1
|
Kar A, Gupta S, Matilal A, Sarkar S. Tissue engineering with targeted delivery of nanotized S-nitrosyl mutant of NEMO ameliorates myocardial infarction. Nanomedicine (Lond) 2025:1-15. [PMID: 40235354 DOI: 10.1080/17435889.2025.2491989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) is characterized by an elevated nitrosative and hypoxic microenvironment due to reduced coronary blood flow. NEMO (IKKγ) regulates the formation of the IKK holo-complex to activate NFκB-p65 signaling. This study reports successful restoration of MI through cardiomyocyte-targeted nanotized S-nitrosyl mutant of NEMO under elevated nitrosative stress. METHODS The MI model was generated in male Wistar rats. S-nitrosyl mutant of NEMO (R- NEMO) was selectively delivered to the cardiomyocytes via targeted chitosan nano-vehicle. RESULTS Nano-conjugated R- NEMO delivery to diseased cardiomyocytes resulted in downregulation of nitrosative stress and cellular apoptosis leading to regressed infarct area with improved cardiac pathophysiology. Mechanistically, NEMO-p300 binding in R- NEMO expressed cells destabilized p65-p300 complex leading to regressed nitrosative stress and cellular apoptosis. The NEMO mutant inhibits the PGC1α-p65 complex-mediated degradation of PGC1α, leading to upregulation of VEGF. A shift in the binding preference of p65 from PGC1α/p300 to HDAC1 results in the downregulation of the cell-cycle inhibitor and the induction of cell-cycle re-entry markers during MI. CONCLUSION Tissue-targeted R- NEMO nanoconjugates show potential to ameliorate MI insult by downregulating apoptosis and promoting the proliferative prowess of the resident cardiomyocytes with potential revascularization at infarct sites; thus, repairing the damaged myocardium.
Collapse
Affiliation(s)
- Abhik Kar
- Department of Zoology, University of Calcutta, Kolkata, India
| | | | | | | |
Collapse
|
2
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Bhardwaj S, Grewal AK, Singh S, Dhankar V, Jindal A. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB. Inflammopharmacology 2024; 32:2943-2960. [PMID: 38951436 DOI: 10.1007/s10787-024-01502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Alzheimer's disease (AD) is a most prevalent neurologic disorder characterized by cognitive dysfunction, amyloid-β (Aβ) protein accumulation, and excessive neuroinflammation. It affects various life tasks and reduces thinking, memory, capability, reasoning and orientation ability, decision, and language. The major parts responsible for these abnormalities are the cerebral cortex, amygdala, and hippocampus. Excessive inflammatory markers release, and microglial activation affect post-synaptic neurotransmission. Various mechanisms of AD pathogenesis have been explored, but still, there is a need to debate the role of NF-κB, Nrf2, inflammatory markers, CREB signaling, etc. In this review, we have briefly discussed the signaling mechanisms and function of the NF-ĸB signaling pathway, inflammatory mediators, microglia activation, and alteration of autophagy. NF-κB inhibition is a current strategy to counter neuroinflammation and neurodegeneration in the brain of individuals with AD. In clinical trials, numbers of NF-κB modulators are being examined. Recent reports revealed that molecular and cellular pathways initiate complex pathological competencies that cause AD. Moreover, this review will provide extensive knowledge of the cAMP response element binding protein (CREB) and how these nuclear proteins affect neuronal plasticity.
Collapse
Affiliation(s)
- Shaveta Bhardwaj
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Vaibhav Dhankar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Anu Jindal
- G.H.G. Khalsa College of Pharmacy, Gurusar Sudhar, Ludhiana, India
| |
Collapse
|
4
|
Yang J, Zhai Y, Huang C, Xiang Z, Liu H, Wu J, Huang Y, Liu L, Li W, Wang W, Yang J, Zhang J. RP105 Attenuates Ischemia/Reperfusion-Induced Oxidative Stress in the Myocardium via Activation of the Lyn/Syk/STAT3 Signaling Pathway. Inflammation 2024; 47:1371-1385. [PMID: 38568415 DOI: 10.1007/s10753-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 08/24/2024]
Abstract
Although our previous studies have established the crucial role of RP105 in myocardial ischemia/reperfusion injury (MI/RI), its involvement in regulating oxidative stress induced by MI/RI remains unclear. To investigate this, we conducted experiments using a rat model of ischemia/reperfusion (I/R) injury. Adenovirus carrying RP105 was injected apically at multiple points, and after 72 h, the left anterior descending coronary artery was ligated for 30 min followed by 2 h of reperfusion. In vitro experiments were performed on H9C2 cells, which were transfected with recombinant adenoviral vectors for 48 h, subjected to 4 h of hypoxia, and then reoxygenated for 2 h. We measured oxidative stress markers, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, as well as malondialdehyde (MDA) concentration, using a microplate reader. The fluorescence intensity of reactive oxygen species (ROS) in myocardial tissue was measured using a DHE probe. We also investigated the upstream and downstream components of the signal transducer and activator of transcription 3 (STAT3). Upregulation of RP105 increased SOD and GSH-Px activities, reduced MDA concentration, and inhibited ROS production in response to I/R injury in vivo and hypoxia reoxygenation (H/R) stimulation in vitro. The overexpression of RP105 led to a decrease in the myocardial enzyme LDH in serum and cell culture supernatant, as well as a reduction in infarct size. Additionally, left ventricular fraction (LVEF) and fractional shortening (LVFS) were improved in the RP105 overexpression group compared to the control. Upregulation of RP105 promoted the expression of Lyn and Syk and further activated STAT phosphorylation, which was blocked by PP2 (a Lyn inhibitor). Our findings suggest that RP105 can inhibit MI/RI-induced oxidative stress by activating STAT3 via the Lyn/Syk signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Zujin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jingyi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yifan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wenqiang Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wei Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China.
| |
Collapse
|
5
|
Huang C, Ding X, Shao J, Yang M, Du D, Hu J, Wei Y, Shen Q, Chen Z, Zuo S, Wan C. Aerobic training attenuates cardiac remodeling in mice post-myocardial infarction by inhibiting the p300/CBP-associated factor. FASEB J 2024; 38:e23780. [PMID: 38948938 DOI: 10.1096/fj.202400007rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Aerobic training (AT), an effective form of cardiac rehabilitation, has been shown to be beneficial for cardiac repair and remodeling after myocardial infarction (MI). The p300/CBP-associated factor (PCAF) is one of the most important lysine acetyltransferases and is involved in various biological processes. However, the role of PCAF in AT and AT-mediated cardiac remodeling post-MI has not been determined. Here, we found that the PCAF protein level was significantly increased after MI, while AT blocked the increase in PCAF. AT markedly improved cardiac remodeling in mice after MI by reducing endoplasmic reticulum stress (ERS). In vivo, similar to AT, pharmacological inhibition of PCAF by Embelin improved cardiac recovery and attenuated ERS in MI mice. Furthermore, we observed that both IGF-1, a simulated exercise environment, and Embelin protected from H2O2-induced cardiomyocyte injury, while PCAF overexpression by viruses or the sirtuin inhibitor nicotinamide eliminated the protective effect of IGF-1 in H9C2 cells. Thus, our data indicate that maintaining low PCAF levels plays an essential role in AT-mediated cardiac protection, and PCAF inhibition represents a promising therapeutic target for attenuating cardiac remodeling after MI.
Collapse
Affiliation(s)
- Chuan Huang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Ding
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingrong Shao
- Department of Biopharmaceutics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Mengxue Yang
- Department of Biopharmaceutics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dongdong Du
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayi Hu
- School of Clinial Medicine, Tianjin Medical University, Tianjin, China
| | - Ya Wei
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiu Shen
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Ze Chen
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengkai Zuo
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Biopharmaceutics, Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Mao S, Song C, Huang H, Nie Y, Ding K, Cui J, Tian J, Tang H. Role of transcriptional cofactors in cardiovascular diseases. Biochem Biophys Res Commun 2024; 706:149757. [PMID: 38490050 DOI: 10.1016/j.bbrc.2024.149757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/16/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cardiovascular disease is a main cause of mortality in the world and the highest incidence of all diseases. However, the mechanism of the pathogenesis of cardiovascular disease is still unclear, and we need to continue to explore its mechanism of action. The occurrence and development of cardiovascular disease is significantly associated with genetic abnormalities, and gene expression is affected by transcriptional regulation. In this complex process, the protein-protein interaction promotes the RNA polymerase II to the initiation site. And in this process of transcriptional regulation, transcriptional cofactors are responsible for passing cues from enhancers to promoters and promoting the binding of RNA polymerases to promoters, so transcription cofactors playing a key role in gene expression regulation. There is growing evidence that transcriptional cofactors play a critical role in cardiovascular disease. Transcriptional cofactors can promote or inhibit transcription by affecting the function of transcription factors. It can affect the initiation and elongation process of transcription by forming complexes with transcription factors, which are important for the stabilization of DNA rings. It can also act as a protein that interacts with other proteins to affect the expression of other genes. Therefore, the aim of this overview is to summarize the effect of some transcriptional cofactors such as BRD4, EP300, MED1, EZH2, YAP, SIRT6 in cardiovascular disease and to provide a promising therapeutic strategy for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shuqing Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chao Song
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yali Nie
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Kai Ding
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jian Cui
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, 421001, China; The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
7
|
Liu M, Zhang K, Li Q, Pang H, Pan Z, Huang X, Wang L, Wu F, He G. Recent Advances on Small-Molecule Bromodomain-Containing Histone Acetyltransferase Inhibitors. J Med Chem 2023; 66:1678-1699. [PMID: 36695774 DOI: 10.1021/acs.jmedchem.2c01638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In recent years, substantial research has been conducted on molecular mechanisms and inhibitors targeting bromodomains (BRDs) and extra-terminal (BET) family proteins. On this basis, non-BET BRD is gradually becoming a research hot spot. BRDs are abundant in histone acetyltransferase (HAT)-associated activating transcription factors, and BRD-containing HATs have been linked to cancer, inflammation, and viral replication. Therefore, the development of BRD-containing HATs as chemical probes is useful for understanding the specific biological roles of BRDs in diseases and drug discovery. Several types of BRD-containing HATs, including CBP/P300, PCAF/GCN5, and TAF1, are discussed in this context in terms of their structures, functions, and small-molecule inhibitors. Additionally, progress in BRD inhibitors/chemical probes and proteolysis targeting chimeras in terms of drug design, biological activity, and disease application are summarized. These findings provide insights into the development of BRD inhibitors as potential drug candidates for various diseases.
Collapse
Affiliation(s)
- Mingxia Liu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Kaiyao Zhang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Qinjue Li
- West China School of Public Health, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Haiying Pang
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Xiaowei Huang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Lian Wang
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Fengbo Wu
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Gu He
- Department of Dermatology and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology (CIII), Frontiers Science Center for Disease-related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
| |
Collapse
|
8
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
9
|
Qiu L, Liu X, Li W, Liu Z, Xu C, Xia H. Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. J Cell Mol Med 2021; 25:10224-10235. [PMID: 34601814 PMCID: PMC8572777 DOI: 10.1111/jcmm.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|