1
|
Shi S, Liu X, Geng X, Meng Q, Gao M, Wang E, Ma X, Hu H, Liu J, Han W, Yin H, Zhou X. Neonatal heart tissue-derived EVs alleviate adult ischemic cardiac injury via regulating the function of macrophages and cardiac regeneration in murine models. Int Immunopharmacol 2024; 143:113251. [PMID: 39353386 DOI: 10.1016/j.intimp.2024.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Previous studies confirmed the regenerative capacity of the mammalian neonatal heart. We recently found that adult heart tissue-derived EVs can protect the heart from myocardial ischemia-reperfusion (I/R). However, the role of EVs from neonatal heart tissue in cardiac healing post-ischemia remains unclear. In the present study, we revealed that intramyocardial administration of neonatal cardiac tissue-derived EVs (ncEVs) alleviated cardiac inflammation, mitigated reperfusion injury, and improved cardiac function in murine I/R models. In vitro, ncEVs inhibited M1 polarization of macrophages induced by LPS while up-regulated their phagocytic function via the miR-133a-3p-Ash1l signaling pathway. Moreover, the administration of ncEVs contributed to cardiac angiogenesis and improved cardiac function in murine myocardial infarction models. Collectively, these results suggested that neonatal heart-derived EVs can regulate the function of macrophages and contribute to cardiac regeneration and function recovery in murine cardiac ischemic models. Therefore, the derivatives in neonatal heart tissue-derived EVs might serve as a potential therapeutic strategy in ischemic diseases.
Collapse
Affiliation(s)
- Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Mingkui Gao
- Department of Cardiothoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoxue Ma
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Hao Hu
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jie Liu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang 422000 China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Heart Failure Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
2
|
Wang X, Wang Y, Yuan Y, Wang L, Zhang D. Isoflurane pretreatment protects against myocardial ischemia/reperfusion injury via mediating lncRNA CASC15/miR-542-3p axis. Toxicol Mech Methods 2024; 34:694-702. [PMID: 38572673 DOI: 10.1080/15376516.2024.2327057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The protective effect of isoflurane on cardiomyocyte ischemia/reperfusion injury (I/RI) was explored in hypoxia and reoxygenation (H/R) induced cardiomyocyte injury model. In terms of mechanism, the participation of long non-coding RNA CASC15/microR-542-3p axis was further discussed. H9c2 cells received H/R treatment to mimic myocardial I/RI. RT-qPCR was performed to quantify mRNA levels. Cell viability and apoptosis were evaluated after isoflurane pretreatment and cell transfection. ELISA was performed to measure the concentrations of inflammatory/oxidative stress-related cytokines (TNF-α, IL-6, MDA, SOD). The target relationship between CASC12 and miR-542-3p was determined via dual-luciferase reporter assay. Isoflurane pretreatment alleviated H/R-induced cell viability suppression and cell apoptosis promotion, which was accompanied by CASC15 downregulation. CASC15 overexpression abolished the influence of isoflurane on cardiomyocytes' viability and apoptosis. H/R-induced excessive release of TNF-α and IL-6 was hold down by isoflurane, which was re-activated after CASC15 overexpression. The concentration changes of both MDA and SOD by isoflurane were reversed by CASC15 overexpression. CASC15 functioned as miR-542-3p sponger, and miR-542-3p overexpression attenuated the effect of isoflurane and CASC15 on H/R-induced cardiac I/RI. Isoflurane pretreatment was beneficial for the alleviation of cardiac I/RI by inhibiting oxidative stress and myocardial inflammatory response. CASC15/miR-542-3p axis was required for isoflurane to exhibit its protective activity against cardiac I/RI.
Collapse
Affiliation(s)
- Xiaoyi Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Yueping Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing 211166, China
| | - Yawei Yuan
- Department of Anesthesiology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Long Wang
- Department of Pain Medicine, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dawei Zhang
- Department of Emergency, The Affiliated Hospital of Qingdao University (Pingdu), Qingdao, China
| |
Collapse
|