1
|
Tian J, Wan S, Yang Z, Wang M, Zhou W, Wo G, Fu S, Zheng S, Zhou G, Hu X, Guo Y, Guo J. PDL1/HER2-Targeted Lipid-Encapsulated Oxygen Nanobubbles Combined with Photodynamic Therapy for HER2 + Breast Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400030. [PMID: 39113347 DOI: 10.1002/adhm.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Indexed: 12/18/2024]
Abstract
Programmed death (PD) 1/PD ligand 1 (PDL1) inhibitors are immune checkpoint inhibitors (ICIs) that may facilitate HER2-positive breast cancer treatment; however, their clinical efficacy remains elusive. Oxygen-enhanced photodynamic therapy (PDT) increases immunogenic cell death (ICD), providing a promising strategy to render the tumor microenvironment more sensitive to the ICIs. Lipid-encapsulated oxygen nanobubbles (Lipo-NBs-O2) obtained using nanobubbles (NBs) water for oxygen delivery in vivo can facilitate enhanced PDT. Here, dual-receptor targeted Lipo-NBs-O2 (DRT@Lipo-NBs-O2) is prepared by modifying Lipo-NBs-O2 with anti-PDL1 scFv and the fusion protein anti-HER2 scFv-tandem-repeat cytochrome c (anti-HER2-nCytc). Copper phthalocyanine is the photosensitizer (PS). DRT@Lipo-PS-NBs-O2 plus near-infrared irradiation leads to robust ICD induction, increasing DC activation and CD8+ T-cell numbers. Modification with anti-PDL1 scFv improves tumor distribution of DRT@Lipo-PS-NBs-O2 and plays the ICI role, invigorating CD8+ T cells and boosting the effects of immunotherapy. Oxygen supplied through DRT@Lipo-PS-NBs-O2 reduces P-glycoprotein expression. Enhanced PDT and Cytc can cause tumor cell death, thereby reducing the immune burden. Under dual receptor targeting and laser local irradiation, tumor cells become subject to the combination effects of PDT, ICD, ICIs, and apoptosis; this effectively suppresses tumor growth and metastasis. Lipo-NBs-O2 affords a combination of oxygen delivery and multidrug therapy to alleviate HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengting Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Guanqun Wo
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaomin Hu
- OriGene Technologies Inc. at Wuxi, Jiangsu, 214000, P. R. China
| | - Yichen Guo
- OriGene Technologies Inc., Rockville, MD, 20850, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
2
|
Xi X, Wang Y, An G, Feng S, Zhu Q, Wu Z, Chen J, Zuo Z, Wang Q, Wang MW, Gu Y. A novel shark VNAR antibody-based immunotoxin targeting TROP-2 for cancer therapy. Acta Pharm Sin B 2024; 14:4806-4818. [PMID: 39664437 PMCID: PMC11628804 DOI: 10.1016/j.apsb.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 12/13/2024] Open
Abstract
TROP-2, a tumor-associated antigen, has been implicated in the progression of various epithelial tumors. Due to its favorable expression profile, TROP-2 has emerged as a promising target for antibody-drug conjugates (ADCs) based anti-tumor therapies. Although ADCs have shown efficacy in cancer treatment, their application in solid tumors is hindered by their high molecular weight, poor tumor penetration, and release of cytotoxic molecules. Therefore, a recombinant immunotoxin was developed based on a shark-derived variable domain of immunoglobulin new antigen receptor (VNAR) antibody. VNARs are only one-tenth the size of IgG antibodies and possess remarkable tissue penetration capabilities and high stability. In this study, a shark VNAR phage display library was created, leading to the identification of shark VNAR-5G8 that targets TROP-2. VNAR-5G8 exhibited a high affinity and cellular internalization ability towards cells expressing high levels of TROP-2. Epitope analysis revealed that VNAR-5G8 recognizes a hidden epitope consisting of CRD and TY-1 on TROP-2. Subsequently, VNAR-5G8 was fused with a truncated form of Pseudomonas exotoxin (PE38) to create the recombinant immunotoxin (5G8-PE38), which exhibited significant anti-tumor activity in vitro and in vivo. Overall, this study highlights the promise of 5G8-PE38 as a valuable candidate for cancer therapy.
Collapse
Affiliation(s)
- Xiaozhi Xi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Oncology Department, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Yanqing Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guiqi An
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shitao Feng
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qiumei Zhu
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhongqiu Wu
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jin Chen
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qiang Wang
- Oncology Department, Shandong Second Provincial General Hospital, Jinan 250022, China
| | - Ming-Wei Wang
- Research Center for Deepsea Bioresources (Sanya), Hainan 572025, China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao Marine Science and Technology Center, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Masaeli F, Omoomi S, Shafiee F. DNA fragmentation factor 40-based therapeutic approaches for cancer: a review article. Med Oncol 2024; 41:264. [PMID: 39397131 DOI: 10.1007/s12032-024-02511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
DNA Fragmentation Factor (DFF) is a heterodimer protein involved in DNA fragmentation during apoptosis, which acts as a trigger downstream of caspase-3 activation. DFF40 catalytically active homo-oligomers break down chromosomal DNA. Previous scientific investigations have revealed a link between DFF40 expression changes and various cancers. DFF40 deletion or down-regulation has been observed in some cancers. Consequently, therapeutic strategies involving the DFF40 molecule compensating led to an increased rate of cancer cell apoptosis. In this review article, we aimed to introduce cancers with low expression of this protein first. The second part of this paper focuses on studies that utilized exogenous DFF40 protein produced by recombinant DNA technology and surveyed during in vitro and in vivo tests. Finally, compensation for diminished expression of the mentioned protein via gene therapy-based techniques to make up for this apoptotic molecule's low expression is the topic of the last part of this review article.
Collapse
Affiliation(s)
- Faezeh Masaeli
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Saba Omoomi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran.
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Tavares e Silva J, Pessoa J, Nóbrega-Pereira S, Bernardes de Jesus B. The Impact of Long Noncoding RNAs in Tissue Regeneration and Senescence. Cells 2024; 13:119. [PMID: 38247811 PMCID: PMC10814083 DOI: 10.3390/cells13020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Overcoming senescence with tissue engineering has a promising impact on multiple diseases. Here, we provide an overview of recent studies in which cellular senescence was inhibited through the up/downregulation of specific lncRNAs. This approach prevented senescence in the bones, joints, nervous system, heart, and blood vessels, with a potential impact on regeneration and the prevention of osteoarthritis and osteoporosis, as well as neurodegenerative and cardiovascular diseases. Senescence of the skin and liver could also be prevented through the regulation of cellular levels of specific lncRNAs, resulting in the rejuvenation of cells from these organs and their potential protection from disease. From these exciting achievements, which support tissue regeneration and are not restricted to stem cells, we propose lncRNA regulation through RNA or gene therapies as a prospective preventive and therapeutic approach against aging and multiple aging-related diseases.
Collapse
Affiliation(s)
| | | | | | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (J.T.e.S.); (J.P.); (S.N.-P.)
| |
Collapse
|
5
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
6
|
Tian J, Wan S, Tian J, Liu L, Xia J, Hu Y, Yang Z, Zhao H, Wang H, Guo Y, Guo J. Anti-HER2 scFv-nCytc-Modified Lipid-Encapsulated Oxygen Nanobubbles Prepared with Bulk Nanobubble Water for Inducing Apoptosis and Improving Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206091. [PMID: 36855335 DOI: 10.1002/smll.202206091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/30/2022] [Indexed: 06/08/2023]
Abstract
Bulk nanobubbles fascinate scientists because of their stability over long periods of time and their ability to carry gases, leading to numerous potential applications. Considering the hypoxic tumor microenvironment and the advantages of bulk nanobubbles, lipid-encapsulated oxygen nanobubbles are prepared from free bulk oxygen nanobubbles in this study. The obtained carrier is then modified with a protein fused with the single-chain antibody of human epidermal growth factor receptor 2 (anti-HER2 scFv) and tandem-repeat cytochrome c (anti-HER2 scFv-nCytc) to enhance tumor targeting and induce tumor apoptosis. Copper phthalocyanine is used as the photosensitizer to demonstrate how the oxygen in the nanobubbles affects the efficiency of photodynamic therapy (PDT). The combination of anti-HER2 scFv-nCytc and PDT synergistically improves the therapeutic effect and alleviates hypoxia in tumors in vivo while causing little inflammatory response. Based on the findings, bulk nanobubble water shows promise in the targeted delivery of oxygen and can be combined with antibody therapy to enhance the efficiency of PDT.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jing Tian
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Liming Liu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Jintao Xia
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Yunfeng Hu
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Huanhuan Zhao
- Basic Medical Experiment Center, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Haixiang Wang
- Department of Food Nutrition and Health, School of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, P. R. China
| | - Yichen Guo
- Department of Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
7
|
Cytochrome c in cancer therapy and prognosis. Biosci Rep 2022; 42:232225. [PMID: 36479932 PMCID: PMC9780037 DOI: 10.1042/bsr20222171] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
Cytochrome c (cyt c) is an electron transporter of the mitochondrial respiratory chain. Upon permeabilization of the mitochondrial outer membrane, cyt c is released into the cytoplasm, where it triggers the intrinsic pathway of apoptosis. Cytoplasmic cyt c can further reach the bloodstream. Apoptosis inhibition is one of the hallmarks of cancer and its induction in tumors is a widely used therapeutic approach. Apoptosis inhibition and induction correlate with decreased and increased serum levels of cyt c, respectively. The quantification of cyt c in the serum is useful in the monitoring of patient response to chemotherapy, with potential prognosis value. Several highly sensitive biosensors have been developed for the quantification of cyt c levels in human serum. Moreover, the delivery of exogenous cyt c to the cytoplasm of cancer cells is an effective approach for inducing their apoptosis. Similarly, several protein-based and nanoparticle-based systems have been developed for the therapeutic delivery of cyt c to cancer cells. As such, cyt c is a human protein with promising value in cancer prognosis and therapy. In addition, its thermal stability can be extended through PEGylation and ionic liquid storage. These processes could contribute to enhancing its therapeutic exploitation in clinical facilities with limited refrigeration conditions. Here, I discuss these research lines and how their timely conjunction can advance cancer therapy and prognosis.
Collapse
|
8
|
Lu D, Guo Y, Hu Y, Wang M, Li C, Gangrade A, Chen J, Zheng Z, Guo J. Fusion of apoptosis-related protein Cytochrome c with anti-HER-2 single-chain antibody targets the suppression of HER-2+ breast cancer. J Cell Mol Med 2021; 25:10638-10649. [PMID: 34697906 PMCID: PMC8581304 DOI: 10.1111/jcmm.17001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER-2). Previous studies have successfully produced single-chain antibodies (scFv) targeting HER-2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half-life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis-related protein DNA fragmentation factor 40 (DFF40) and tandem-repeat Cytochrome c base on caspase-3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER-2 overexpressing breast cancer cells (SK-BR-3 and BT-474) rather than HER-2 negative cells (MDA-MB-231 and MCF-7). Following cellular internalization, apoptosis-related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer.
Collapse
Affiliation(s)
- DanDan Lu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - YiChen Guo
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - YunFeng Hu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Abhishek Gangrade
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama, USA
| | - JiaHui Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - ZiHui Zheng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|