1
|
Naik A, Thomas R, Al-Khalifa A, Qasem H, Decock J. Immunomodulatory effects of tumor Lactate Dehydrogenase C (LDHC) in breast cancer. Cell Commun Signal 2025; 23:145. [PMID: 40108668 PMCID: PMC11924725 DOI: 10.1186/s12964-025-02139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Immunotherapy has significantly improved outcomes for cancer patients; however, its clinical benefits vary among patients and its efficacy across breast cancer subtypes remains unclear. To enhance immunotherapy efficacy, it is important to gain more insight into tumor-intrinsic immunomodulatory factors that could serve as therapeutic targets. We previously identified Lactate Dehydrogenase C (LDHC) as a promising anti-cancer target due to its role in regulating cancer cell genomic integrity. In this study, we investigated the effects of tumor LDHC expression on immune responses. METHODS TIMER AND TIDE deconvolution methods were used to investigate the relationship between tumor LDHC expression, immune cell infiltration and T cell dysfunction. Multiplex cytokine assays and flow cytometry were used to assess the effect of LDHC knockdown on the secretion of inflammatory molecules and expression of immune checkpoint molecules in breast cancer cells and cancer cell-immune cell co-cultures. T cell activity was determined by IFN-γ ELISPot assays and 7-AAD flow cytometry. RESULTS TIMER and TIDE analyses revealed that tumor LDHC expression is associated with T cell dysfunction in breast cancer and poorer post-immunotherapy survival in melanoma. Silencing LDHC in breast cancer cell lines (MDA-MB-468, BT-549, HCC-1954) enhanced early T cell activation and cytolytic activity. To gain a better understanding of the underlying mechanisms, comparative analysis of the effects of LDHC knockdown in cancer cell monocultures and co-cultures was conducted. Following LDHC knockdown, we observed an increase in the secretion of tumor-derived pro-inflammatory cytokines (IFN-γ, GM-CSF, MCP-1, CXCL1), a decrease in the soluble levels of tumor-derived immunosuppressive factors (IL-6, Gal-9) and reduced tumor cell surface PD-L1 expression. In direct co-cultures, LDHC knockdown reduced the levels of pro-tumorigenic cytokines (IL-1β, IL-4 and IL-6) and increased the secretion of the chemokine CXCL1. In addition, the number of CD8 + T cells expressing PD-1 and CTLA-4 and the cell surface expression of CTLA-4, TIGIT, TIM3, and VISTA were reduced. CONCLUSIONS Our findings suggest that targeting LDHC could enhance anti-tumor immune responses by modulating cytokine and chemokine secretion in addition to impairing immune checkpoint signaling. Further studies are required to elucidate the molecular mechanisms by which LDHC modulates immune responses in breast cancer.
Collapse
Affiliation(s)
- Adviti Naik
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Present Address: Biological Sciences, Carnegie Mellon University- Qatar, Doha, Qatar
| | - Remy Thomas
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Aljazi Al-Khalifa
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Hanan Qasem
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Julie Decock
- Translational Oncology Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
2
|
Ramchatesingh B, Martinez Villarreal A, Lefrançois P, Gantchev J, Sivachandran S, Abou Setah S, Litvinov IV. Targeting PRAME directly or via EZH2 inhibition overcomes retinoid resistance and represents a novel therapy for keratinocyte carcinoma. Mol Oncol 2025. [PMID: 40101298 DOI: 10.1002/1878-0261.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
Retinoids have demonstrated efficacy as preventative/treatment agents for keratinocyte carcinomas (KCs): basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (SCC). However, retinoid resistance mechanisms limit the efficacy of these compounds. A subset of KCs expresses Preferentially Expressed Antigen in Melanoma (PRAME): a retinoid signaling corepressor. PRAME is proposed to repress retinoid signaling by guiding enhancer of zeste homolog 2 (EZH2) to retinoic acid response elements (RARE) in promoters. We investigated the effects of PRAME on KC pathogenesis and retinoid response. High-PRAME expression in tumors was negatively correlated with epidermal differentiation gene signatures. PRAME overexpression downregulated epidermal differentiation gene signatures and impaired differentiation in 3D culture. PRAME overexpression attenuated retinoid-induced RARE activation, growth suppression, and differentiation responses. Conversely, low-PRAME tumors and PRAME-depleted KC cells demonstrated enriched epidermal differentiation gene signatures. PRAME downregulation restored retinoid-induced RARE activation, growth suppression, keratinization in SCC, and cell death signaling in BCC. Furthermore, combined retinoid and EZH2 inhibitor treatment augmented RARE activation and suppressed PRAME-expressing KC cell growth. Hence, PRAME confers retinoid resistance in KC, which may be overcome by EZH2 inhibition.
Collapse
Affiliation(s)
- Brandon Ramchatesingh
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Amelia Martinez Villarreal
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Philippe Lefrançois
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University Montreal, Canada
| | - Jennifer Gantchev
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Sriraam Sivachandran
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Samy Abou Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Ivan V Litvinov
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Division of Dermatology, McGill University Health Center, Montreal, Canada
| |
Collapse
|
3
|
Kim G, Lee KJ, Shin E, Park ST, Kim HS, Cho HY. CT83 Promotes Cancer Progression by Upregulation of PDL1 in Adenocarcinoma of the Cervix. Int J Mol Sci 2025; 26:2687. [PMID: 40141328 PMCID: PMC11942592 DOI: 10.3390/ijms26062687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
CT83, a cancer-testis antigen, has emerged as a potential biomarker and therapeutic target in various cancers. This study explores its expression and role in cervical adenocarcinoma progression and prognosis. CT83 expression was analyzed in cervical cancer cell lines using quantitative PCR and Western blotting. Functional assays demonstrated that CT83 overexpression (OE) promotes proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in cervical cancer cells while also upregulating PD-L1 expression. Conversely, CT83 knockdown reduced these malignant phenotypes. The immunohistochemical analysis of 60 patient samples revealed CT83 expression in 84.9% of cases, with significant correlations to larger tumor size, elevated squamous cell carcinoma antigen (SCC) levels, and advanced FIGO stages (II-IV). Furthermore, intermediate-to-high CT83 expression (H-score ≥100) was associated with more aggressive disease features. These findings suggest that CT83 contributes to tumor progression and immune evasion, likely through PD-L1 modulation. As a highly expressed antigen in cervical adenocarcinoma, CT83 offers promise as a diagnostic marker and therapeutic target for improving patient outcomes.
Collapse
Affiliation(s)
- Gilhyang Kim
- Department of Pathology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Kyung-Jun Lee
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (S.T.P.); (H.S.K.)
| | - Eun Shin
- Department of Pathology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Kyeonggido 18450, Republic of Korea;
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (S.T.P.); (H.S.K.)
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (S.T.P.); (H.S.K.)
- Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea
| | - Hye-Yon Cho
- Institute of New Frontier Research Team, Hallym University, Chuncheon 24252, Republic of Korea; (K.-J.L.); (S.T.P.); (H.S.K.)
- Department of Obstetrics and Gynecology, Dongtan Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Kyeonggido 18450, Republic of Korea
| |
Collapse
|
4
|
Cakir Y, Lebe B. The Relationship of PRAME Expression with Clinicopathologic Parameters and Immunologic Markers in Melanomas: In Silico Analysis. Appl Immunohistochem Mol Morphol 2025; 33:117-130. [PMID: 39774089 DOI: 10.1097/pai.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
PRAME is a cancer testis antigen whose expression is limited in normal tissues but is increased in cancers. Although there are studies revealing its oncogenic and immunogenic role, the relationship between PRAME expression and immunity in melanomas is not very clear. We aimed to reveal the relationship between PRAME expression and clinicopathologic parameters, immunologic markers, survival in melanomas. PRAME alteration data in TCGA SKCM data set was obtained from cBioPortal. Analyzes regarding clinicopathologic parameters were performed through cBioPortal and UALCAN, survival-related analyzes were performed through cBioPortal, GEPIA2. The correlation analyzes between PRAME expression and immune cell infiltration, immunity-related genes were performed in TIMER2.0, TISIDB, GEPIA2. PRAME protein-protein interaction network was constructed in STRING. The correlated genes with PRAME were listed in LinkedOmics, gene set enrichment and pathway analyses were performed through LinkInterpreter. In cases with low PRAME expression, there was a higher frequency of metastasis and p53 mutation, a more advanced tumor stage and a lower nodal stage. Strong relationship between PRAME expression and immune cell infiltration. A negative correlation was detected between expression of PRAME and many immunomodulatory genes ( P <0.05). Positively correlated genes with PRAME expression were involved in metabolic pathways; negatively correlated genes were involved in pathways related to cell differentiation, immunologic processes. No significant relationship was found between PRAME expression and survival ( P >0.05). Our findings reveal a strong interaction between PRAME expression and tumorigenicity, the immune system and shed light on further clinical studies including PRAME -targeted studies.
Collapse
Affiliation(s)
- Yasemin Cakir
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
| | - Banu Lebe
- Department of Molecular Pathology, Institute of Health Sciences, Dokuz Eylül University
- Department of Pathology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
5
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Li L, Zhang X, Yan J, Guo J, Liu F, Wei X, Liu Q, Wang K, Liu B. A panel of cancer testis antigens in squamous cell carcinoma of the lung, head and neck, and esophagus: implication for biomarkers and therapeutic targets. Discov Oncol 2025; 16:88. [PMID: 39864021 PMCID: PMC11769918 DOI: 10.1007/s12672-025-01804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study aims to investigate the expression of seven cancer testis antigens (MAGE-A1, MAGE-A4, MAGE-A10, MAGE-A11, PRAME, NY-ESO-1 and KK-LC-1) in pan squamous cell carcinoma and their prognostic value, thus assessing the potential of these CTAs as immunotherapeutic targets. The protein expression of these CTAs was evaluated by immunohistochemistry in 60 lung squamous cell carcinoma (LUSC), 62 esophageal squamous cell carcinoma (ESCA) and 62 head and neck squamous cell carcinoma (HNSC). The relationship between CTAs expression and progression-free survival (PFS) was assessed. PD-L1 expression and tumor-infiltrating lymphocytes were also collected and correlated with CTAs expression. The prognostic impact of CTAs gene expression was evaluated using the Kaplan-Meier Plotter website. CTAs expression was 0-48% in ESCA, 3%-77% in LUSC, and 3%-71% in HNSC. Analysis of PFS showed that MAGE-A1 expression in HNSC (**p < 0.01), PRAME in LUSC (p = 0.008, **p < 0.01), MAGE-A10 (p = 0.012, *p < 0.05) and PRAME (p = 0.021, *p < 0.05) in ESCA were significantly correlated with PFS. In all three cancers, coexpression of three CTAs was used as a cutoff value for grouping, and the results showed a significant difference in PFS between these two groups. Moreover, CTAs expression was significantly correlated with PD-L1 expression and T cell infiltration. These findings indicate a high incidence of CTA expression in HNSC, LUSC and ESCA, which was correlated with PD-L1 expression, T cell infiltration, and tumor progression. The results suggest that cancer testis antigens could be feasible vaccine targets in squamous cell carcinoma.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Xin Zhang
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Jiayao Yan
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Jingyi Guo
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, 210008, Jiangsu, China
| | - Fangcen Liu
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Xiao Wei
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Qin Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Kongcheng Wang
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China.
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of China Pharmaceutical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
7
|
Lasota J, Kaczorowski M, Chłopek M, Miłek-Krupa J, Szczepaniak M, Ylaya K, Chodyna M, Iżycka-Świeszewska E, Scherping A, Czapiewski P, Dziuba I, Kato Y, Hałoń A, Kowalik A, Miettinen M. An immunohistochemical and molecular genetic study of 60 colorectal carcinoma brain metastases in pursuit of predictive biomarkers for cancer therapy. Hum Pathol 2025; 155:105717. [PMID: 39824298 DOI: 10.1016/j.humpath.2025.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Colorectal carcinoma brain metastases (n = 60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.3% of cases, respectively. Patients with RAS- and BRAF-mutant tumors could potentially benefit from the treatment with inhibitors. TP53 mutations were detected in 69.1% of metastases. Moreover, altered p53 expression was seen in 91.2% of cases. APC mutations were present in 41.8% of tumors. Diffuse nuclear accumulation of β-catenin was seen in 10.2% of metastases, although only 1 CTNNB1 mutant was identified. Nevertheless, targeting p53 and Wnt/β-catenin pathways may have potential therapeutic implications. Casein kinase 1α1 expression indicating susceptibility to protein kinase inhibitors, was seen in 95% metastases including 10 with strong immunoreactivity. The immune checkpoint marker CD276, a promising target for immunotherapy, was present on tumor cells in 50.8% of metastases and on stromal cells in almost all cases. PRAME, another immunotherapy target, was expressed in 21.7% of tumors. HER2 membrane immunostaining detected in 13.3% of cases implicated potential treatment with HER2 inhibitors. Expression of SLFN11, a predictor of response to DNA-damaging chemotherapies, and a biomarker of sensitivity to PARP inhibitors was seen in 8.3% of tumors. In 6.7% of metastases loss or partial loss of MTAP expression suggested sensitivity to PRMT5 inhibitors. CD44v5 expressed in 35% of cases indicated potential therapeutic utility of anti-CD44v5 monoclonal antibody treatment. Identification of predictive biomarkers through genomic profiling and proteomic analyses is a crucial step toward individually tailored therapeutic regimens for patients with colorectal carcinoma brain metastases.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| | - Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Justyna Miłek-Krupa
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | | | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Miłosz Chodyna
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Scherping
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Piotr Czapiewski
- Department of Pathology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany; Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ireneusz Dziuba
- Department of Pathology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Division of Medical Biology, Institute of Biology Jan Kochanowski University, Kielce, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Mughal TI, Mascarenhas J, Rampal RK, Bose P, Lion T, Ajufo H, Yacoub A, Meshinchi S, Masarova L, Mesa R, Jamieson C, Barbui T, Saglio G, Van Etten RA. Impact of Recent Translational and Therapeutic Developments on Clinical Course of BCR::ABL1-Positive and -Negative Myeloproliferative Neoplasms. Hematol Oncol 2025; 43:e70013. [PMID: 39825826 DOI: 10.1002/hon.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/23/2024] [Indexed: 01/20/2025]
Abstract
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues. The introduction of the ABL1 tyrosine kinase inhibitors have been extremely successful in the treatment of chronic myeloid leukemia with most patients having a near-normal life expectancy. Similar success has, however, not been achieved for BCR::ABL1-negative MPNs in terms of disease course modification and most patients remain incurable. In both disease categories, genomic instability seems to increase the risk of disease progression to accelerated/blast phase, which is resistant/refractory to conventional treatment and associated with a poor prognosis. To address some of these issues, the late John Goldman and Tariq Mughal founded a scientific and clinical platform in 2006, the Post-American Society of Hematology (ASH) MPN workshop, to appraise novel cancer biology, candidate therapeutic targets, treatments and other clinical challenges and pay tribute to all the many scientists and clinicians around the world instrumental to the progress made and continuing advances being made. This paper summarizes some of the recent data discussed at the 18th edition of the workshop and includes reference to some data presented or published after the workshop, including the 26th John Goldman CML conference.
Collapse
MESH Headings
- Humans
- Myeloproliferative Disorders/therapy
- Myeloproliferative Disorders/genetics
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/metabolism
- Myeloproliferative Disorders/drug therapy
- Protein Kinase Inhibitors/therapeutic use
- Proto-Oncogene Proteins c-abl/genetics
- Proto-Oncogene Proteins c-abl/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
Collapse
Affiliation(s)
- Tariq I Mughal
- Tufts University Medical Center, Boston, Massachusetts, USA
- Beckmann Research Institute of City of Hope, Duarte, California, USA
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raajit K Rampal
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Thomas Lion
- St.Anna Children's Cancer Research Institute, Vienna, Austria
| | - Helen Ajufo
- John T. Milliken Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Abdulraheem Yacoub
- Division of Hematologic Malignancies, University of Kansas, Kansas City, Kansas, USA
| | | | | | - Ruben Mesa
- Wake Forest University School of Medicine, Atrium Health Levine Cancer Institute, Charlotte, North Carolina, USA
| | - Catriona Jamieson
- University of San Diego, Moores Cancer Center, La Jolla, California, USA
| | | | | | | |
Collapse
|
9
|
Karuppiah V, Sangani D, Whaley L, Pengelly R, Uluocak P, Carreira RJ, Hock M, Cristina PD, Bartasun P, Dobrinic P, Smith N, Barnbrook K, Robinson RA, Harper S. Broadening alloselectivity of T cell receptors by structure guided engineering. Sci Rep 2024; 14:26851. [PMID: 39500929 PMCID: PMC11538495 DOI: 10.1038/s41598-024-75140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Specificity of a T cell receptor (TCR) is determined by the combination of its interactions to the peptide and human leukocyte antigen (HLA). TCR-based therapeutic molecules have to date targeted a single peptide in the context of a single HLA allele. Some peptides are presented on multiple HLA alleles, and by engineering TCRs for specific recognition of more than one allele, there is potential to expand the targetable patient population. Here, as a proof of concept, we studied two TCRs, S2 and S8, binding to the PRAME peptide antigen (ELFSYLIEK) presented by HLA alleles HLA-A*03:01 and HLA-A*11:01. By structure-guided affinity maturation targeting a specific residue on the HLA surface, we show that the affinity of the TCR can be modulated for different alleles. Using a combination of affinity maturation and functional T cell assay, we demonstrate that an engineered TCR can target the same peptide on two different HLA alleles with similar affinity and potency. This work highlights the importance of engineering alloselectivity for designing TCR based therapeutics suitable for differing global populations.
Collapse
Affiliation(s)
| | - Dhaval Sangani
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lorraine Whaley
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Robert Pengelly
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Pelin Uluocak
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Miriam Hock
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Paulina Bartasun
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Paula Dobrinic
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Nicola Smith
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Keir Barnbrook
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ross A Robinson
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Stephen Harper
- Immunocore Ltd, 92 Milton Park, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
10
|
Blount SL, Liu X, McBride JD. The Utilization of PRAME in the Diagnosis, Prognosis, and Treatment of Melanoma. Cells 2024; 13:1740. [PMID: 39451258 PMCID: PMC11505691 DOI: 10.3390/cells13201740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Melanoma, a deadly form of skin cancer, has seen improved survival rates due to advances in diagnosis and treatment, yet the need for further improvement remains critical. Tumor-associated antigens, such as PRAME (Preferentially Expressed Antigen in Melanoma), offer promising avenues for enhanced diagnostic precision, prognostic assessment, and targeted immunotherapy. PRAME, a cancer testis antigen, is selectively expressed in various cancers, including melanoma, and plays a key role in promoting tumorigenesis through inhibition of retinoic acid signaling, epithelial-to-mesenchymal transition, and immune evasion. This review explores the diagnostic utility of PRAME in distinguishing melanoma from benign nevi, its prognostic value in aggressive melanoma subtypes, and its potential as a therapeutic target in cancer vaccines and adoptive T-cell therapies. While PRAME-targeted therapies face challenges such as tumor heterogeneity and immune suppression, ongoing research aims to overcome these barriers, offering hope for more effective melanoma treatments.
Collapse
Affiliation(s)
- Samuel L. Blount
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Xiaochen Liu
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Jeffrey D. McBride
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Department of Dermatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
11
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
12
|
Cassalia F, Danese A, Tudurachi I, Federico S, Zambello A, Guidotti A, Franceschin L, Bolzon A, Naldi L, Belloni Fortina A. PRAME Updated: Diagnostic, Prognostic, and Therapeutic Role in Skin Cancer. Int J Mol Sci 2024; 25:1582. [PMID: 38338862 PMCID: PMC10855739 DOI: 10.3390/ijms25031582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Preferentially Expressed Antigen in Melanoma (PRAME), a member of the cancer/testis antigen family, is central to the field of skin cancer diagnostics and therapeutics. As a nuclear receptor and transcriptional regulator, PRAME plays a critical role in inhibiting retinoic acid signalling, which is essential for cell differentiation and proliferation. Its aberrant overexpression in various malignancies, particularly cutaneous melanoma, is associated with more aggressive tumour phenotypes, positioning PRAME as both a diagnostic and prognostic marker. In melanoma, PRAME is typically highly expressed, in contrast to its weak or absent expression in benign nevi, thereby improving the accuracy of differential diagnoses. The diagnostic value of PRAME extends to various lesions. It is significantly expressed in uveal melanoma, correlating to an increased risk of metastasis. In acral melanomas, especially those with histopathological ambiguity, PRAME helps to improve diagnostic accuracy. However, its expression in spitzoid and ungual melanocytic lesions is inconsistent and requires a comprehensive approach for an accurate assessment. In soft tissue sarcomas, PRAME may be particularly helpful in differentiating melanoma from clear cell sarcoma, an important distinction due to their similar histological appearance but different treatment approaches and prognosis, or in detecting dedifferentiated and undifferentiated melanomas. In non-melanoma skin cancers such as basal cell carcinoma, squamous cell carcinoma, and Merkel cell carcinoma, the variable expression of PRAME can lead to diagnostic complexity. Despite these challenges, the potential of PRAME as a therapeutic target in melanoma is significant. Emerging immunotherapies, including T-cell-based therapies and vaccines targeting PRAME, are being investigated to exploit its cancer-specific expression. Ongoing research into the molecular role and mechanism of action of PRAME in skin cancer continues to open new avenues in both diagnostics and therapeutics, with the potential to transform the management of melanoma and related skin cancers.
Collapse
Affiliation(s)
- Fortunato Cassalia
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Andrea Danese
- Dermatology Unit, Department of Integrated Medical and General Activity, University of Verona, 37100 Verona, Italy;
| | - Ina Tudurachi
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Serena Federico
- Dermatology Unit, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Anna Zambello
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Alessia Guidotti
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Ludovica Franceschin
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Anna Bolzon
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
| | - Luigi Naldi
- Department of Dermatology, Ospedale San Bortolo, 36100 Vicenza, Italy;
- Centro Studi Gruppo Italiano Studi Epidemiologici in Dermatologia (GISED), 24121 Bergamo, Italy
| | - Anna Belloni Fortina
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (I.T.); (A.Z.); (A.G.); (L.F.); (A.B.); (A.B.F.)
- Pediatric Dermatology Department of Women’s and Child’s Health (SDB), University of Padua, 35121 Padua, Italy
| |
Collapse
|
13
|
Šafanda A, Kendall Bártů M, Michálková R, Stružinská I, Drozenová J, Fabián P, Hausnerová J, Laco J, Matěj R, Škapa P, Švajdler M, Špůrková Z, Méhes G, Dundr P, Němejcová K. Immunohistochemical expression of PRAME in 485 cases of epithelial tubo-ovarian tumors. Virchows Arch 2023; 483:509-516. [PMID: 37610627 DOI: 10.1007/s00428-023-03629-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Preferentially expressed antigen of melanoma (PRAME) is a cancer/testis antigen selectively expressed in somatic tissues and various solid malignant tumors and is associated with poor prognostic outcome. Our research aimed to comprehensively compare its expression in a large cohort of tubo-ovarian epithelial tumors and examine its correlation with our clinico-pathologic data, as well as to assess its potential use in diagnostics and therapy.We examined 485 cases of epithelial tubo-ovarian tumors including 107 clear cell carcinomas (CCC), 52 endometroid carcinomas (EC), 103 high grade serous carcinomas (HGSC), 119 low grade serous carcinomas (LGSC)/micropapillary variant of serous borderline tumors (mSBT), and 104 cases of mucinous carcinomas (MC)/mucinous borderline tumors (MBT). The immunohistochemical analysis was performed using TMAs.The highest levels of expression were seen in EC (60%), HGSC (62%), and CCC (56%), while expression in LGSC/mSBT (4%) and MC/MBT (2%) was rare. The clinico-pathologic correlations and survival analysis showed no prognostic significance.The results of our study showed that PRAME is neither prognostic nor a suitable ancillary marker in the differential diagnosis of tubo-ovarian epithelial tumors. Nevertheless, knowledge about the PRAME expression may be important concerning its potential predictive significance, because targeting PRAME as a potential therapeutic option is currently under investigation.
Collapse
Affiliation(s)
- Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Jana Drozenová
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 10034, Prague, Czech Republic
| | - Pavel Fabián
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, 10034, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Petr Škapa
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zuzana Špůrková
- Department of Pathology, Bulovka Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 12800, Prague 2, Czech Republic.
| |
Collapse
|
14
|
Carvajal P, Zoroquiain P. PRAME/MELAN-A double immunostaining as a diagnostic tool for conjunctival melanocytic lesions: A South American experience. Pathol Res Pract 2023; 250:154776. [PMID: 37696245 DOI: 10.1016/j.prp.2023.154776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION PRAME (PReferentially expressed Antigen in Melanoma) is an antigen that is predominantly expressed in human melanomas. In cutaneous melanocytic lesions, PRAME expression is associated with malignancy. The objective of this study was to evaluate the co-expression of PRAME and Melan A to evaluate their diagnostic value in different conjunctival melanocytic lesions (CML). METHODS 37 CML (23 nevi, 9 primary acquired melanosis (PAM), and 5 conjunctival melanomas) were evaluated by immunohistochemistry for PRAME and Melan-A. The percentage of melanocytic cells co-expressing PRAME and Melan-A was qualitatively evaluated as follows: negative, 0%; 1 + , 1-25%; 2 + , 26-50%; 3 + , 51-75% and 4 + , ≥ 76%. RESULTS Of the invasive melanoma cases, 80% showed a 4 + pattern of marking, whereas 20% showed a 3 + pattern. 11% of the PAMs showed a 4 + pattern and 88.9% showed a 1 + pattern. All the nevi showed a 1 + pattern. The sensitivity and specificity of PRAME 4 + for differentiating high-grade CML from the benign and low-grade grouped CML are 93% and 100%, respectively. CONCLUSION PRAME/MELAN-A double immunostain is particularly useful to differentiate benign from malignant conjunctival melanocytic lesions.
Collapse
Affiliation(s)
- Pedro Carvajal
- Pathology Department, School of Medicine, Pontificia Universidad Católica de Chile, Chile
| | - Pablo Zoroquiain
- Pathology Department, School of Medicine, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
15
|
Brewer T, Yehia L, Bazeley P, Eng C. Integrating somatic CNV and gene expression in breast cancers from women with PTEN hamartoma tumor syndrome. NPJ Genom Med 2023; 8:14. [PMID: 37407629 DOI: 10.1038/s41525-023-00361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Women with germline PTEN variants (PTEN hamartoma tumor syndrome, PHTS) have up to 85% lifetime risk of female breast cancer (BC). We previously showed that PHTS-derived BCs are distinct from sporadic BCs both at the clinical and genomic levels. In this study, we examined somatic copy number variations (CNV) and transcriptome data to further characterize the somatic landscape of PHTS-derived BCs. We analyzed exome sequencing data from 44 BCs from women with PHTS for CNV. The control group comprised of 558 women with sporadic BCs from The Cancer Genome Atlas (TCGA) dataset. Here, we found that PHTS-derived BCs have several distinct CNV peaks compared to TCGA. Furthermore, RNA sequencing data revealed that PHTS-derived BCs have a distinct immunologic cell type signature, which points toward cancer immune evasion. Transcriptomic data also revealed PHTS-derived BCs with pathogenic germline PTEN variants appear to have vitamin E degradation as a key pathway associated with tumorigenesis. In conclusion, our study revealed distinct CNV x transcript features in PHTS-derived BCs, which further facilitate understanding of BC biology arising in the setting of germline PTEN mutations.
Collapse
Affiliation(s)
- Takae Brewer
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Lamis Yehia
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
16
|
Broggi G, Failla M, Russo A, Longo A, Palicelli A, Zanelli M, Lombardo C, Loreto C, Merolla F, Di Crescenzo RM, Ilardi G, Varricchio S, Staibano S, Caltabiano R. Immunohistochemical expression of PRAME is a marker of poor prognosis in uveal melanoma: A clinico-pathologic and immunohistochemical study on a series of 85 cases. Pathol Res Pract 2023; 247:154543. [PMID: 37210771 DOI: 10.1016/j.prp.2023.154543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PReferentially expressed Antigen in Melanoma (PRAME) is a cancer testis antigen, first isolated in tumor-reactive T-cell clones from a metastatic melanoma patient. It has been widely studied in skin pathology as an immunohistochemical marker capable of distinguishing between benign nevi and malignant melanomas. PRAME has been found to be also expressed in non-melanocytic tumors, including lung, breast, kidney and ovarian cancer. However, less is known about the diagnostic and/or prognostic role of this protein in uveal melanoma (UM); few studies have reported that PRAME expression seems to give to UM patients an additional metastatic risk beyond the other already-known prognostic parameters. In the present retrospective study, we aimed to correlate PRAME immunoreactivity to other clinico-pathologic features and follow-up data on a large series of 85 cases (45 non-metastasizing and 40 metastasizing tumors) of primary UM. A statistically significant correlation was found between PRAME expression and higher metastatic risk and lower metastasis-free survival. We propose to include PRAME in the immunohistochemical panel of UM as an easily usable marker capable of predicting higher metastatic risk and stratifying patients' outcome.
Collapse
Affiliation(s)
- Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, 95123 Catania, Italy.
| | - Maria Failla
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, 95123 Catania, Italy
| | - Andrea Russo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Antonio Longo
- Department of Ophthalmology, University of Catania, 95123 Catania, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Claudia Lombardo
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Human Anatomy, University of Catania, 95123 Catania, Italy
| | - Carla Loreto
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Human Anatomy, University of Catania, 95123 Catania, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Rosa Maria Di Crescenzo
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", 80131 Naples, Italy
| | - Gennaro Ilardi
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", 80131 Naples, Italy
| | - Silvia Varricchio
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", 80131 Naples, Italy
| | - Stefania Staibano
- Department of Advanced Biomedical Sciences, Pathology Section, University of Naples "Federico II", 80131 Naples, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, 95123 Catania, Italy
| |
Collapse
|
17
|
Hedrich V, Breitenecker K, Ortmayr G, Pupp F, Huber H, Chen D, Sahoo S, Jolly MK, Mikulits W. PRAME Is a Novel Target of Tumor-Intrinsic Gas6/Axl Activation and Promotes Cancer Cell Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2415. [PMID: 37173882 PMCID: PMC10177160 DOI: 10.3390/cancers15092415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.
Collapse
Affiliation(s)
- Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, 1030 Vienna, Austria
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| |
Collapse
|
18
|
Nin DS, Deng LW. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells 2023; 12:cells12060926. [PMID: 36980267 PMCID: PMC10047177 DOI: 10.3390/cells12060926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Tumour-specific antigens have been an area of interest in cancer therapy since their discovery in the middle of the 20th century. In the era of immune-based cancer therapeutics, redirecting our immune cells to target these tumour-specific antigens has become even more relevant. Cancer-testis antigens (CTAs) are a class of antigens with an expression specific to the testis and cancer cells. CTAs have also been demonstrated to be expressed in a wide variety of cancers. Due to their frequency and specificity of expression in a multitude of cancers, CTAs have been particularly attractive as cancer-specific therapeutic targets. There is now a rapid expansion of CTAs being identified and many studies have been conducted to correlate CTA expression with cancer and therapy-resistant phenotypes. Furthermore, there is an increasing number of clinical trials involving using some of these CTAs as molecular targets in pharmacological and immune-targeted therapeutics for various cancers. This review will summarise the current knowledge of the biology of known CTAs in tumorigenesis and the regulation of CTA genes. CTAs as molecular targets and the therapeutic implications of these CTA-targeted anticancer strategies will also be discussed.
Collapse
Affiliation(s)
- Dawn Sijin Nin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Lih-Wen Deng
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, MD 7, 8 Medical Drive, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- National University Cancer Institute, National University Health System, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| |
Collapse
|
19
|
See SHC, Smith SH, Finkelman BS, LaBoy C, Novo JE, Siziopikou KP, Blanco LZ. The role of PRAME and NY-ESO-1 as potential therapeutic and prognostic biomarkers in triple-negative breast carcinomas. Pathol Res Pract 2023; 241:154299. [PMID: 36603407 DOI: 10.1016/j.prp.2022.154299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
PRAME and NY-ESO-1 are cancer-testis antigens (CTAs) reported to be highly enriched in triple-negative breast cancers (TNBCs), against which vaccines and immunotherapies are currently being developed. This study aims to analyze PRAME and NY-ESO-1 expression in TNBCs and their correlation with clinical outcomes. This is a retrospective cohort study of TNBC patients who have undergone neoadjuvant chemotherapy. PRAME and NY-ESO-1 expression were assessed on pre-therapy biopsies as H-scores (percentage x intensity) with final H scores of 2-3 considered as positive. Association between expression and pathologic complete response (pCR), metastasis, and residual cancer burden (RCB) were assessed via logistic regression. Cox proportional hazards models were used to assess the association with progression-free survival. P-values < 0.05 were considered statistically significant. Sixty-three percent of 76 patients were positive for PRAME. In contrast, only 5 % were positive for NY-ESO-1. PRAME positivity was significantly associated with a lower likelihood of early metastatic disease (OR = 0.24, 95 % CI 0.08-0.62; P = 0.005). However, it was not significantly associated with pCR, RCB category, or progression-free survival. NY-ESO1 score was not significantly associated with early metastatic disease, pCR, RCB category, or progression-free survival. Our results suggest that PRAME positivity may be associated with a lower risk of early metastasis in TNBCs, but not with response to neoadjuvant chemotherapy or progression-free survival. The high expression of PRAME in TNBCs makes it a potential therapeutic target, while NY-ESO1 appears to be a less useful marker. However, further larger studies are needed to ascertain the utility of these markers.
Collapse
Affiliation(s)
- Sharlene Helene C See
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Steven H Smith
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Brian S Finkelman
- Department of Pathology, University of Rochester School of Medicine, Rochester, NY, USA
| | - Carissa LaBoy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jorge E Novo
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kalliopi P Siziopikou
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luis Z Blanco
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Cazzato G, Colagrande A, Ingravallo G, Lettini T, Filoni A, Ambrogio F, Bonamonte D, Dellino M, Lupo C, Casatta N, Resta L, Maiorano E, Cascardi E, Marzullo A. PRAME Immuno-Expression in Cutaneous Sebaceous Carcinoma: A Single Institutional Experience. J Clin Med 2022; 11:6936. [PMID: 36498511 PMCID: PMC9737380 DOI: 10.3390/jcm11236936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background: In recent years, great research interest has been directed to the diagnostic, therapeutic and marker role of Preferentially expressed Antigen in Melanoma (PRAME) in the setting of various human neoplasms. Although it has been extensively studied mainly in the differential diagnosis setting of melanocytic pigmented lesions, still very few papers have analyzed the usefulness or otherwise of PRAME in the context of other non-melanoma skin cancers (NMSC). (2) Methods: In this paper, we report the data of our experience of 21 cases of sebaceous carcinoma (SC) classified in the three WHO grade and collected in the period between January 2005 and 31 October 2022, on which immunostaining for PRAME was performed; Non-parametric Mann−Whitney test for non-normally distributed values was performed. A comparison was made of the means between the three study groups (grade I, II and III). A value of p ≤ 0.05 was set as statistically significant (3) Results: Only seven cases (33.3%) were positive with an immunoscore of 2+/3+ for intensity and 1+/2+ for percentage cells positivity, while 14 cases (66.6%) were totally or nearly totally negative for PRAME with a few of sebaceous-like cells positive with an immunoscore of 1+. Eight cases of SC grade I were immunostaining for PRAME, a level of the cytoplasm of foci of sebaceous differentiation with a significant statical value (p < 0.0001) with respect to ten cases of SC grade II; furthermore, the eight cases of grade I were positive for PRAME in the same areas respect the 3 cases of SC grade III (p = 0.0303). There were no statistical significance between the 10 cases of grade II and 3 cases of grade III (p = 0.2028); (4) Conclusions: PRAME not seems to add particular information in the case of histopathological diagnostics of SC where other markers, including adipophylline, can be quite indicative. It seems, on the other hand, that PRAME can be useful in the subclassification setting of sebaceous carcinoma in grades I−II−III according to the directives of the latest WHO 2018, highlighting the foci of mature sebaceous differentiation most present in grades 1−2 and almost completely absent in grade 3 of the SC.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Anna Colagrande
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Teresa Lettini
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Angela Filoni
- Section of Dermatology, “Vito Fazzi” Hospital, 73100 Lecce, Italy
| | - Francesca Ambrogio
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Domenico Bonamonte
- Section of Dermatology and Venereology, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Miriam Dellino
- Section of Gynecology and Obstetrics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n. 71, 24057 Martinengo, Italy
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n. 71, 24057 Martinengo, Italy
| | - Leonardo Resta
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Eliano Cascardi
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Pathology Unit, FPO-IRCCS Candiolo Cancer Institute, 10060 Candiolo, Italy
| | - Andrea Marzullo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
21
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Naik A, Thomas R, Al-Khadairi G, Bacha R, Hendrickx W, Decock J. Cancer testis antigen PRAME: An anti-cancer target with immunomodulatory potential. J Cell Mol Med 2021; 25:10376-10388. [PMID: 34612587 PMCID: PMC8581324 DOI: 10.1111/jcmm.16967] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022] Open
Abstract
PReferentially expressed Antigen in Melanoma (PRAME) is a cancer testis antigen with restricted expression in somatic tissues and re‐expression in poor prognostic solid tumours. PRAME has been extensively investigated as a target for immunotherapy, however, its role in modulating the anti‐tumour immune response remains largely unknown. Here, we show that PRAME tumour expression is associated with worse survival in the TCGA breast cancer cohort, particularly in immune‐unfavourable tumours. Using direct and indirect co‐culture models, we found that PRAME overexpressing MDA‐MB‐468 breast cancer cells inhibit T cell activation and cytolytic potential, which could be partly restored by silencing of PRAME. Furthermore, silencing of PRAME reduced expression of several immune checkpoints and their ligands, including PD‐1, LAG3, PD‐L1, CD86, Gal‐9 and VISTA. Interestingly, silencing of PRAME induced cancer cell killing to levels similar to anti‐PD‐L1 atezolizumab treatment. Comprehensive analysis of soluble inflammatory mediators and cancer cell expression of immune‐related genes showed that PRAME tumour expression can suppress the expression and secretion of multiple pro‐inflammatory cytokines, and mediators of T cell activation, differentiation and cytolysis. Together, our data indicate that targeting of PRAME offers a potential, novel dual therapeutic approach to specifically target tumour cells and regulate immune activation in the tumour microenvironment.
Collapse
Affiliation(s)
- Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Remy Thomas
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ghaneya Al-Khadairi
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Rim Bacha
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Wouter Hendrickx
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,Cancer Department, Research Branch, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.,College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| |
Collapse
|