1
|
VAN Essen BJ, Tromp J, Gevaert AB, De Jong TV, Ouwerkerk W, Koekemoer A, Djordjevic D, Baumhove L, Tharshana GN, Conde-Knape K, Nath M, Lang CC, Samani NJ, Michaelsen NBM, Voors AA. Activation of Neutrophil Extracellular Trap Formation in Patients with Heart Failure and a Preserved Ejection Fraction. J Card Fail 2025:S1071-9164(25)00110-1. [PMID: 40081731 DOI: 10.1016/j.cardfail.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Pathophysiological differences between heart failure (HF) with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF) remain poorly understood. Therefore, we performed pathway analyses from whole-blood transcriptomics to distinguish HFpEF from HFrEF. METHODS AND RESULTS Lexogen's QuantSeq was used to carry out whole-blood transcriptomics in 500 patients with HF (HFpEF n = 250, HFrEF n = 250). Differential gene expression analysis was performed on all protein-coding genes that met a predefined minimum expression level. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology over-representation analysis was utilized to identify upregulated and downregulated biological pathways. The findings were validated in an independent cohort of 727 patients with HF. Out of 7672 protein-coding transcripts, 217 were upregulated and 110 were downregulated in patients with HFpEF compared with HFrEF. The 3 most significantly upregulated genes were neutrophil-expressed elastase, defensin alpha 4, and pro-platelet basic protein. The 3 most significantly downregulated genes were lymphotoxin beta, bridging integrator 1, and V-set pre-B cell surrogate light chain 3. Translation of differentially expressed genes into biological pathways demonstrated that the most significantly activated KEGG pathway in HFpEF was neutrophil extracellular trap formation. DISCUSSION Transcriptomics analyses suggest activation of neutrophil extracellular trap formation pathways in patients with HFpEF. This pathway is associated with endothelial and coronary microvascular dysfunction and might be a target for future drug development in patients with HFpEF.
Collapse
Affiliation(s)
- Bart J VAN Essen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Tromp
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Saw Swee Hock School of Public Health, National University of Singapore and the National University Health System, Singapore; Duke-NUS Medical School, Singapore
| | - Andreas B Gevaert
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Tristan V De Jong
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Wouter Ouwerkerk
- National Heart Centre Singapore, Singapore; Department of Dermatology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Andrea Koekemoer
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute of Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Lukas Baumhove
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ganash N Tharshana
- Saw Swee Hock School of Public Health, National University of Singapore and the National University Health System, Singapore
| | | | - Mintu Nath
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute of Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK; Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute of Health Research, Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | | | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Boșca AB, Dinte E, Mihu CM, Pârvu AE, Melincovici CS, Șovrea AS, Mărginean M, Constantin AM, Băbțan AM, Muntean A, Ilea A. Local Drug Delivery Systems as Novel Approach for Controlling NETosis in Periodontitis. Pharmaceutics 2024; 16:1175. [PMID: 39339210 PMCID: PMC11435281 DOI: 10.3390/pharmaceutics16091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by periodontopathogenic bacteria in the dental biofilm, and also involves the inflammatory-immune response of the host. Polymorphonuclear neutrophils (PMNs) play essential roles in bacterial clearance by multiple mechanisms, including the formation of neutrophil extracellular traps (NETs) that retain and destroy pathogens. During PD progression, the interaction between PMNs, NETs, and bacteria leads to an exaggerated immune response and a prolonged inflammatory state. As a lesion matures, PMNs accumulate in the periodontal tissues and die via NETosis, ultimately resulting in tissue injury. A better understanding of the role of NETs, the associated molecules, and the pathogenic pathways of NET formation in periodontitis, could provide markers of NETosis as reliable diagnostic and prognostic tools. Moreover, an assessment of NET biomarker levels in biofluids, particularly in saliva or gingival crevicular fluid, could be useful for monitoring periodontitis progression and treatment efficacy. Preventing excessive NET accumulation in periodontal tissues, by both controlling NETs' formation and their appropriate removal, could be a key for further development of more efficient therapeutic approaches. In periodontal therapy, local drug delivery (LDD) systems are more targeted, enhancing the bioavailability of active pharmacological agents in the periodontal pocket and surrounding tissues for prolonged time to ensure an optimal therapeutic outcome.
Collapse
Affiliation(s)
- Adina Bianca Boșca
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Elena Dinte
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Elena Pârvu
- Department of Pathophysiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Stanca Melincovici
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Alina Simona Șovrea
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Mariana Mărginean
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anne-Marie Constantin
- Department of Histology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.B.B.)
| | - Anida-Maria Băbțan
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| | - Alexandrina Muntean
- Department of Paediatric Dentistry, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (A.I.)
| |
Collapse
|
3
|
Matson SM, Ngo LT, Sugawara Y, Fernando V, Lugo C, Azeem I, Harrison A, Alsup A, Nissen E, Koestler D, Washburn MP, Rekowski MJ, Wolters PJ, Lee JS, Solomon JJ, Demoruelle MK. Neutrophil extracellular traps linked to idiopathic pulmonary fibrosis severity and survival. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.24.24301742. [PMID: 38343853 PMCID: PMC10854325 DOI: 10.1101/2024.01.24.24301742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) leads to progressive loss of lung function and mortality. Understanding mechanisms and markers of lung injury in IPF is paramount to improving outcomes for these patients. Despite the lack of systemic involvement in IPF, many analyses focus on identifying circulating prognostic markers. Using a proteomic discovery method followed by ELISA validation in multiple IPF lung compartments and cohorts we explored novel markers of IPF survival. Methods In our discovery analysis, agnostic label-free quantitative proteomics differentiated lung tissue protein expression based on survival trajectory (n=10). Following selection of the candidate pathway (neutrophil extracellular trap (NET) formation), we subsequently validated the presence of NETs in the IPF lung microenvironment using fully quantitative assays of known NET remnants in separate IPF cohorts (n=156 and n=52) with bronchoalveolar lavage fluid. We then assessed the correlation of these markers with baseline pulmonary function and survival. Results Discovery lung tissue proteomics identified NET formation as significantly associated with poor IPF survival. Using fully quantitative confirmatory tests for reproducibility we confirmed the presence of NET markers in IPF BALF and found significant correlations with worse pulmonary function in both cohorts (p<0.03 and p = 0.04 respectively). In the survival cohort, higher levels of NET markers predicted worse survival after adjusting for gender, age, and baseline physiologic severity (hazard ratio range: 1.79-2.19). Conclusions NET markers were associated with disease severity and worse survival in IPF. These findings suggest NET formation contributes to lung injury and decreased survival in IPF and may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Scott M. Matson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Linh T. Ngo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Yui Sugawara
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Veani Fernando
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Claudia Lugo
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Imaan Azeem
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alexis Harrison
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Alex Alsup
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Emily Nissen
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Devin Koestler
- Department of Biostatistics & Data Science, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michael P. Washburn
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Michaella J. Rekowski
- Department of Cancer Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Paul J. Wolters
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA
| | - Joyce S. Lee
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA
| | - Joshua J. Solomon
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Hospital, Denver, CO
| | - M. Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Lopez-Oliva I, Malcolm J, Culshaw S. Periodontitis and rheumatoid arthritis-Global efforts to untangle two complex diseases. Periodontol 2000 2024. [PMID: 38411247 DOI: 10.1111/prd.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 02/28/2024]
Abstract
Understanding the impact of oral health on rheumatoid arthritis (RA) will inform how best to manage patients with both periodontitis and RA. This review seeks to provide an update on interventional and mechanistic investigations, including a brief summary of European Research programs investigating the link between periodontitis and RA. Recent clinical studies are described that evaluate how the treatment of one disease impacts on the other, as are studies in both humans and animal models that have sought to identify the potential mechanisms linking the two diseases.
Collapse
Affiliation(s)
- Isabel Lopez-Oliva
- Department of Periodontology, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jennifer Malcolm
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shauna Culshaw
- Oral Sciences, University of Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Immunobiology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Clinic for Periodontology, Endodontology and Cariology, University Center of Dental Medicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
6
|
Cîrciumaru A, Afonso MG, Wähämaa H, Krishnamurthy A, Hansson M, Mathsson-Alm L, Keszei M, Stålesen R, Ottosson L, de Vries C, Shelef MA, Malmström V, Klareskog L, Catrina AI, Grönwall C, Hensvold A, Réthi B. Anti-Citrullinated Protein Antibody Reactivity towards Neutrophil-Derived Antigens: Clonal Diversity and Inter-Individual Variation. Biomolecules 2023; 13:biom13040630. [PMID: 37189377 DOI: 10.3390/biom13040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. Methods: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. Results: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. Conclusions: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.
Collapse
|
7
|
Gajendran C, Fukui S, Sadhu NM, Zainuddin M, Rajagopal S, Gosu R, Gutch S, Fukui S, Sheehy CE, Chu L, Vishwakarma S, Jeyaraj DA, Hallur G, Wagner DD, Sivanandhan D. Alleviation of arthritis through prevention of neutrophil extracellular traps by an orally available inhibitor of protein arginine deiminase 4. Sci Rep 2023; 13:3189. [PMID: 36823444 PMCID: PMC9950073 DOI: 10.1038/s41598-023-30246-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Protein arginine deiminases (PAD) 4 is an enzyme that catalyzes citrullination of protein and its role in autoimmune diseases has been established through clinical genetics and gene knock out studies in mice. Further, studies with PAD4 - deficient mice have shown that PAD4 deficiency does not lead to increased infection or immune suppression, which makes PAD4 an attractive therapeutic target for auto-immune and inflammatory diseases. PAD4 has critical enzymatic role of promoting chromatin decondensation and neutrophil extracellular traps (NETs) formation that is associated with a number of immune-mediated pathological conditions. Here, we present a non-covalent PAD4 inhibitor JBI-589 with high PAD4 isoform selectivity and delineated its binding mode at 2.88 Å resolution by X-ray crystallography. We confirmed its effectiveness in inhibiting NET formation in vitro. Additionally, by using two mouse arthritis models for human rheumatoid arthritis (RA), the well-known disease associated with PAD4 clinically, we established its efficacy in vivo. These results suggest that JBI-589 would be beneficial for both PAD4 and NET-associated pathological conditions.
Collapse
Affiliation(s)
| | - Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | | | | | | | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Saeko Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Casey E Sheehy
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | | | | | | | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02125, USA
| | | |
Collapse
|
8
|
Carlé C, Degboe Y, Ruyssen-Witrand A, Arleevskaya MI, Clavel C, Renaudineau Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. Int J Mol Sci 2023; 24:ijms24054296. [PMID: 36901730 PMCID: PMC10001542 DOI: 10.3390/ijms24054296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
T cells are known to be involved in the pathogenesis of rheumatoid arthritis (RA). Accordingly, and to better understand T cells' contribution to RA, a comprehensive review based on an analysis of the Immune Epitope Database (IEDB) was conducted. An immune CD8+ T cell senescence response is reported in RA and inflammatory diseases, which is driven by active viral antigens from latent viruses and cryptic self-apoptotic peptides. RA-associated pro-inflammatory CD4+ T cells are selected by MHC class II and immunodominant peptides, which are derived from molecular chaperones, host extra-cellular and cellular peptides that could be post-translationally modified (PTM), and bacterial cross-reactive peptides. A large panel of techniques have been used to characterize (auto)reactive T cells and RA-associated peptides with regards to their interaction with the MHC and TCR, capacity to enter the docking site of the shared epitope (DRB1-SE), capacity to induce T cell proliferation, capacity to select T cell subsets (Th1/Th17, Treg), and clinical contribution. Among docking DRB1-SE peptides, those with PTM expand autoreactive and high-affinity CD4+ memory T cells in RA patients with an active disease. Considering original therapeutic options in RA, mutated, or altered peptide ligands (APL) have been developed and are tested in clinical trials.
Collapse
Affiliation(s)
- Caroline Carlé
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yannick Degboe
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Rheumatology Department, Toulouse University Hospital Center, 31300 Toulouse, France
| | | | - Marina I. Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Cyril Clavel
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yves Renaudineau
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Correspondence: ; Tel.: +33-561-776-245
| |
Collapse
|
9
|
Martos R, Tar I, Nagy AC, Csősz É, Kiss C, Márton I. Hypercitrullination and anti-citrullinated protein antibodies in chronic apical periodontitis, a laboratory investigation. Does autoimmunity contribute to the pathogenesis? Int Endod J 2023; 56:584-592. [PMID: 36762960 DOI: 10.1111/iej.13903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
AIM The presence of Gram-negative anaerobic bacteria, in particular, Porphyromonas gingivalis (P. gingivalis) in periapical granulomas predicts the generation of citrullinated proteins in the lesion. Citrullination of proteins may lead to the formation of anti-citrullinated autoantibodies (ACPA-s) initiating the formation of an autoimmune loop which may contribute to the perpetuation of inflammatory reactions and tissue damage in chronic apical periodontitis. The objective of this study was to demonstrate the formation of citrullinated proteins in chronic apical periodontitis and whether they can act as autoantigens. METHODOLOGY Twenty-five periapical granulomas (n = 25) were investigated in the study. Healthy periodontal tissue samples served as normal control tissue (n = 6). The peptidyl-citrulline level was determined with the dot blot method. ACPA levels were analysed using anti-citrullinated cyclic peptide (anti-CCP) EDIA kit. Differences between periapical granuloma and control samples were assessed using Mann-Whitney U tests. p Values <.05 were considered as statistically significant. RESULTS Protein concentrations, peptidyl-citrulline levels and anti-CCP ratios were compared between periapical granuloma and healthy control groups. Multiple linear regression analysis revealed significant (p = .042) hypercitrullination in periapical granuloma samples. Moreover, there was a significant difference in the ACPA ratios between periapical granuloma (2.03 ± 0.30) and healthy control (0.63 ± 0.17) groups (p = .01). Seventeen of 25 periapical granuloma samples (17/25; 68%), whereas one out of six control samples (1/6; 17%) were shown to be positive for the presence of ACPA. CONCLUSIONS This is the first study detecting the presence of citrullinated peptides and APCA in periapical granuloma, suggesting the contribution of autoimmune reactions in the pathogenesis and perpetuation of chronic apical periodontitis.
Collapse
Affiliation(s)
- Renáta Martos
- Department of Operative Dentistry and Endodontics, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Ildikó Tar
- Department of Oral Medicine, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Attila Csaba Nagy
- Department of Health Informatics, Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildikó Márton
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Health Sciences, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
11
|
Koziel J, Potempa J. Pros and cons of causative association between periodontitis and rheumatoid arthritis. Periodontol 2000 2022; 89:83-98. [PMID: 35262966 PMCID: PMC9935644 DOI: 10.1111/prd.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/05/2023]
Abstract
Research in recent decades has brought significant advancements in understanding of the molecular basis of the etiology of autoimmune diseases, including rheumatoid arthritis, a common systemic disease in which an inappropriate or inadequate immune response to environmental challenges leads to joint destruction. Recent studies have indicated that the classical viewpoint of the immunological processes underpinning the pathobiology of rheumatoid arthritis is restricted and needs to be expanded to include a more holistic and interdisciplinary approach incorporating bacteria-induced inflammatory reactions as an important pathway in rheumatoid arthritis etiology. Here, we discuss in detail data showing the clinical and molecular association of rheumatoid arthritis development with periodontal diseases. We also describe the unique role of periopathogens, which have been proposed to be crucial in the initiation and progression of this autoimmune pathological disorder.
Collapse
Affiliation(s)
- Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Sherina N, de Vries C, Kharlamova N, Sippl N, Jiang X, Brynedal B, Kindstedt E, Hansson M, Mathsson-Alm L, Israelsson L, Stålesen R, Saevarsdottir S, Holmdahl R, Hensvold A, Johannsen G, Eriksson K, Sallusto F, Catrina AI, Rönnelid J, Grönwall C, Yucel-Lindberg T, Alfredsson L, Klareskog L, Piccoli L, Malmström V, Amara K, Lundberg K. Antibodies to a Citrullinated Porphyromonas gingivalis Epitope Are Increased in Early Rheumatoid Arthritis, and Can Be Produced by Gingival Tissue B Cells: Implications for a Bacterial Origin in RA Etiology. Front Immunol 2022; 13:804822. [PMID: 35514991 PMCID: PMC9066602 DOI: 10.3389/fimmu.2022.804822] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Based on the epidemiological link between periodontitis and rheumatoid arthritis (RA), and the unique feature of the periodontal bacterium Porphyromonas gingivalis to citrullinate proteins, it has been suggested that production of anti-citrullinated protein antibodies (ACPA), which are present in a majority of RA patients, may be triggered in the gum mucosa. To address this hypothesis, we investigated the antibody response to a citrullinated P. gingivalis peptide in relation to the autoimmune ACPA response in early RA, and examined citrulline-reactivity in monoclonal antibodies derived from human gingival B cells. Antibodies to a citrullinated peptide derived from P. gingivalis (denoted CPP3) and human citrullinated peptides were analyzed by multiplex array in 2,807 RA patients and 372 controls; associations with RA risk factors and clinical features were examined. B cells from inflamed gingival tissue were single-cell sorted, and immunoglobulin (Ig) genes were amplified, sequenced, cloned and expressed (n=63) as recombinant monoclonal antibodies, and assayed for citrulline-reactivities by enzyme-linked immunosorbent assay. Additionally, affinity-purified polyclonal anti-cyclic-citrullinated peptide (CCP2) IgG, and monoclonal antibodies derived from RA blood and synovial fluid B cells (n=175), were screened for CPP3-reactivity. Elevated anti-CPP3 antibody levels were detected in RA (11%), mainly CCP2+ RA, compared to controls (2%), p<0.0001, with a significant association to HLA-DRB1 shared epitope alleles, smoking and baseline pain, but with low correlation to autoimmune ACPA fine-specificities. Monoclonal antibodies derived from gingival B cells showed cross-reactivity between P. gingivalis CPP3 and human citrullinated peptides, and a CPP3+/CCP2+ clone, derived from an RA blood memory B cell, was identified. Our data support the possibility that immunity to P. gingivalis derived citrullinated antigens, triggered in the inflamed gum mucosa, may contribute to the presence of ACPA in RA patients, through mechanisms of molecular mimicry.
Collapse
Affiliation(s)
- Natalia Sherina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Charlotte de Vries
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nastya Kharlamova
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Natalie Sippl
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Xia Jiang
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Boel Brynedal
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elin Kindstedt
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Monika Hansson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, ImmunoDiagnositic Division, Uppsala, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ragnhild Stålesen
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Rikard Holmdahl
- Section for Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Aase Hensvold
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Gunnar Johannsen
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Danakliniken Specialisttandvård, Praktikertjänst AB, Danderyd, Sweden
| | - Kaja Eriksson
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Federica Sallusto
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Anca I Catrina
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tülay Yucel-Lindberg
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Orthodontics and Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre of Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Universita dell a Svizzera Italiana, Bellinzona, Switzerland
| | - Vivianne Malmström
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Khaled Amara
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Abstract
Anti-histone antibodies (AHAs) make their appearance in a number of systemic autoimmune diseases including systemic lupus erythematosus (SLE) and drug-induced lupus erythematosus (DILE). Although being known for over 50 years, they are poorly studied and understood. There is emerging evidence for their use in predicting clinical features of SLE, diversifying their clinical use. AHAs, however, are probably less prevalent in DILE than once thought owing to a move away from older DILE drugs to modern biological agents which do not appear to elicit AHAs. This review examines the historical studies that have defined AHAs and looks at some of the recent work with these autoantibodies.
Collapse
Affiliation(s)
- Adrian Y S Lee
- Department of Immunology, Westmead Hospital, Westmead, Australia.,ICPMR, NSW Health Pathology, Westmead, Australia.,Westmead Clinical School, University of Sydney, Westmead, Australia
| |
Collapse
|
14
|
Maronek M, Gardlik R. The Citrullination-Neutrophil Extracellular Trap Axis in Chronic Diseases. J Innate Immun 2022; 14:393-417. [PMID: 35263752 PMCID: PMC9485962 DOI: 10.1159/000522331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Citrullination of proteins is crucial for the formation of neutrophil extracellular traps (NETs) − strands of nuclear DNA expulsed in the extracellular environment along with antimicrobial proteins in order to halt the spread of pathogens. Paradoxically, NETs may be immunogenic and contribute to inflammation. It is known that for the externalization of DNA, a group of enzymes called peptidyl arginine deiminases (PADs) is required. Current research often looks at citrullination, NET formation, PAD overexpression, and extracellular DNA (ecDNA) accumulation in chronic diseases as separate events. In contrast, we propose that citrullination can be viewed as the primary mechanism of autoimmunity, for instance by the formation of anti-citrullinated protein antibodies (ACPAs) but also as a process contributing to chronic inflammation. Therefore, citrullination could be at the center, connecting and impacting multiple inflammatory diseases in which ACPAs, NETs, or ecDNA have already been documented. In this review, we aimed to highlight the importance of citrullination in the etiopathogenesis of a number of chronic diseases and to explore the diagnostic, prognostic, and therapeutic potential of the citrullination-NET axis.
Collapse
Affiliation(s)
- Martin Maronek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Roman Gardlik
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
15
|
Fukui S, Gutch S, Fukui S, Cherpokova D, Aymonnier K, Sheehy CE, Chu L, Wagner DD. The prominent role of hematopoietic peptidyl arginine deiminase 4 in arthritis: collagen and G-CSF induced arthritis model in C57BL/6 mice. Arthritis Rheumatol 2022; 74:1139-1146. [PMID: 35166055 DOI: 10.1002/art.42093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/15/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Genome-wide association studies have connected PADI4, encoding peptidylarginine deiminase 4 (PAD4), with rheumatoid arthritis (RA). PAD4 promotes neutrophil extracellular trap (NET) formation. We studied Padi4 origin and NETs in an arthritis model in C57BL/6 mice. METHODS To permit the effective use of C57BL/6 mice in the collagen-induced arthritis (CIA) model, we introduced the administration of granulocyte colony-stimulating factor (G-CSF) for four consecutive days in conjunction with the booster immunization on day 21. The model evaluated global (Padi4-/- ) and hematopoietic lineage-specific (Padi4Vav1Cre/+ ) Padi4-deficient mice. RESULTS G-CSF significantly increased the incidence and severity of arthritis in CIA. G-CSF-treated mice showed elevated citrullinated histone H3 (H3Cit) in plasma while vehicle-treated mice did not. Immunofluorescent microscopy revealed deposition of H3Cit in synovial tissue in G-CSF-treated mice. Padi4-/- mice developed less arthritis, demonstrating lower serum interleukin 6 and plasma H3Cit, less citrullinated histone H4 in synovial tissue, and less bone erosion observed by micro-computed tomography than Padi4+/+ mice in the G-CSF-modified CIA model. Similarly, Padi4Vav1Cre/+ mice developed less arthritis compared with Padi4fl/fl mice, and presented the same phenotype as Padi4-/- mice. CONCLUSIONS We succeeded in developing an arthritis model suitable for use in C57BL/6 mice that was fully compliant with high animal welfare standards. We observed an over 90% incidence of arthritis in male mice and detectable NET markers. This model, with some futures consistent with human RA, demonstrates that hematopoietic PAD4 is an important contributor to arthritis development and may prove useful in future RA research.
Collapse
Affiliation(s)
- Shoichi Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Gutch
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Saeko Fukui
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Karen Aymonnier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Casey E Sheehy
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Denisa D Wagner
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02125, USA
| |
Collapse
|
16
|
González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontol 2000 2021; 87:181-203. [PMID: 34463976 DOI: 10.1111/prd.12385] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis and periodontitis are chronic inflammatory diseases defined respectively by the destruction of the articular cartilage and tooth-supporting periodontal tissues. Although the epidemiologic evidence for an association between these two diseases is still scarce, there is emerging scientific information linking specific bacterial periodontal pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, in the citrullination process, leading to autoantibody formation and compromised immunotolerance of the susceptible patient to rheumatoid arthritis. In this review, we update the existing information on the evidence, not only regarding the epidemiologic association, but also the biologic mechanisms linking these two diseases. Finally, we review information emerging from intervention studies evaluating whether periodontal treatment could influence the initiation and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Jerián González-Febles
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
17
|
Okamoto Y, Devoe S, Seto N, Minarchick V, Wilson T, Rothfuss HM, Mohning MP, Arbet J, Kroehl M, Visser A, August J, Thomas SM, Lenis Charry L, Fleischer C, Feser ML, Frazer-Abel AA, Norris JM, Cherrington BD, Janssen WJ, Kaplan MJ, Deane KD, Holers VM, Demoruelle MK. Sputum Neutrophil Extracellular Trap Subsets Associate with IgA Anti-Citrullinated Protein Antibodies in Subjects At-Risk for Rheumatoid Arthritis. Arthritis Rheumatol 2021; 74:38-48. [PMID: 34369110 PMCID: PMC8712364 DOI: 10.1002/art.41948] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 08/03/2021] [Indexed: 11/06/2022]
Abstract
Objective Mechanisms leading to anti–citrullinated protein antibody (ACPA) generation in rheumatoid arthritis (RA) are hypothesized to originate in the lung. We undertook this study to understand associations between neutrophil extracellular trap (NET) formation in the lung and local ACPA generation in subjects at risk of developing RA. Methods Induced sputum was collected from 49 subjects at risk of developing RA, 12 patients with RA, and 18 controls. Sputum neutrophils were tested for ex vivo NET formation, and sputum‐induced NET formation of control neutrophils was measured using immunofluorescence imaging. Sputum macrophages were tested for ex vivo endocytosis of apoptotic and opsonized cells. Levels of ACPA, NET remnants, and inflammatory proteins were quantified in sputum supernatant. Results Spontaneous citrullinated histone H3 (Cit‐H3)–expressing NET formation was higher in sputum neutrophils from at‐risk subjects and RA patients compared to controls (median 12%, 22%, and 0%, respectively; P < 0.01). In at‐risk subjects, sputum IgA ACPA correlated with the percentage of neutrophils that underwent Cit‐H3+ NET formation (r = 0.49, P = 0.002) and levels of Cit‐H3+ NET remnants (r = 0.70, P < 0.001). Reduced endocytic capacity of sputum macrophages was found in at‐risk subjects and RA patients compared to controls. Using a mediation model, we found that sputum inflammatory proteins were associated with sputum IgA ACPA through a pathway mediated by Cit‐H3+ NET remnants. Sputum‐induced Cit‐H3+ NET formation also correlated with sputum levels of interleukin‐1β (IL‐1β), IL‐6, and tumor necrosis factor in at‐risk subjects, suggesting a causal relationship. Conclusion These data support a potential mechanism for mucosal ACPA generation in subjects at risk of developing RA, whereby inflammation leads to increased citrullinated protein–expressing NETs that promote local ACPA generation.
Collapse
Affiliation(s)
- Yuko Okamoto
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA.,Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan
| | - Stephanie Devoe
- University of Colorado Denver, Department of Immunology, Aurora, CO, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Valerie Minarchick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Timothy Wilson
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Heather M Rothfuss
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - Michael P Mohning
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Jaron Arbet
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Miranda Kroehl
- University of Colorado Denver, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Stacey M Thomas
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie L Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Brian D Cherrington
- University of Wyoming, Department of Zoology and Physiology, Laramie, WY, USA
| | - William J Janssen
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | |
Collapse
|
18
|
Yang ML, Sodré FMC, Mamula MJ, Overbergh L. Citrullination and PAD Enzyme Biology in Type 1 Diabetes - Regulators of Inflammation, Autoimmunity, and Pathology. Front Immunol 2021; 12:678953. [PMID: 34140951 PMCID: PMC8204103 DOI: 10.3389/fimmu.2021.678953] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Fernanda M C Sodré
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| | - Mark J Mamula
- Section of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Lut Overbergh
- Department of Chronic Diseases, Metabolism and Ageing, Laboratory of Clinical and Experimental Endocrinology (CEE), KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
20
|
Akkaya HÜ, Yılmaz HE, Narin F, Sağlam M. Evaluation of galectin-3, peptidylarginine deiminase-4 and tumor necrosis factor-α levels in gingival crevicular fluid for periodontal health, gingivitis and stage III grade C periodontitis: A pilot study. J Periodontol 2021; 93:80-88. [PMID: 33913157 DOI: 10.1002/jper.21-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Comparing the gingival crevicular fluid (GCF) levels of galectin-3, peptidylarginine deiminase 4 (PAD4) and tumor necrosis factor-alpha (TNF-α) in individuals with stage III grade C periodontitis and gingivitis and with healthy periodontium was the purpose of this clinical research. METHODS Sixty systemically healthy and non-smoker individuals consisting of stage III grade C periodontitis (group S3P/n = 20), gingivitis (group G/n = 20), and periodontally healthy (group HP/n = 20) were recruited for this research. Clinical parameters such as probing depth, clinical attachment level, gingival index, plaque index, and bleeding on probing were recorded in periodontal charts. Enzyme-linked immunosorbent assay method was used in evaluating the GCF levels of galectin-3, PAD4, and TNF-α for study groups. RESULTS The GCF galectin-3 total amount was highest in group S3P compared with group G and group HP (P <0.05). Its total amount was also higher in group G compared with group HP (P <0.05). The GCF PAD4 total amount was higher in group S3P compared with group HP (P <0.05) but was similar with group G (P >0.05). Its total amounts were also similar in group G and group HP (P >0.05). The GCF TNF-α total amounts were similar in group S3P and group G (P >0.05) but significantly greater than the group HP (P ˂0.05). The GCF galectin-3, PAD4, and TNF-α concentrations were lower in the group S3P and group G compared with the group HP (P <0.05). There were significant positive correlations between GCF galectin-3 total amount and all clinical parameters (P ˂0.01) and also between GCF galectin-3 and TNF-α total amounts (P ˂0.01). There was no correlation between PAD4 and clinical parameters, or between PAD4 and TNF-α (P >0.05). CONCLUSIONS Galectin-3 and PAD4 may be involved in the periodontal disease pathogenesis considering the elevated levels of these molecules in periodontal disease. These biomarkers may be used in the diagnosis of periodontal diseases.
Collapse
Affiliation(s)
- Hazal Üstünel Akkaya
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| | - Huriye Erbak Yılmaz
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey.,Dokuz Eylül University Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Figen Narin
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
21
|
Abstract
Rheumatoid arthritis is a chronic, autoimmune connective tissue disease. In addition to joint involvement, extra-articular changes and organ complications also occur in the course of the disease. Untreated disease leads to disability and premature death. Therefore, it is important to recognise and begin treatment early. Based on the presence of rheumatoid factor and antibodies against citrullinated peptides, we can distinguish two forms of the disease: seropositive and seronegative. Research continues to elucidate the mechanisms of the onset of the disease, as well as to uncover factors that induce and influence the activity of the disease. The presence of markers that initially appear and affect the course of the disease can potentially aid in patient treatment. In this article, we have collected biomarkers of rheumatoid arthritis that are well understood as well as those that have been recently described.
Collapse
Affiliation(s)
- Bogdan Kolarz
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Dominika Podgorska
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Rafal Podgorski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
22
|
Inhibition of Cathepsin K Alleviates Autophagy-Related Inflammation in Periodontitis-Aggravating Arthritis. Infect Immun 2020; 88:IAI.00498-20. [PMID: 32900814 DOI: 10.1128/iai.00498-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis share many epidemiological and pathological features, with emerging studies reporting a relationship between the two diseases. Recently, RA and periodontitis have been associated with autophagy. In the present study, we investigated the effects of cathepsin K (CtsK) inhibition on RA with periodontitis in a mouse model and its immunological function affecting autophagy. To topically inhibit CtsK periodontitis with arthritis in the animal model, adeno-associated virus (AAV) transfection was performed in periodontal and knee joint regions. Transfection of small interfering RNA (siRNA) was performed to inhibit CtsK in RAW264.7 cells. The effects of CtsK inhibition on the autophagy pathway were then evaluated in both in vivo and in vitro experiments. RA and periodontitis aggravated destruction and inflammation in their respective lesion areas. Inhibition of CtsK had multiple effects: (i) reduced destruction of alveolar bone and articular tissue, (ii) decreased macrophage numbers and inflammatory cytokine expression in the synovium, and (iii) alleviated expression of the autophagy-related transcription factor EB (TFEB) and microtubule-associated protein 1A/1B-light chain 3 (LC3) at the protein level in knee joints. Inhibition of CtsK in vitro reduced the expression of autophagy-related proteins and related inflammatory factors. Our data revealed that the inhibition of CtsK resisted the destruction of articular tissues and relieved inflammation from RA with periodontitis. Furthermore, CtsK was implicated as an imperative regulator of the autophagy pathway in RA and macrophages.
Collapse
|
23
|
Lee YH, Baharuddin NA, Chan SW, Rahman MT, Bartold PM, Sockalingam S, Vaithilingam RD. Localisation of citrullinated and carbamylated proteins in inflamed gingival tissues from rheumatoid arthritis patients. Clin Oral Investig 2020; 25:1441-1450. [PMID: 32656595 DOI: 10.1007/s00784-020-03452-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES It has been proposed that citrullination and carbamylation occur in the inflamed periodontium and could be the plausible mechanisms for the generation of antigens involved in the development and progression of RA. The purpose of this study was to determine the presence and location of citrullinated and carbamylated proteins in the gingival tissues and compare their abundance in periodontitis (PD) patients with or without RA. MATERIALS AND METHODS Gingival tissue samples of healthy (n = 5), PD with RA (n = 5) and PD without RA (n = 5) were collected. Specimens were formalin fixed, paraffin embedded and sectioned at 4 μm. The tissue sections were analysed for the presence of citrullinated and carbamylated proteins by immunohistochemistry. Semi-quantitative analysis was performed to quantify and compare the protein abundance between groups. RESULTS The number of cells containing citrullinated and carbamylated proteins with higher intensity was markedly increased in gingival tissues from PD with or without RA in comparison with healthy controls. CONCLUSION Inflamed gingival tissue is a potential source of citrullinated and carbamylated proteins other than synovial tissues. The extent to which the local accumulation of these proteins contributes to the pathogenesis of RA needs further elucidation. CLINICAL RELEVANCE If PD is a potential source of post-translationally modified proteins, untreated PD should not be taken lightly in the context of RA. Hence, addressing gingival inflammation should be viewed as an important preventive measure in the general population not only for the progression of periodontal disease but also reducing the risk of developing extra-oral comorbidities.
Collapse
Affiliation(s)
- Yin Hui Lee
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nor Adinar Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siew Wui Chan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - P Mark Bartold
- Department of Dentistry, University of Adelaide, Adelaide, Australia
| | - Sargunan Sockalingam
- Department of Rheumatology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rathna Devi Vaithilingam
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Bartold PM, Lopez‐Oliva I. Periodontitis and rheumatoid arthritis: An update 2012‐2017. Periodontol 2000 2020; 83:189-212. [DOI: 10.1111/prd.12300] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Mark Bartold
- Department of Dentistry University of Adelaide Adelaide South Australia Australia
| | | |
Collapse
|
25
|
Maldonado A, Pirracchio L, Imber JC, Bürgin W, Möller B, Sculean A, Eick S. Citrullination in periodontium is associated with Porphyromonas gingivalis. Arch Oral Biol 2020; 114:104695. [PMID: 32315811 DOI: 10.1016/j.archoralbio.2020.104695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/19/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To analyse the citrulline level in the periodontium in association with the presence of or antibody levels against Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis. DESIGN Gingival crevicular fluid (GCF), subgingival biofilm and blood serum were sampled from 98 subjects (26 with RA, 72 without RA (NoRA)). GCF was analyzed for the level of citrulline, for interleukin (IL)-1β, IL-17, IL-10 and monocyte-chemoattractant protein (MCP)-1. Microorganisms were identified in subgingival biofilms. Antibodies againstP. gingivalis, and Aggregatibacter actinomycetemcomitans were quantified in serum. RESULTS GCF citrulline level was the lowest (by trend) in NoRA group without periodontitis. In NoRA, but not in RA an association between GCF citrulline level and P. gingivalis antibody levels was found and the GCF citrulline levels were higher in P. gingivalis positive samples. Any association of A. actinomycetemcomitans with GCF citrulline level did not exist. A model of univariate variance analysis (p = 0.001) showed a dependence of GCF citrulline level from the number of sites with PD (probing depth) ≥5 mm (p = 0.003) and the GCF MCP-1/CCL2 level (p = 0.019). Compared with NoRA in RA the number of teeth was lower, the number of sites with PD ≥ 5 mm was less, GCF levels of interleukin-17 and MCP-1/CCL2 were higher and those of IL-10 lower. Yeasts were only cultured in 15 RA patients (p < 0.001). CONCLUSION Citrullination in periodontium might be associated with P. gingivalis supporting the potential role as a trigger in the development of RA. Pathogenesis of periodontal disease in RA patients seems to differ from that in NoRA and should be investigated further.
Collapse
Affiliation(s)
- Alejandra Maldonado
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland.
| | - Luca Pirracchio
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Jean-Claude Imber
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Walter Bürgin
- Ressort Research, University of Bern, School of Dental Medicine, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Burkhard Möller
- Clinic of Rheumatology, Immunology and Allergology, University Hospital Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| | - Sigrun Eick
- Department of Periodontology, University of Bern, School of Dental Medicine, Switzerland
| |
Collapse
|
26
|
Pathological consequences of anti-citrullinated protein antibodies in tear fluid and therapeutic potential of pooled human immune globulin-eye drops in dry eye disease. Ocul Surf 2019; 18:80-97. [PMID: 31606460 DOI: 10.1016/j.jtos.2019.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate the role of Anti-Citrullinated Protein autoantibodies (ACPAs) in the pathology of dry eye disease (DED) and the therapeutic potential of pooled human immune globulin-eye drops in these patients. METHODS We investigated the presence of citrullinated proteins and ACPAs in ocular surface wash (OSW) and conjunctival impressions from patients with DED and determined the pathological consequences of OSW with high ACPA using in vitro experiments and in vivo murine models. We performed a randomized, double-masked, pilot clinical trial to determine the safety, tolerability and preliminary efficacy of using pooled human immune globulin-eye drops to treat DED patients with ACPAs in OSW. RESULTS We found that neutrophils are a source of citrullinated proteins on the ocular surface of DED patients. We detected significantly higher immunoglobulin amount and presence of several species of ACPAs in OSW from DED patients. We also found that OSW with high ACPA contributes to production of NETs, and that ACPAs cause ocular surface disease in murine eyes, both of which are reduced with addition of Immune globulins. As compared to Vehicle treatment, pooled human immune globulin-eye drops (IVIG 4 mg/mL) twice a day for 8 weeks caused significant reduction in signs and symptoms of DED with no difference in tolerability or adverse events. CONCLUSIONS This is the first report demonstrating ACPAs in OSW of DED patients and their contribution to ocular surface disease. The first-in-human clinical trial suggests that pooled immune globulin-eye drops are a potential new class of biologic therapies for Dry Eye patients.
Collapse
|
27
|
Ceccarelli F, Saccucci M, Di Carlo G, Lucchetti R, Pilloni A, Pranno N, Luzzi V, Valesini G, Polimeni A. Periodontitis and Rheumatoid Arthritis: The Same Inflammatory Mediators? Mediators Inflamm 2019; 2019:6034546. [PMID: 31191116 PMCID: PMC6525860 DOI: 10.1155/2019/6034546] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
The strict link between periodontitis (PD) and rheumatoid arthritis (RA) has been widely demonstrated by several studies. PD is significantly more frequent in RA patients in comparison with healthy subjects: this prevalence is higher in individuals at the earliest stages of disease and in seropositive patients. This is probably related to the role of P. gingivalis in inducing citrullination and leading to the development of the new antigens. Despite the many studies conducted on this topic, there is very little data available concerning the possibility to use the same biomarkers to evaluate both RA and PD patients. The aim of the review is to summarize this issue. Starting from genetic factors, data from literature demonstrated the association between HLA-DRB1 alleles and PD susceptibility, similar to RA patients; moreover, SE-positive patients showed simultaneously structural damage to the wrist and periodontal sites. Contrasting results are available concerning other genetic polymorphisms. Moreover, the possible role of proinflammatory cytokines, such as TNF and IL6 and autoantibodies, specifically anticyclic citrullinated peptide antibodies, has been examined, suggesting the need to perform further studies to better define this issue.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Matteo Saccucci
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Gabriele Di Carlo
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Ramona Lucchetti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Nicola Pranno
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Valeria Luzzi
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| |
Collapse
|
28
|
Discovery of Novel Potential Reversible Peptidyl Arginine Deiminase Inhibitor. Int J Mol Sci 2019; 20:ijms20092174. [PMID: 31052493 PMCID: PMC6539144 DOI: 10.3390/ijms20092174] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/25/2022] Open
Abstract
Citrullination, a posttranslational modification, is catalyzed by peptidylarginine deiminases (PADs), a unique family of enzymes that converts peptidyl-arginine to peptidyl-citrulline. Overexpression and/or increased PAD activity is observed in rheumatoid arthritis (RA), Alzheimer’s disease, multiple sclerosis, and cancer. Moreover, bacterial PADs, such as Porphyromonas gingivalis PAD (PPAD), may have a role in the pathogenesis of RA, indicating PADs as promising therapeutic targets. Herein, six novel compounds were examined as potential inhibitors of human PAD4 and PPAD, and compared to an irreversible PAD inhibitor, Cl-amidine. Four of the tested compounds (compounds 2, 3, 4, and 6) exhibited a micromolar-range inhibition potency against PAD4 and no effect against PPAD in the in vitro assays. Compound 4 was able to inhibit the PAD4-induced citrullination of H3 histone with higher efficiency than Cl-amidine. In conclusion, compound 4 was highly effective and presents a promising direction in the search for novel RA treatment strategies.
Collapse
|
29
|
Abstract
The present literature review on periodontal complications in aging focuses on the diagnosis, etiology and development of periodontal complications as a complete entity. In addition, the review also focuses on some of the common systemic diseases that either may further add to periodontal complications or, as result of anti-inflammatory treatment, limit the expression of periodontal disease. There is no evidence to suggest that clinical methods to provide periodontal therapies have been developed especially for older individuals. There is evidence that aging can be associated with periodontally healthy conditions through life and with a high level of tooth retention and function. Periodontal complications that are difficult to manage are usually associated with concurrent medical diseases and complications, or with socio-economic factors that limit the ability to provide dental care for the aging population. Currently, some systemic medical conditions are managed with anti-inflammatory medications with positive effects, while slowing the progression and expression of chronic periodontitis. The lack of data from clinical studies on how to manage periodontal complications in aging is obvious.
Collapse
Affiliation(s)
- Goesta Rutger Persson
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Vitkov L, Hannig M, Minnich B, Herrmann M. Periodontal sources of citrullinated antigens and TLR agonists related to RA. Autoimmunity 2018; 51:304-309. [DOI: 10.1080/08916934.2018.1527907] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ljubomir Vitkov
- Department of Biosciences Vascular & Exercise Biology Unit, University of Salzburg, Salzburg, Austria
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Bernd Minnich
- Department of Biosciences Vascular & Exercise Biology Unit, University of Salzburg, Salzburg, Austria
| | - Martin Herrmann
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
31
|
Stobernack T, du Teil Espina M, Mulder LM, Palma Medina LM, Piebenga DR, Gabarrini G, Zhao X, Janssen KMJ, Hulzebos J, Brouwer E, Sura T, Becher D, van Winkelhoff AJ, Götz F, Otto A, Westra J, van Dijl JM. A Secreted Bacterial Peptidylarginine Deiminase Can Neutralize Human Innate Immune Defenses. mBio 2018; 9:mBio.01704-18. [PMID: 30377277 PMCID: PMC6212822 DOI: 10.1128/mbio.01704-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The keystone oral pathogen Porphyromonas gingivalis is associated with severe periodontitis. Intriguingly, this bacterium is known to secrete large amounts of an enzyme that converts peptidylarginine into citrulline residues. The present study was aimed at identifying possible functions of this citrullinating enzyme, named Porphyromonas peptidylarginine deiminase (PPAD), in the periodontal environment. The results show that PPAD is detectable in the gingiva of patients with periodontitis, and that it literally neutralizes human innate immune defenses at three distinct levels, namely bacterial phagocytosis, capture in neutrophil extracellular traps (NETs), and killing by the lysozyme-derived cationic antimicrobial peptide LP9. As shown by mass spectrometry, exposure of neutrophils to PPAD-proficient bacteria reduces the levels of neutrophil proteins involved in phagocytosis and the bactericidal histone H2. Further, PPAD is shown to citrullinate the histone H3, thereby facilitating the bacterial escape from NETs. Last, PPAD is shown to citrullinate LP9, thereby restricting its antimicrobial activity. The importance of PPAD for immune evasion is corroborated in the infection model Galleria mellonella, which only possesses an innate immune system. Together, the present observations show that PPAD-catalyzed protein citrullination defuses innate immune responses in the oral cavity, and that the citrullinating enzyme of P. gingivalis represents a new type of bacterial immune evasion factor.IMPORTANCE Bacterial pathogens do not only succeed in breaking the barriers that protect humans from infection, but they also manage to evade insults from the human immune system. The importance of the present study resides in the fact that protein citrullination is shown to represent a new bacterial mechanism for immune evasion. In particular, the oral pathogen P. gingivalis employs this mechanism to defuse innate immune responses by secreting a protein-citrullinating enzyme. Of note, this finding impacts not only the global health problem of periodontitis, but it also extends to the prevalent autoimmune disease rheumatoid arthritis, which has been strongly associated with periodontitis, PPAD activity, and loss of tolerance against citrullinated proteins, such as the histone H3.
Collapse
Affiliation(s)
- Tim Stobernack
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marines du Teil Espina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lianne M Mulder
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dillon R Piebenga
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Giorgio Gabarrini
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Periodontology, University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Groningen, The Netherlands
| | - Xin Zhao
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen M J Janssen
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jarnick Hulzebos
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas Sura
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Arie Jan van Winkelhoff
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Periodontology, University of Groningen, University Medical Center Groningen, Center for Dentistry and Oral Hygiene, Groningen, The Netherlands
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Andreas Otto
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Vitkov L, Hartl D, Minnich B, Hannig M. Janus-Faced Neutrophil Extracellular Traps in Periodontitis. Front Immunol 2017; 8:1404. [PMID: 29123528 PMCID: PMC5662558 DOI: 10.3389/fimmu.2017.01404] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Periodontitis is characterized by PMN infiltration and formation of neutrophil extracellular traps (NETs). However, their functional role for periodontal health remains complex and partially understood. The main function of NETs appears to be evacuation of dental plaque pathogen-associated molecular patterns. The inability to produce NETs is concomitant with aggressive periodontitis. But in cases with exaggerated NET production, NETs are unable to maintain periodontal health and bystander damages occur. This pathology can be also demonstrated in animal models using lipopolysaccharide as PMN activator. The progress of periodontitis appears to be a consequence of the formation of gingival pockets obstructing the evacuation of both pathogen-associated and damage-associated molecular patterns, which are responsible for the self-perpetuation of inflammation. Thus, besides the pathogenic effects of the periodontal bacteria, the dysregulation of PMN activation appears to play a main role in the periodontal pathology. Consequently, modulation of PMN activation might be a useful approach to periodontal therapy.
Collapse
Affiliation(s)
- Ljubomir Vitkov
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria.,Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Dominik Hartl
- Department of Paediatrics, Paediatric Infectiology, Immunology and Cystic Fibrosis, Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Bernd Minnich
- Department of Cell Biology and Physiology, Division of Animal Structure and Function, University of Salzburg, Salzburg, Austria
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat Rev Rheumatol 2017; 13:606-620. [DOI: 10.1038/nrrheum.2017.132] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|