome editing technology was used to knock out the PLD1 gene in CASKI cells. Cell function assays were performed to evaluate the effect of PLD1 on the biological function of CASKI cells in vivo and in vitro. A PLD1‐overexpression rescue experiment in these knockout cells was performed to further confirm its function. Two PLD1‐knockout CASKI cell lines (named PC‐11 and PC‐40, which carried the ins1/del4 mutation and del1/del2/ins1 mutation, respectively), were constructed by CRISPR/Cas9. PLD1 was overexpressed in these knockout cells (named PC11‐PLD1 and PC40‐PLD1 cells), which rescued the expression of PLD1 by approximately 71.33% and 74.54%, respectively. In vivo, the cell function assay results revealed that compared with wild‐type (WT)‐CASKI cells, the ability of PC‐11 and PC‐40 cells to proliferate, invade and migrate was significantly inhibited. The expression of H‐Ras and phosphorylation of Erk1/2 (p‐Erk1/2) was decreased in PC‐11 and PC‐40 cells compared with WT‐CASKI cells. PC‐11 and PC‐40 cells could sensitize CASKI cells to cisplatin. More importantly, the proliferation, migration and invasion of PC11‐PLD1 and PC40‐PLD1 cells with PLD1 overexpression were significantly improved compared with those of the two types of PLD1 knockout cells. The sensitivity to cisplatin was decreased in PC11‐PLD1 and PC40‐PLD1 cells compared with PC‐11 and PC‐40 cells. In vivo, in the PC‐11 and PC‐40 tumour groups, tumour growth was significantly inhibited and tumour weight (0.95 ± 0.27 g and 0.66 ± 0.43 g vs. 1.59 ± 0.67 g, p = 0.0313 and 0.0108) and volume (1069.41 ± 393.84 and 1077.72 mm3 ± 815.07 vs. 2142.94 ± 577.37 mm3, p = 0.0153 and 0.0128) were significantly reduced compared to those in the WT‐CASKI group. Tumour differentiation of the PC‐11 and PC40 cells was significantly better than that of the WT‐CASKI cells. The immunohistochemistry results confirmed that the expression of H‐Ras and p‐Erk1/2 was decreased in PC‐11 and PC‐40 tumour tissues compared with WT‐CASKI tumour tissues. PLD1 promotes CC progression by activating the RAS pathway. Inhibition of PLD1 may serve as an attractive therapeutic modality for CC.
Collapse
Affiliation(s)
- Meiying Song
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Qianlong Meng
- Department of Diagnostics of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuan Jiang
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Diagnostics of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,The Clinical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Bai H, Song M, Jiao R, Li W, Zhao J, Xiao M, Jin M, Zhang Z, Deng H. DUSP7 inhibits cervical cancer progression by inactivating the RAS pathway. J Cell Mol Med 2021; 25:9306-9318. [PMID: 34435746 PMCID: PMC8500958 DOI: 10.1111/jcmm.16865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022] Open
Abstract
To determine the differentially expressed proteins (DEPs) between paired samples of cervical cancer (CC) and paracancerous tissue by quantitative proteomics and to examine the effects of DUSP7 expression on the tumorigenesis and progression of CC. Proteomic profiles of three paired samples of CC and paracancerous tissue were quantitatively analysed to identify DEPs. The relationship between DEP expression and patient clinicopathological characteristics and prognosis was evaluated. The effects of the selected DEPs on CC progression were examined in SIHA cells. A total of 129 DEPs were found. Western blot and immunohistochemistry (IHC) staining analyses confirmed the results from quantitative proteomic analysis showing that the selected DEP, HRAS, P-ERK1/2, and PLD1 levels were increased, whereas the DUSP7 level was decreased in CC tissue compared with the paired normal paracancerous tissues. The IHC results from the CC TMA analysis showed that the decreased expression of DUSP7 (p = 0.045 and 0.044) was significantly associated with a tumour size >2 cm and parametrial infiltration. In addition, the decreased expression of DUSP7 and increased expression of p-ERK1/2 were adversely related to patient relapse (p = 0.003 and 0.001) and survival (p = 0.034 and 0.006). The expression of HRAS and p-ERK1/2 was decreased in DUSP7-SIHA cells compared with NC-SIHA cells (p = 0.0003 and 0.0026). Biological functions in vitro, including invasion, migration and proliferation and tumour formation in vivo were decreased in DUSP7-SIHA cells (all p < 0.05) but increased in shDUSP7-SIHA cells (all p < 0.05). DUSP7 inhibits cervical cancer progression by inactivating the RAS pathway.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Meiying Song
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China.,Department of Obstetrics and Gynecology, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Ruili Jiao
- Department of Obstetrics and Gynecology, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing, China
| | - Weihua Li
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Meizhu Xiao
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Mulan Jin
- Department of Pathology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Zhengyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|