1
|
Li Y, Yang W, Chen H, Jin Z, Dong J, Ma L, Ji Z. Comprehensive pan-cancer single-cell analysis reveals glycolysis-related signatures as predictive biomarkers for immunotherapy response and their role in bladder cancer. Int Immunopharmacol 2025; 152:114381. [PMID: 40058104 DOI: 10.1016/j.intimp.2025.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Glycolysis is a vital metabolic biological process in tumor progression and immune modulation. This study comprehensively investigated the roles of glycolysis in pan-cancer, especially in bladder cancer. Exploration of 34 single-cell RNA sequencing (scRNA-seq) cohorts, eight ICI-treated bulk RNA-seq cohorts, and TCGA bulk pan-cancer RNA-seq cohorts uncovered a Glycolysis.Sig which strongly correlated with immunotherapy response and demonstrated excellent predictive performance in prognosis and immune response. Hub-Glycolysis.Sig exhibited varying interactions with the immune microenvironment based on cancer type. In bladder cancer, higher glycolysis risk scores correlated with poorer prognosis, with distinct immune infiltration characteristics between subtypes. scRNA-seq revealed high glycolysis levels in bladder epithelial cells. COPB2 was highly expressed in bladder cancer, promoting cell proliferation, migration, and glycolytic activity in vitro and in vivo. Our large-scale data analysis confirmed the negative correlation between glycolysis and immunotherapy outcomes, identifying Glycolysis.Sig as a novel predictive biomarker. Hub-Glycolysis.Sig provides clinical insights for bladder cancer therapy strategies, while COPB2 and other potential therapeutic targets facilitate personalized cancer treatment.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, NO. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
2
|
Su W, Wang W, Zhang G, Yang L. Epigenetic regulatory protein chromobox family regulates multiple signalling pathways and mechanisms in cancer. Clin Epigenetics 2025; 17:48. [PMID: 40083014 PMCID: PMC11907984 DOI: 10.1186/s13148-025-01852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Signal transduction plays a pivotal role in modulating a myriad of critical processes, including the tumour microenvironment (TME), cell cycle arrest, proliferation and apoptosis of tumour cells, as well as their migration, invasion, and the epithelial-mesenchymal transition (EMT). Epigenetic mechanisms are instrumental in the genesis and progression of tumours. The Chromobox (CBX) family proteins, which serve as significant epigenetic regulators, exhibit tumour-specific expression patterns and biological functionalities. These proteins are influenced by a multitude of factors and could modulate the activation of diverse signalling pathways within tumour cells through alterations in epigenetic modifications, thereby acting as either oncogenic agents or tumour suppressors. This review aims to succinctly delineate the composition, structure, function, and expression of CBXs within tumour cells, with an emphasis on synthesizing and deliberating the CBXs-mediated activation of intracellular signalling pathways and the intricate mechanisms governing tumourigenesis and progression. Moreover, a plethora of contemporary studies have substantiated that CBXs might represent a promising target for the diagnosis and therapeutic intervention of tumour patients. We have also compiled and scrutinized the current research landscape concerning inhibitors targeting CBXs, aspiring to aid researchers in gaining a deeper comprehension of the biological roles and mechanisms of CBXs in the malignant evolution of tumours, and to furnish novel perspectives for the innovation of targeted tumour therapeutics.
Collapse
Affiliation(s)
- Weiyu Su
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Weiwen Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Guanghui Zhang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China.
| |
Collapse
|
3
|
Mallick S, Qamar Q, Mishra B, Nayak A. The mechanism underlying the oncogenic potential of AAA+ ATPase PSMC4 in cancer is revealed by mutations and copy number amplifications. Mutat Res 2025; 830:111901. [PMID: 39985882 DOI: 10.1016/j.mrfmmm.2025.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Recent research has discovered a connection between the AAA+ ATPase PSMC4 (Proteasome 26S Subunit, ATPase 4) and several forms of cancer. However, a detailed analysis of the oncogenic potential of PSMC4 was elusive. In this study, we anticipate PSMC4's potential as a cancer biomarker. We aimed to comprehensively assess the expression profiles, prognostic significance, and relevant cellular pathways associated with it. Through our examination of various types of cancers, PSMC4 is found to be overexpressed. Interestingly, our result finds a positive correlation between PSMC4 overexpression and unfavourable overall survival rates in cancer. Further, we looked into the mutations and copy number amplifications of PSMC4 across various cancers. Our study reveals that missense mutations plays a great role behind the oncogenic potential of PSMC4. Several possible mutation sites are predicted. Interestingly, we found fifteen hotspot mutations in the ATPase domain of PSMC4. Additionally, PSMC4 has shown a high amplification percentage in various cancers. We are additionally attentive to the functional characteristics of the protein PSMC4 across various types of cancer. In the protein-protein interaction analyses, it was found that multiple oncoproteins were directly interacting with PSMC4. The top signaling pathways of PSMC4 also indicate that it plays a crucial role in cancer development. Overall, this study reveals that PSMC4 could be a potential diagnostic and prognostic marker for cancer, making it a promising biomarker and target.
Collapse
Affiliation(s)
- Sanjida Mallick
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Qurratulain Qamar
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Bibhudutta Mishra
- Department of Biotechnology, NIST University, Bramhapur, Odisha 761008, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
4
|
Chen W, Zhou L, Jiang J, Chen J, Geng D, Chen Y, Han X, Xie Q, Guo G, Chen X, Tang S, Zhong X. Induction of the p21/CDK6 pathway and alteration of the immune microenvironment by the stem cell marker CBX3 in melanoma. Stem Cell Res Ther 2025; 16:63. [PMID: 39934923 PMCID: PMC11816572 DOI: 10.1186/s13287-025-04179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND As one of the stem cell markers, chromobox protein homolog 3 (CBX3) participates in multiple signaling pathways that affect the progression of various tumors. However, the role of CBX3 in melanoma remains unclear, and the mechanisms by which CBX3 may regulate immunotherapy outcome remain largely unknown. METHODS We used the Cancer Genome Atlas, Genotype-Tissue Expression portal, and Gene Expression Omnibus database to estimate CBX3 expression and its prognostic effect in melanoma. The role of CBX3 in proliferation and migration of melanoma cells were examined using the CCK8, cloning, wound healing, and transwell assays. The effect of CBX3 on melanoma tumorigenesis was assessed using an in vivo animal model. The role of CBX3 in cell cycle was examined using flow cytometry, and expression levels of cell cycle-related genes and proteins in cells with altered CBX3 levels were analyzed using qPCR and western blotting. The function of CBX3 in the immune microenvironment of melanoma was studied using single-cell RNA sequencing and public databases. RESULTS We found that CBX3 was highly expressed in melanoma with poor prognosis. CBX3 promoted the proliferation and migration of melanoma cells in vivo and in vitro. Functional analysis revealed that CBX3 regulates cell cycle, as it accelerated the G1 to S transition, decreased p21 expression, and increased CDK6 expression. Finally, single-cell sequencing and immune-related assays showed that CBX3 is immunogenic and can change the immune microenvironment of melanoma. CONCLUSIONS We conclude that the stem cell marker, CBX3 activates the p21/CDK6 pathway and alters the immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jingjing Jiang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Yaokun Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
5
|
Xie M, Liang H, Mao Y, Yao Y, Tian B. CBX3 Downregulates HLTF to Activate PI3K/AKT Signaling Promoting Cholangiocarcinoma. Adv Biol (Weinh) 2025; 9:e2400413. [PMID: 39601498 DOI: 10.1002/adbi.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer with poor response to chemotherapy or radiation, necessitating novel therapeutic approaches. Epigenetic regulation, which is reversible, plays a significant role in cancer progression. CBX3 (HP1γ), a key heterochromatin protein, regulates gene expression by interacting with histone H3 lysine 9 trimethyl (H3K9me3) markers. While CBX3 is linked to tumor progression in various cancers, its role in CCA remains unclear. This study reveals that CBX3 and H3K9me3 enrich the HLTF promoter, a gene involved in chromatin remodeling and DNA repair. HLTF is often inactivated by hypermethylation in other cancers, suggesting tumor-suppressive properties. Depleting CBX3 in CCA cells elevates HLTF expression, reducing proliferation, while HLTF silencing reverses this effect. Furthermore, HLTF overexpression inhibits PI3K-AKT signaling activated by CBX3. These findings suggest CBX3 promotes CCA progression by suppressing HLTF expression.
Collapse
Affiliation(s)
- Min Xie
- Research Laboratory of Hepatobiliary Tumor, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Huaiyuan Liang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, 410011, China
| | - Yuxuan Mao
- Research Laboratory of Hepatobiliary Tumor, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Yuping Yao
- Research Laboratory of Hepatobiliary Tumor, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Bingzhang Tian
- Research Laboratory of Hepatobiliary Tumor, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| |
Collapse
|
6
|
Li J, Wang X, Xue L, He Q. Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon 2024; 10:e33103. [PMID: 39022084 PMCID: PMC11253540 DOI: 10.1016/j.heliyon.2024.e33103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Objective Curcumin, a phenolic compound extracted from turmeric rhizomes, exhibits antitumour effects in preclinical models of tumours. However, its mechanism of action in prostate cancer remains unclear. Exploring the molecular mechanisms of curcumin in prostate cancer based on network pharmacology and molecular docking provides a new theoretical basis for prostate cancer treatment. Method Using tools such as PharmMapper, SuperPred, TargetNet, and SwissTargetPrediction, we obtained information on curcumin-related targets. We comprehensively collected prostate cancer-related targets from several databases, including GeneCards, CTD, DisGeNET, OMIM, and PharmGKB. Cross-cutting drug-disease targets were then derived by screening using the Venny 2.1.0 tool. Subsequently, we used the DAVID platform to perform in-depth GO and KEGG enrichment analyses of the drug-disease-shared targets. To construct a PPI network map of the cross-targets and screen the 10 core targets, we combined the STRING database and Cytoscape 3.7.2. Molecular docking experiments were performed using AutoDockTools 1.5.7 software. Finally, we used several databases such as GEPIA, HPA, cBioPortal, and TIMER to further analyse the screened core targets in detail. Result We identified 307 key targets of curcumin in cancer treatment. After GO functional enrichment analysis, we obtained 1119 relevant entries, including 782 biological progression (BP) entries, 112 cellular component (CC) entries, and 225 molecular function (MF) entries. In addition, KEGG pathway enrichment analysis revealed 126 signalling pathways, which were mainly involved in the cancer pathway, such as lipid and atherosclerosis pathway, PI3K-Akt signal pathway, MAPK signal pathway, Ras signal pathways, and chemical carcinogenesis-reactive oxygen species. By applying Cytoscape 3.7.2 software, we identified SRC, PIK3R1, STAT3, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1 as core targets. Molecular docking experiments showed that the binding energies of curcumin to these core targets were all below -1.85 kJ mol-1, which fully demonstrated that curcumin could spontaneously bind to these core targets. Finally, these results were validated at multiple levels, including mRNA expression, protein expression, and immune infiltration. Conclusion Through in-depth network pharmacology and molecular docking studies, we have found that curcumin may have anticancer potential by upregulating the expression of PIK3R1 and STAT3, and downregulating the binding ability of molecules such as SRC, AKT1, HSP90AA1, ESR1, EGFR, HSP90AB1, MAPK8, and MAPK1. In addition, curcumin may interfere with the cyclic process of prostate cancer cells by inhibiting key signalling pathways such as the PI3K-Akt signalling pathway, MAPK signalling pathway, and Ras, thereby inhibiting their growth. This study not only reveals the potential molecular mechanism of curcumin in the treatment of prostate cancer but also provides an important theoretical basis for subsequent research.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Xi'an Jiaotong University, China
- Department of Urology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| | - Xiong Wang
- Department of Pharmacology, Ankang Maternity and Child Health Care Hospital, Ankang, 725000, Shaanxi Province, China
| | - Li Xue
- Department of Urology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Qingmin He
- Department of Gastroenterology, Ankang Central Hospital, Ankang, 725000, Shaanxi Province, China
| |
Collapse
|
7
|
Lv X, Chen R, Liang T, Peng H, Fang Q, Xiao S, Liu S, Hu M, Yu F, Cao L, Zhang Y, Pan T, Xi Z, Ding Y, Feng L, Zeng T, Huang W, Zhang H, Ma X. NSP6 inhibits the production of ACE2-containing exosomes to promote SARS-CoV-2 infectivity. mBio 2024; 15:e0335823. [PMID: 38303107 PMCID: PMC10936183 DOI: 10.1128/mbio.03358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has triggered a global pandemic, which severely endangers public health. Our and others' works have shown that the angiotensin-converting enzyme 2 (ACE2)-containing exosomes (ACE2-exos) have superior antiviral efficacies, especially in response to emerging variants. However, the mechanisms of how the virus counteracts the host and regulates ACE2-exos remain unclear. Here, we identified that SARS-CoV-2 nonstructural protein 6 (NSP6) inhibits the production of ACE2-exos by affecting the protein level of ACE2 as well as tetraspanin-CD63 which is a key factor for exosome biogenesis. We further found that the protein stability of CD63 and ACE2 is maintained by the deubiquitination of proteasome 26S subunit, non-ATPase 12 (PSMD12). NSP6 interacts with PSMD12 and counteracts its function, consequently promoting the degradation of CD63 and ACE2. As a result, NSP6 diminishes the antiviral efficacy of ACE2-exos and facilitates the virus to infect healthy bystander cells. Overall, our study provides a valuable target for the discovery of promising drugs for the treatment of coronavirus disease 2019. IMPORTANCE The outbreak of coronavirus disease 2019 (COVID-19) severely endangers global public health. The efficacy of vaccines and antibodies declined with the rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants. Angiotensin-converting enzyme 2-containing exosomes (ACE2-exos) therapy exhibits a broad neutralizing activity, which could be used against various viral mutations. Our study here revealed that SARS-CoV-2 nonstructural protein 6 inhibited the production of ACE2-exos, thereby promoting viral infection to the adjacent bystander cells. The identification of a new target for blocking SARS-CoV-2 depends on fully understanding the virus-host interaction networks. Our study sheds light on the mechanism by which the virus resists the host exosome defenses, which would facilitate the study and design of ACE2-exos-based therapeutics for COVID-19.
Collapse
Affiliation(s)
- Xi Lv
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ran Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiannan Fang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Sen Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lixue Cao
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihui Xi
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yao Ding
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Linyuan Feng
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Zeng
- Department of Breast Surgery, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenjing Huang
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Zhang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiancai Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Chen J, Lin Y, Zheng S, Chen Q, Tang S, Zhong X. CBX3 promotes clear cell renal carcinoma through PI3K/AKT activation and aberrant immunity. J Transl Med 2023; 21:600. [PMID: 37674204 PMCID: PMC10483741 DOI: 10.1186/s12967-023-04478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A chromobox homologue 3 (CBX3) is elevated in various cancers and significantly contributes to the promotion of malignant behavior; despite this, its exact involvement in clear cell renal cell carcinoma (ccRCC) is yet unknown. METHODS The Cancer Genome Atlas database served to evaluate CBX3 production and its connection to survival in patients with ccRCC. Our team evaluated the effects of knockdown of CBX3 levels in ccRCC cell populations using in vitro together with in vivo models. CBX3, proteins related to death, and epithelial-to-mesenchymal transition (EMT)-related proteins were measured in ccRCC cells using western blotting and immunohistochemical assays. Through the analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO) and Gene Set Enrichment Analysis (GSEA), the biological processes and signal pathways related to CBX3 expression were identified. Immune-related activity reduced by CBX3 was assessed using various online tools. RESULTS Both genomic and protein expression showed that CBX3 was upregulated in ccRCC. Further functional analyses revealed that CBX3 played a crucial role in enhancing cell growth, migration, and EMT in vitro along with in vivo. Moreover, the study results provided distinct mechanistic evidence that CBX3 exerts its pathological functions in ccRCC by activating the PI3K/AKT pathway. Finally, immunoassays revealed that CBX3, a possible biomarker of ccRCC, was significantly associated with immunity. CONCLUSIONS Our results suggest that the overexpression of CBX3 promotes ccRCC advancement through PI3K/AKT activation and even immunological dysregulation, making it a potentially viable and beneficial therapeutic target.
Collapse
Affiliation(s)
- Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yuxin Lin
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Qingshan Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|