1
|
Gao L, Lv G, Liu Z, Tian Y, Han F, Li L, Wang G, Zhang Y. Alcohol-induced C/EBP β-driven VIRMA decreases oxidative stress and promotes pancreatic ductal adenocarcinoma growth and metastasis via the m6A/YTHDF2/SLC43A2 pathway. Oncogene 2025; 44:1118-1132. [PMID: 39900725 DOI: 10.1038/s41388-025-03283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
N6-methyladenosine (m6A) plays a role in the development of tumors. However, the specific role of VIRMA, an RNA methyltransferase, in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This study shows that VIRMA expression is elevated in PDAC. Increased VIRMA levels promoted PDAC growth and spread, while reducing VIRMA expression slowed these processes. VIRMA facilitated SLC43A2 mRNA degradation through an m6A-YTHDF2 pathway. The resulting decrease in SLC43A2 reduced phenylalanine absorption and oxidative stress, further driving PDAC progression. Furthermore, alcohol increased C/EBP β expression, which bound to VIRMA's promoter, enhancing its transcription. These findings suggest a connection between alcohol consumption, m6A modifications, and phenylalanine absorption in PDAC progression, offering a new approach to combat this disease.
Collapse
Affiliation(s)
- Lei Gao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gaoyuan Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziying Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yitong Tian
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University; Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Department of Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
2
|
Li X, Chen Z, Wang T, Wang Z, Yang B. Unveiling the Hub Genes Associated with the Enhanced Effects of Selenium on Pancreas Function in Diabetic Mice. Mol Biotechnol 2025:10.1007/s12033-025-01415-7. [PMID: 40128492 DOI: 10.1007/s12033-025-01415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/14/2025] [Indexed: 03/26/2025]
Abstract
To elucidate the molecular mechanisms underlying the protective effects of selenium on pancreatic function in diabetes mellitus, we performed a comprehensive bioinformatics analysis of the GSE55636 dataset from the Gene Expression Omnibus (GEO). This dataset comprised pancreatic tissue samples from streptozotocin-induced diabetic mice, including three mice administered 0.8 mg/kg body weight sodium selenate (Na2SeO3, SS) and three matched controls. Our investigation revealed 838 differentially expressed genes (DEGs) in SS-treated pancreatic tissue, with 500 up-regulated and 338 down-regulated genes. Through protein-protein interaction (PPI) network analysis, we identified 20 hub genes (including FOS, PTGS2, CXCL1, IL5, CCL7, IRF1, PTPRC, EGR2, and CD80) exhibiting the highest connectivity scores. Gene Ontology (GO) enrichment analysis demonstrated these hub genes were predominantly associated with critical biological processes: Chromosomal segregation, Mitotic cell cycle regulation, Inflammatory response modulation, Immune system activation. KEGG pathway analysis further revealed their significant enrichment in key signaling pathways: TNF-α, NF-κB, MAPK, IL-17-mediated inflammation, Chemokine-mediated immune regulation. Notably, the identified pathways demonstrated strong associations with pancreatic β-cell survival, insulin secretion regulation, and oxidative stress mitigation. These findings systematically characterize the selenium-responsive molecular network in diabetic pancreatic tissue, providing novel insights into the nutrigenomic mechanisms of selenium's pancreatic protection. The 20 hub genes identified may serve as potential therapeutic targets for diabetes management through selenium supplementation.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, China
| | - Tao Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, China
| | - Zhongyuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Chuzhou, 233100, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Yu W, Srivastava R, Srivastava S, Ma Y, Shankar S, Srivastava RK. Oncogenic Role of SATB2 In Vitro: Regulator of Pluripotency, Self-Renewal, and Epithelial-Mesenchymal Transition in Prostate Cancer. Cells 2024; 13:962. [PMID: 38891096 PMCID: PMC11171950 DOI: 10.3390/cells13110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.
Collapse
Affiliation(s)
- Wei Yu
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Yiming Ma
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
| | - Sharmila Shankar
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Kansas City VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 66128, USA (Y.M.)
- GLAX LLC, 3500 S Dupont Highway, Dover, DE 19901, USA
| |
Collapse
|
4
|
Giarrizzo M, LaComb JF, Bialkowska AB. The Role of Krüppel-like Factors in Pancreatic Physiology and Pathophysiology. Int J Mol Sci 2023; 24:ijms24108589. [PMID: 37239940 DOI: 10.3390/ijms24108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Krüppel-like factors (KLFs) belong to the family of transcription factors with three highly conserved zinc finger domains in the C-terminus. They regulate homeostasis, development, and disease progression in many tissues. It has been shown that KLFs play an essential role in the endocrine and exocrine compartments of the pancreas. They are necessary to maintain glucose homeostasis and have been implicated in the development of diabetes. Furthermore, they can be a vital tool in enabling pancreas regeneration and disease modeling. Finally, the KLF family contains proteins that act as tumor suppressors and oncogenes. A subset of members has a biphasic function, being upregulated in the early stages of oncogenesis and stimulating its progression and downregulated in the late stages to allow for tumor dissemination. Here, we describe KLFs' function in pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Michael Giarrizzo
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
曾 银, 樊 嵘. [PCGF1 is highly expressed in rectal adenocarcinoma and silencing PCGF1 inhibits proliferation of rectal adenocarcinoma cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1296-1302. [PMID: 36210701 PMCID: PMC9550553 DOI: 10.12122/j.issn.1673-4254.2022.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate the expression of PCGF1 in rectal adenocarcinoma (READ) and the effect of PCGF1 silencing on proliferation READ cells in vitro. METHODS The UALCAN and ENCORI online databases were used to analyze the expression level of PCGF1 in READ tissues and normal tissues and its association with the clinicopathological parameters and survival outcomes of patients with READ. The expression levels of PCGF1 were detected in two READ cell lines and a normal rectal epithelial cell line (HcoEpiC cells) using qPCR and Western blotting. Lentiviral vectors were used to construct PCGF1-overexpressing and PCGF1-silenced cell lines, and the proliferative activity of the cells was assessed using CCK-8 assay. The effect of PCGF1 silencing on tumor proliferation in vivo was also evaluated by observing tumorigenicity of the cells in nude mice. RESULTS PCGF1 was highly expressed in READ tissue (P < 0.001), and its expression levels was correlated with READ stage, differentiation and lymph node metastasis (P < 0.001). A high PCGF1 expression level was associated with a poor survival outcome of READ patients (P < 0.05). In SW837 and SW1463 cells, PCGF1 silencing significantly lowered the proliferative activity of the cells both in vitro (P < 0.05) and in nude mice (P < 0.01). CONCLUSION PCGF1 is highly expressed in READ tissue and may potentially serve as a prognostic biomarker as well as a therapeutic target for READ.
Collapse
Affiliation(s)
- 银珍 曾
- 南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 嵘 樊
- 天津市西青医院中心实验室,天津 300380Central Laboratory, Tianjin Xiqing Hospital, Tianjin 300380, China
| |
Collapse
|
6
|
Zhang J, You X, Kang D, Zhou G. Exploring the Potential of Pyroptosis-Related Genes in Predicting Prognosis and Immunological Characteristics of Pancreatic Cancer From the Perspective of Genome and Transcriptome. Front Oncol 2022; 12:932786. [PMID: 35785176 PMCID: PMC9243448 DOI: 10.3389/fonc.2022.932786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To probe into the role of pyroptosis-related genes in pancreatic carcinoma. METHODS Herein, we conducted a comprehensive bioinformatics analysis to evaluate tumor-immune infiltration and tumor mutation burden, the correlations between PRGs, and microsatellite instability and found that 33 PRGS were up- or down-regulated in PC. Then we built the PPI network, which was downloaded from the STRING database. Using TCGA cohort median risk score, PC subjects from the Gene Expression Composite cohort (GEO) data resource were stratified into two risk categories, with the low-PC risk group harboring a higher overall survival (OS) (P = 0.011). We employed the ssGSEA approach to quantify immune cell abundance in separate risk groups separated by risk signature while assessing variations in immune cell invasion. Chemotherapeutic drugs were retrieved from the Genomics of Drug Sensitivity in Cancer (GDSC) data resource. RESULTS Eight prognostic PRG models (CASP4, GSDMC, IL-18, NLRP1, NLRP2, PLCG1, TIRAP, and TNF) were established via LASSO Cox regression to estimate the OS of PC subjects with medium-to-high accuracy. CONCLUSION Our study is the first to identify a pyroptotic-related prognostic gene feature for PC, providing more options for the prognostic prediction of PC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Xiaomin You
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Dong Kang
- Department of General Surgery, Rugao Hospital of Traditional Chinese Medicine, Rugao, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
7
|
Clement EJ, Law HCH, Qiao F, Noe D, Trevino JG, Woods NT. Combined Alcohol Exposure and KRAS Mutation in Human Pancreatic Ductal Epithelial Cells Induces Proliferation and Alters Subtype Signatures Determined by Multi-Omics Analysis. Cancers (Basel) 2022; 14:cancers14081968. [PMID: 35454872 PMCID: PMC9027648 DOI: 10.3390/cancers14081968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a deadly disease wherein alcohol use increases the risk of developing this cancer. Mutations in the KRAS oncogene are required for alcohol to promote pancreatic cancer in mice, but little is known about the molecular events associated with the combined exposure of alcohol and mutant KRAS expression in pancreas cells. In this study, we use pancreas cell models with and without mutant KRAS to evaluate the impact of chronic alcohol exposure on transcription and protein expression. This study identifies numerous differentially expressed transcripts and proteins that could influence the emergence of oncogenic features, such as increased proliferation, in pancreas cells. Abstract Pancreatic Ductal adenocarcinoma (PDAC) is an aggressive cancer commonly exhibiting KRAS-activating mutations. Alcohol contributes to the risk of developing PDAC in humans, and murine models have shown alcohol consumption in the context of KRAS mutation in the pancreas promotes the development of PDAC. The molecular signatures in pancreas cells altered by alcohol exposure in the context of mutant KRAS could identify pathways related to the etiology of PDAC. In this study, we evaluated the combined effects of alcohol exposure and KRAS mutation status on the transcriptome and proteome of pancreatic HPNE cell models. These analyses identified alterations in transcription and translational processes in mutant KRAS cells exposed to alcohol. In addition, multi-omics analysis suggests an increase in the correlation between mRNA transcript and protein abundance in cells exposed to alcohol with an underlying KRAS mutation. Through differential co-expression, SERPINE1 was found to be influential for PDAC development in the context of mutant KRAS and ethanol. In terms of PDAC subtypes, alcohol conditioning of HPNE cells expressing mutant KRAS decreases the Inflammatory subtype signature and increases the Proliferative and Metabolic signatures, as we previously observed in patient samples. The alterations in molecular subtypes were associated with an increased sensitivity to chemotherapeutic agents gemcitabine, irinotecan, and oxaliplatin. These results provide a framework for distinguishing the molecular dysregulation associated with combined alcohol and mutant KRAS in a pancreatic cell line model.
Collapse
Affiliation(s)
- Emalie J. Clement
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Henry C.-H. Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Dragana Noe
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
- Correspondence:
| |
Collapse
|