1
|
Huo P, Deng L, Lu J, Kan P, Jing R, Luo LJ. The impact of Limosilactobacillus reuteri in combination with non-surgical periodontal therapy on periodontal clinical parameters and salivary and subgingival microbiota composition in individuals with stage III-IV periodontitis: a randomized controlled trial. BMC Oral Health 2025; 25:759. [PMID: 40405209 PMCID: PMC12096711 DOI: 10.1186/s12903-025-06084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/29/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND The clinical and microbiological outcomes of probiotic-assisted periodontal therapy remain inconclusive in prior research. This ambiguity may stem from uncertainties regarding the duration, dosage, and administration route of probiotics. Additionally, earlier studies predominantly concentrated on the identification of individual bacterial species, thereby limiting the ability to thoroughly elucidate the intricate composition of microbial communities and the synergistic or antagonistic interactions among their constituents. The study aimed to investigate the effect of combining probiotics with non-surgical periodontal therapy on clinical and microbiota changes in patients with stage III-IV periodontitis. METHODS A total of 40 patients were randomized into two groups to receive non-surgical periodontal treatment. The test group received Limosilactobacillus reuteri for 21 days along with treatment. Periodontal indicators were examined at baseline and 1 and 6 months after treatment. Saliva and subgingival biofilm samples were collected for 16 S rRNA gene sequencing analysis. RESULTS After treatment, both groups showed significant improvements in clinical parameters. In the test group, attachment loss and the medium pocket were significantly reduced at 6 months compared to that at 1 month. The presence of Tannerella forsythia in subgingival biofilms decreased significantly in the test group after treatment. Among salivary microorganisms, the abundance of Prevotella nanceiensis significantly increased in both groups, while that of Streptococcussp. was significantly reduced in the control group. Linear discriminant analysis indicated that the most significant distinction between the groups was observed in the subgingival biofilm samples 1 month after treatment. CONCLUSIONS Combining L. reuteri with non-surgical periodontal therapy may not directly improve clinical indicators. The treatment showed potential benefits by changing the microbial composition of subgingival biofilm and enhancing treatment sensitivity. TRIAL REGISTRATION The trial was approved by the Chinese Clinical Trial Registry (ChiCTR) on March 25, 2021, with registration number ChiCTR2100044638.
Collapse
Affiliation(s)
- Pengcheng Huo
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Li Deng
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Jiawei Lu
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Powen Kan
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Rui Jing
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China
| | - Li-Jun Luo
- Department of Periodontics, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Stomatological Hospital and Dental School of Tongji University, 399 Yanchangzhong Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
2
|
Benavides-Reyes C, Cabello I, Magán-Fernández A, Rodríguez-Barranco M, Usta SN, Mesa F. Clinical effects of probiotics on the treatment of gingivitis and periodontitis: a systematic review and meta-analysis. BMC Oral Health 2025; 25:490. [PMID: 40186219 PMCID: PMC11971800 DOI: 10.1186/s12903-025-05888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
AIMS This study aimed to evaluate the impact of probiotics as an adjunct to periodontal therapy on clinical outcomes in patients with gingivitis and periodontitis through a meta-analysis of available evidence. MATERIALS AND METHODS A detailed bibliographic search on four databases (PubMed, Scopus, Cochrane and EMBASE) was conducted with a language restriction. The collected data were assessed according to the predefined eligibility criteria and randomized clinical trials reporting the effects of probiotics on plaque index (PI), bleeding on probing (BOP) and pocket probing depth (PPD) compared to control or placebo groups were selected and analysed. The risk of bias assessment was conducted using SYRCLE's RoB- 2 tool. The GRADEpro tool was used to determine the overall quality of evidence. RESULTS Twenty-four studies (10 about gingivitis and 14 about periodontitis) were included in the meta-analysis. In the gingivitis studies, lower but non-significant PI and BOP were found in the probiotic group. In periodontitis, lower PI (95%-CI [- 0.54; - 0.15], p = 0.001) were reported in the probiotic group, and this difference was greater in studies with longer follow-up. Lower BOP (95%-CI [- 0.58; - 0.05], p = 0.021) was also reported, but this difference was only significant in studies with a shorter follow-up (95%-CI [- 0.86; - 0.11], p = 0.012). Meta-analysis for PPD showed lower, but non-significant, values (95%-CI [- 0.53; + 0.03], p = 0.077). However, this difference became significant when assessing studies with shorter follow-up (95% CI [- 0.77; - 0.07], p = 0.019). CONCLUSIONS The meta-analysis provides evidence suggested that probiotics can serve as a beneficial adjunct to periodontal treatment in patients with periodontitis, particularly in improving clinical outcomes such as plaque index and bleeding on probing. The results from gingivitis studies highlight the need for further investigation to better understand the impact of probiotics in the early stages of periodontal disease. These findings emphasize the importance of future research with standardized protocols and longer follow-up periods to confirm and expand on the clinical utility of probiotics in periodontal therapy.
Collapse
Affiliation(s)
- Cristina Benavides-Reyes
- Department of Operative Dentistry, School of Dentistry, University of Granada, Granada, 18071, Spain
| | - Inmaculada Cabello
- Department of Integral Paediatric Dentistry, School of Dentistry, University of Granada, Granada, 18071, Spain.
| | - Antonio Magán-Fernández
- Department of Periodontics, School of Dentistry, University of Granada, Granada, 18071, Spain
| | - Miguel Rodríguez-Barranco
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, 28028, Spain
- Andalusian School of Public Health (EASP), Granada, 18011, Spain
- Instituto de Investigación Biosanitaria Ibs.GRANADA, 18012, Granada, Spain
| | - Sıla Nur Usta
- Department of Endodontics, Gulhane Faculty of Dentistry, University of Health Sciences, Ankara, Etlik, Keçiören, 06018, Turkey
| | - Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, Granada, 18071, Spain
| |
Collapse
|
3
|
O'Donnell R, Holliday R, Jakubovics N, Benfield E. Methods used to deliver adjunctive probiotic treatment during the non-surgical management of periodontitis: A scoping review. J Dent 2025; 155:105623. [PMID: 39952549 DOI: 10.1016/j.jdent.2025.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVE To identify which methods have been used to deliver adjunctive probiotics during the non-surgical management of periodontitis in clinical trials. This review also investigates which probiotics have been used and at what dose, along with the periodontal treatment outcomes achieved. DATA Conducted in accordance with the Joanna Briggs Institute methodology for scoping reviews. SOURCES MEDLINE, Embase, Web of Science, and Scopus were searched on 02/02/2024 from inception with no date limits applied. STUDY SELECTION Clinical trials investigating the use of probiotics as an adjunctive treatment to non-surgical periodontal therapy in humans. CONCLUSIONS Out of 4769 studies 66 met the inclusion criteria. Over 30 different probiotics were identified along with 18 different delivery methods with varying dosages and duration. 48 of the included studies reported a beneficial effect when a probiotic was used, 14 reported no difference, 3 found the outcomes comparable to the use of antibiotics, and 1 study reported a better outcome from the control group. The probiotic used, its dosage, delivery method, duration of application, and outcome measures differ across studies making it difficult to draw conclusions on their efficacy. This scoping review highlights the need for further research to establish a uniform treatment protocol and to identify the most effective probiotic bacteria. CLINICAL SIGNIFICANCE Despite the majority of included studies indicating a potential benefit from the use of probiotics during the non-surgical management of periodontitis, the high level of heterogeneity between interventions they currently cannot be recommended for use in clinical practice.
Collapse
Affiliation(s)
- Ryan O'Donnell
- Newcastle University School of Dental Sciences, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK. Ryan.O'
| | - Richard Holliday
- Newcastle University School of Dental Sciences, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| | - Nick Jakubovics
- Newcastle University School of Dental Sciences, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| | - Ellie Benfield
- Newcastle University School of Dental Sciences, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| |
Collapse
|
4
|
Baddouri L, Hannig M. Probiotics as an adjunctive therapy in periodontitis treatment-reality or illusion-a clinical perspective. NPJ Biofilms Microbiomes 2024; 10:148. [PMID: 39681550 DOI: 10.1038/s41522-024-00614-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis, a prevalent oral health issue, involves various microorganisms and clinical effects. This review examines probiotics as adjunctive therapy for periodontitis by analyzing forty clinical studies. Findings showed mixed results due to differences in study design, probiotic types, and clinical parameters; however, probiotics improved outcomes in severe cases. Caution is advised when interpreting these results, as longer follow-up periods reveal variability and potential regression in effects.
Collapse
Affiliation(s)
- Lamyae Baddouri
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
- Pharmacy, Saarland University, Saarbrucken, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany.
| |
Collapse
|
5
|
Abdul NS, Odeh LG, Alenazi AA, Alzahrani JA, Almutib AT, Soman C. Probiotics in the Prevention and Treatment of Periodontal Diseases: A Systematic Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S3302-S3307. [PMID: 39927018 PMCID: PMC11804984 DOI: 10.4103/jpbs.jpbs_681_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 06/20/2024] [Accepted: 07/15/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Periodontal diseases (PDs) pose a significant challenge to dental health, leading to a growing interest in probiotics as potential therapeutic and prophylactic agents. Literature evidence has shown conflicting results on the use of probiotics in the management of PDs. Hence, this systematic review was performed to explore the effectiveness of probiotics in both the prevention and treatment of PDs by synthesizing data from relevant studies. Methodology Various databases were searched using appropriate MeSH keywords as per the PRISMA protocol. Studies were included only if they met certain criteria. Two reviewers independently extracted data variables from the included literature. The risk of bias 2.0 tool was employed to assess the methodological quality of the included studies. Results In total, 21 studies were considered eligible and included in the review. It was observed that 17 studies reported a statistically significant improvement in both periodontitis and gingivitis among the probiotic group compared to control cohorts. The synthesized evidence from the review suggests that probiotics play a favourable role in both the prevention and treatment of PDs. Conclusion It also supports the incorporation of probiotics as a potential adjunctive therapy in PD management. However, further research is warranted to explore the specific probiotic strains, dosages, and treatment durations for optimized outcomes.
Collapse
Affiliation(s)
- Nishath Sayed Abdul
- Faculty of Oral Pathology, Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Lara Ghassan Odeh
- Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Asma Awadh Alenazi
- Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Jumana Abdullah Alzahrani
- Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Aldanah Tawfiq Almutib
- Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| | - Cristalle Soman
- Faculty of Oral Medicine and Maxillofacial Radiology, Department of OMFS and Diagnostic Sciences, College of Medicine and Dentistry, Riyadh Elm University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
7
|
Wei X, Qian S, Yang Y, Mo J. Microbiome-based therapies for periodontitis and peri-implantitis. Oral Dis 2024; 30:2838-2857. [PMID: 37890080 DOI: 10.1111/odi.14782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/16/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
OBJECTIVES Periodontitis and peri-implantitis are oral infectious-inflammatory diseases associated with oral microbial dysbiosis. Microbiome-based therapies, characterized by manipulation of the microbiota, are emerging as promising therapeutic approaches to resolve the microbial dysbiosis and associated dysregulation of immune system. This review aims at summarizing recent progress on microbiome-based therapies in periodontitis and peri-implantitis, promoting a further understanding of the related therapeutic mechanisms. SUBJECTS AND METHODS Pertinent literatures focused on microbiome-based therapies for periodontitis and peri-implantitis are obtained from PubMed and Web of Science. RESULTS In this article, we review the roles and therapeutic mechanisms of four microbiome-based therapies, including probiotics, postbiotics, predatory bacteria and phages, and microbiota transplantation, in the management of periodontitis and peri-implantitis. Challenges facing this field are also discussed, highlighting the areas that require more attention and investigation. CONCLUSIONS Microbiome-based therapies may serve as effective treatment for periodontitis and peri-implantitis. This review presents a new viewpoint to this field.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujiao Qian
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yijie Yang
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaji Mo
- Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Beattie RE. Probiotics for oral health: a critical evaluation of bacterial strains. Front Microbiol 2024; 15:1430810. [PMID: 38979537 PMCID: PMC11228166 DOI: 10.3389/fmicb.2024.1430810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Oral health is critical for total body health and well-being; however, little improvement in oral health status has occurred in the U.S. over the past 20 years. Tooth decay and gum disease remain highly prevalent, with more than 90% and 50% of adults suffering from these conditions, respectively. To combat this lack of improvement, alternative approaches to dental care are now being suggested. One such alternative therapy is probiotics for oral care. In the oral cavity, probiotic strains have been shown to reduce levels of oral pathogens, inhibit the formation of dental caries, and reduce the levels of bacteria that cause halitosis. However, as the oral care probiotic market expands, many products contain bacterial species and strains with no documented health benefits leading to confusion and mistrust among consumers and clinicians. This confusion is enhanced by the regulatory status of probiotic products which puts the onus of safety and efficacy on the manufacturer rather than a central regulatory body. The overarching goal of this review is to provide consumers and clinicians with documented evidence supporting (or refuting) the health benefits of oral care probiotics marketed for sale in the United States. This includes defining what constitutes an oral care probiotic product and a strain level analysis of candidate probiotics from the genera Streptococcus, Lactobacillus, Bifidobacterium, and Bacillus. Additionally, prebiotics and postbiotics will be discussed. Finally, a set of considerations for consumers and clinicians is provided to empower probiotic product decision making. Together, this review will improve understanding of oral care probiotics marketed in the US for dental professionals and consumers.
Collapse
|
9
|
Cataruci ACS, Kawamoto D, Shimabukuro N, Ishikawa KH, Ando-Suguimoto ES, Ribeiro RA, Nicastro GG, Albuquerque-Souza E, de Souza RF, Mayer MPA. Oral Administration of Lactobacillus acidophilus LA5 Prevents Alveolar Bone Loss and Alters Oral and Gut Microbiomes in a Murine Periodontitis Experimental Model. Microorganisms 2024; 12:1057. [PMID: 38930439 PMCID: PMC11205731 DOI: 10.3390/microorganisms12061057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontitis is a destructive inflammatory response triggered by dysbiosis. Lactobacillus acidophilus LA5 (LA5) may impair microbial colonization and alter the host. Thus, we evaluated the effect of LA5 on alveolar bone loss in a periodontitis murine model and investigated its effect on the oral and gut microbiomes. Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Streptococcus gordonii were inoculated in C57BL/6 mice (P+), with LA5 (L+). SHAM infected controls (P- and/or L- groups) were also evaluated. After 45 days, alveolar bone loss in the maxilla and oral and gut microbiomes were determined. The administration of LA5 controlled the microbial consortium-induced alveolar bone loss. Periodontopathogens infection resulted in shifts in the oral and gut microbiomes consistent with dysbiosis, and LA5 reshaped these changes. The oral microbiome of P+L- group showed the increased abundance of Enterococaccea, Streptoccocaceae, Staphylococcaceae, Moraxellaceae, and Pseudomonadaceae, which were attenuated by the administration of LA5 to the infected group (P+L+). The administration of LA5 to otherwise non-infected mice resulted in the increased abundance of the superphylum Patescibacteria and the family Saccharamonadaceae in the gut. These data indicate L. acidophilus LA5 as a candidate probiotic for the control of periodontitis.
Collapse
Affiliation(s)
- Amalia C. S. Cataruci
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Natali Shimabukuro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil
| | - Karin H. Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Ellen S. Ando-Suguimoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Rodolfo A. Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Gianlucca G. Nicastro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Emanuel Albuquerque-Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-220, SP, Brazil
- William Harvey Research Institute, Queen Mary University of London, London E1 2AT, UK
| | - Robson F. de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| | - Marcia P. A. Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-220, SP, Brazil; (A.C.S.C.); (D.K.); (N.S.); (K.H.I.); (R.A.R.); (G.G.N.); (E.A.-S.); (R.F.d.S.); (M.P.A.M.)
| |
Collapse
|
10
|
Zhou K, Xie J, Su Y, Fang J. Lactobacillus reuteri for chronic periodontitis: focus on underlying mechanisms and future perspectives. Biotechnol Genet Eng Rev 2024; 40:381-408. [PMID: 36856460 DOI: 10.1080/02648725.2023.2183617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Chronic periodontitis is a common oral disorder caused by pathogenic bacteria. Despite the wide use of antibiotics as the conventional adjunctive treatment, the challenges of increased antibiotic resistance and limited therapeutic effect receive considerable attention and the developments of alternative treatments gain increasing consideration. Growing evidence showed that Lactobacillus reuteri (LR) may represent a promising alternative adjunct for chronic periodontitis. It can attenuate inflammation and reduce tissue disruption. LR-assisted treatment has been shown to be effective and relatively safe in multiple clinical trials, and accumulating evidence suggests its significant biological roles. In the current review, we focus on capturing the underlying mechanisms of LR involved in chronic periodontitis, thereby representing a scientific foundation for LR-assisted therapy. Furthermore, we point out the challenges and future directions for further clinical trials to improve the clinical applicability for LR.
Collapse
Affiliation(s)
- Keyi Zhou
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jiaman Xie
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Yuan Su
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| | - Jingxian Fang
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
11
|
Wang CW. Emerging opportunity to implement host modulation therapy in non-surgical periodontal therapy-The role of probiotics and future perspectives. J Dent Sci 2024; 19:1305-1306. [PMID: 38618068 PMCID: PMC11010661 DOI: 10.1016/j.jds.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 04/16/2024] Open
Affiliation(s)
- Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Periodontics, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Ghaffarpour M, Karami‐Zarandi M, Rahdar HA, Feyisa SG, Taki E. Periodontal disease in down syndrome: Predisposing factors and potential non-surgical therapeutic approaches. J Clin Lab Anal 2024; 38:e25002. [PMID: 38254289 PMCID: PMC10829694 DOI: 10.1002/jcla.25002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Periodontal diseases (PDs) have been documented to be significantly more prevalent and severe in patients with Down syndrome (DS). Different immunological and microbiological factors contributed to predisposing these patients to progressive and recurrent PDs. AIM The aim of this review was to investigate the altered immunological responses and oral microbiota disorders as well as focus on adjunctive non-surgical methods for the treatment of PDs and its applicability in patients with DS. MATERIAL AND METHODS A literature review was conducted addressing the following topics: (1) the altered immunological responses, (2) orofacial disorders related to DS patients, (3) oral microbiota changing, and (4) adjunctive non-surgical treatment and its efficacy in patients with DS. RESULTS Due to the early onset of PDs in children with DS, the need for prompt and effective treatment in these patients is essential. DISCUSSION AND CONCLUSION So, investigating underlying factors may open a new window to better understand the pathology of PDs in DS people and thus, find better strategies for treatment in such group. Although non-surgical treatments such as photodynamic therapy and probiotic consumption represented acceptable outcomes in different examined patients without DS, data about the application of these convenience and no need for local anesthesia methods in patients with DS is limited.
Collapse
Affiliation(s)
- Mahdie Ghaffarpour
- Department of Oral Medicine, School of DentistryTehran University of Medical SciencesTehranIran
| | - Morteza Karami‐Zarandi
- Department of Microbiology, School of MedicineZanjan University of Medical SciencesZanjanIran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of MedicineIranshahr University of Medical SciencesIranshahrIran
| | - Seifu Gizaw Feyisa
- Department of Medical LaboratorySalale University College of Health SciencesFicheEthiopia
| | - Elahe Taki
- Department of Microbiology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
13
|
Wu YH, Wang CW, Kapila Y. EVIDENCE SUPPORTS SHORT-TERM CLINICAL BENEFITS OF ADJUNCTIVE ORAL PROBIOTICS FOLLOWING SCALING AND ROOT PLANING TREATMENT. J Evid Based Dent Pract 2023; 23:101916. [PMID: 38035893 DOI: 10.1016/j.jebdp.2023.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
ARTICLE TITLE AND BIBLIOGRAPHIC INFORMATION Hu D, Zhong T, Dai Q. Clinical efficacy of probiotics as an adjunctive therapy to scaling and root planning in the management of periodontitis: a systematic review and meta-analysis of randomized controlled trails. J Evid Based Dent Pract. 2021;21(2):101547. doi:10.1016/j.jebdp.2021.101547. SOURCE OF FUNDING Self-funded. TYPE OF STUDY/DESIGN Systematic review with meta-analysis of data.
Collapse
|
14
|
Ausenda F, Barbera E, Cotti E, Romeo E, Natto ZS, Valente NA. Clinical, microbiological and immunological short, medium and long-term effects of different strains of probiotics as an adjunct to non-surgical periodontal therapy in patients with periodontitis. Systematic review with meta-analysis. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:62-103. [PMID: 36915665 PMCID: PMC10006838 DOI: 10.1016/j.jdsr.2023.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/05/2023] [Indexed: 03/07/2023] Open
Abstract
Introduction/objectives Probiotics have been proposed as adjuncts to non-surgical periodontal therapy (NSPT), however, the effect of their use remains unclear. The aim of this systematic review and meta-analysis was to analyze the evidence regarding the use of probiotics as an adjunct to NSPT in patients with periodontitis at a clinical, microbiological and immunological level. Data/sources A comprehensive search to identify clinical studies investigating the use of probiotics as an adjunct to NSPT in patients treated for periodontitis was performed. The data were grouped according to probiotic strain, frequency, form and duration of the probiotic intake. Study selection A total of 25 articles were included, all articles analysed clinical parameters, 10 included also microbiological findings and only 4 had immunological findings. The difference in probing depth (PD) between the test and the control group was statistically significant in favour of the test group when the probiotics were in the form of lozenges, administered twice a day and when the strain was L. reuteri. In terms of Clinical Attachment Level (CAL) gain the difference was statistically significant in the short and in the medium term but not in the long term. Due to the heterogeneity of the data, it was not possible to compare trough a meta analysis the immunological and the microbiological findings that were therefore analysed only descriptively. Conclusions The use of probiotics as an adjunct to NSPT in patients with periodontitis appears to provide additional clinical benefits that depend on the duration, the frequency, the form and the strain of probiotic used. Clinical significance This review not only shows data on the efficacy of probiotics in non-surgical periodontal therapy, but provides important information on their effects over time and which forms of probiotic administration might be most clinically useful.
Collapse
Affiliation(s)
- Federico Ausenda
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
- Department fo Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Emanuele Barbera
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
| | - Elisabetta Cotti
- School of Dental Medicine, Department of Surgical Sciences, Faculty of Medicine and Surgery, University of Cagliari, Cagliari, Italy
| | - Eugenio Romeo
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Beldiletto 1, 20142 Milan, Italy
| | - Zuhair S Natto
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nicola Alberto Valente
- Division of Periodontology, School of Dental Medicine, Department of Surgical Sciences, Faculty of Medicine and Surgery, University of Cagliari, Cagliari, Italy
- Correspondence to: Cittadella Universitaria snc, Blocco I, Facoltà di Medicina e Chirurgia, Università di Cagliari, Monserrato, CA, Italy.
| |
Collapse
|
15
|
Etebarian A, Sheshpari T, Kabir K, Sadeghi H, Moradi A, Hafedi A. Oral Lactobacillus species and their probiotic capabilities in patients with periodontitis and periodontally healthy individuals. Clin Exp Dent Res 2023; 9:746-756. [PMID: 37078410 PMCID: PMC10582226 DOI: 10.1002/cre2.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023] Open
Abstract
OBJECTIVES This study aimed to identify oral Lactobacillus species and characterize their adhesion properties and antibacterial activity in patients with periodontitis compared with periodontally healthy individuals. MATERIALS AND METHODS Three hundred and fifty-four isolates from the saliva, subgingival, and tongue plaque of 59 periodontitis patients and 59 healthy individuals were analyzed. Oral Lactobacillus species were identified through the culture method in the modified MRS medium and confirmed by molecular testing. Moreover, the radial diffusion assay and cell culture methods were used to determine the antibacterial activities of oral strains against oral pathogens and their adhesion activity in vitro. RESULTS 67.7% of the cases and 75.7% of the control samples were positive for the Lactobacillus species. Lacticaseibacillus paracasei and Limosilactobacillus fermentum were the dominant species in the case group, whereas Lacticaseibacillus casei and Lactiplantibacillus plantarum were dominant in the control group. Lactobacillus crispatus and Lactobacillus gasseri had higher antibacterial effects against oral pathogens. Moreover, Ligilactobacillus salivarius and L. fermentum demonstrated the highest ability to adhere to oral mucosal cells and salivary-coated hydroxyapatite. CONCLUSION L. crispatus, L. gasseri, L. fermentum, and L. salivarius can be introduced as probiotic candidates since they demonstrated appropriate adherence to oral mucosal cells and salivary-coated hydroxyapatite and also antibacterial activities. However, further studies should be conducted to assess the safety of probiotic interventions using these strains in patients with periodontal disease.
Collapse
Affiliation(s)
- Arghavan Etebarian
- Oral and Maxillofacial Pathology Department, School of DentistryAlborz University of Medical SciencesKarajIran
| | - Tahere Sheshpari
- Microbiology Department, School of MedicineAlborz University of Medical SciencesKarajIran
| | - Kourosh Kabir
- Community Medicine Department, Dietary Supplements and Probiotic Research CenterAlborz University of Medical SciencesKarajIran
| | - Hanieh Sadeghi
- Student Research CommitteeAlborz University of Medical SciencesKarajIran
| | - Abouzar Moradi
- Periodontology Department, School of DentistryAlborz University of Medical SciencesKarajIran
| | - Avin Hafedi
- Student Research CommitteeAlborz University of Medical SciencesKarajIran
| |
Collapse
|
16
|
Chen YW, Lee ML, Chiang CY, Fu E. Effects of systemic Bifidobacterium longum and Lactobacillus rhamnosus probiotics on the ligature-induced periodontitis in rat. J Dent Sci 2023; 18:1477-1485. [PMID: 37799895 PMCID: PMC10548012 DOI: 10.1016/j.jds.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Indexed: 10/07/2023] Open
Abstract
Background/purpose Probiotics might be beneficial in preventing periodontitis. Effects of Bifidobacterium and Lactobacillus on periodontitis were examined using the ligature-induced rat model. Materials and methods Thirty-five male Sprague-Dawley rats were divided into control, ligation, Bifidobacterium longum (BL986), Lactobacillus rhamnosus (LRH09), and combination groups. Periodontitis was induced in maxillary second molars. From the day before ligation, phosphate-buffered saline (for control and ligation groups) or probiotics (2 × 109 CFU/g for probiotic groups) were fed daily. On day 8, gingival mRNA expressions for interleukin (IL)-1β, IL-6, tissue necrosis factor (TNF)-α, IL-10, and NF-κB were determined via qPCR. Micro-computed tomography (μCT) and histomorphometry were employed to examine periodontal destruction. Results Compared to the ligation group, mRNA of IL-1β, TNF-α, IL-6, and NF-κB in probiotic groups were significantly decreased, but IL-10 was increased. Besides, the IL-10 was more significant in the combination group than in single-use group. Through μCT, the cementoenamel junction (CEJ)-to-bone distance and trabecular separation in combination group were less than that in ligation group, although the bone volume fraction and trabecular number/thickness showed an increase in three probiotic groups. Histopathologically, the combination group had significantly smaller gingival inflammatory cell-infiltrated area and CEJ-to-epithelium distance than the ligation group and the group with BL986 or LRH09. Additionally, the CEJ-to-bone distance was significantly smaller in the combination group than in the ligation and BL986 groups. Conclusion Systemic combination of BL986 and LRH09 had a synergistic effect on enhancing IL-10 and ameliorating the induced experimental periodontitis, although the single-use still presented partially alleviative effects.
Collapse
Affiliation(s)
- Ying-Wu Chen
- Periodontics Division, Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Lun Lee
- Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yang Chiang
- Periodontics Division, Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Institute of Dental Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Xindian, New Taipei City, Taiwan
| |
Collapse
|
17
|
Li J, Zhao G, Zhang HM, Zhu FF. Probiotic adjuvant treatment in combination with scaling and root planing in chronic periodontitis: a systematic review and meta-analysis. Benef Microbes 2023; 14:95-108. [PMID: 36856123 DOI: 10.3920/bm2022.0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
This systematic review and meta-analysis assessed the impact of probiotic supplementation on treating chronic periodontal (CP) disease based on clinical and microbiological findings. Four databases were searched: Medline, Embase, Cochrane Library, and the Web of Science databases. The references to relevant studies were also manually searched. Analyses were conducted using the Review Manager 5.2 software, while the quality of randomised controlled trials was assessed with the Cochrane Risk of Bias tool. In total, 19 studies were included in the meta-analysis. Pooled results revealed that the adjuvant use of probiotics in the treatment of patients with periodontal disease was largely associated with good clinical efficacy. Resulting in statistically significant improvements in plaque index (P<0.05), periodontal probing depth (P<0.05), clinical attachment level (P<0.05), gingival index (P<0.05), bleeding on probing (P<0.05), deep probing depth (P<0.05), and levels of subgingival microbes (P<0.05) following probiotic supplementation. In summary, the results of this meta-analysis suggest that the administration of probiotics together with scaling and root planing can somewhat improve CP patient clinical outcomes and reduce levels of periodontal pathogens. However, more comprehensive experiments are needed to standardise probiotics and maximise their adjuvant therapy.
Collapse
Affiliation(s)
- J Li
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| | - G Zhao
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| | - H M Zhang
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
| | - F F Zhu
- Jiamusi University, Jiamusi City 154000, Heilongjiang Province, China P.R
- Jiamusi University Affiliated Stomatological Hospital, Jiamusi City 154004, Heilongjiang Province, China P.R
| |
Collapse
|
18
|
Butera A, Folini E, Cosola S, Russo G, Scribante A, Gallo S, Stablum G, Menchini Fabris GB, Covani U, Genovesi A. Evaluation of the Efficacy of Probiotics Domiciliary Protocols for the Management of Periodontal Disease, in Adjunction of Non-Surgical Periodontal Therapy (NSPT): A Systematic Literature Review. APPLIED SCIENCES 2023; 13:663. [DOI: 10.3390/app13010663] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Introduction: Periodontitis is a multifactorial chronic inflammatory disease induced by a dysbiosis between the host and oral microbiota, which can compromise the host’s immune defenses and lead to the destruction of periodontal tissues. Despite the efficacy of non-surgical periodontal therapy (NSPT) as the gold standard of periodontal treatment, its application can produce lower results due to anatomical and microbiological limitations. This systematic literature review was performed to assess the long-term efficacy of the effects of probiotics as an adjunct to NSPT compared to the control groups with follow-up of clinical, microbiological and immunological outcomes. Materials and methods: A literature review was conducted, considering manuscripts published from November 2016 to February 2022. The research question was formulated following the population, intervention, comparison and outcome strategies. Randomized controlled trials (RCT), systematic review and meta-analysis investigating the periodontal efficacy of domiciliary probiotic therapy in an adjunct to the mechanical therapy were included. Results: Regarding clinical outcomes, there is a reduction in periodontal probing depth (PPD), clinical attachments level (CAL), bleeding on probing (BoP) and plaque index (PI) for the test groups compared to the control groups in a short-term period. No differences were generally observed in the following indices over a period of more than 3 months for most studies considered. Conclusions: Weak evidence suggests that the use of probiotics as an adjunct to non-surgical periodontal therapy treatment may be able to show improvements in periodontal clinical parameters for up to 3 months. However, a significant and large heterogeneity of studies, along with the absence of long-term microbiological and immunological data, preclude any definitive conclusions.
Collapse
Affiliation(s)
- Andrea Butera
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elisa Folini
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| | - Saverio Cosola
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| | - Gianluca Russo
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
- Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simone Gallo
- Unit of Orthodontics and Paediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giulia Stablum
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Battista Menchini Fabris
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| | - Ugo Covani
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| | - Annamaria Genovesi
- Department of Stomatology, Tuscan Stomatologic Institute, Foundation for Dental Clinic, Research and Continuing Education, 55041 Camaiore, Italy
| |
Collapse
|
19
|
Idrees M, Imran M, Atiq N, Zahra R, Abid R, Alreshidi M, Roberts T, Abdelgadir A, Tipu MK, Farid A, Olawale OA, Ghazanfar S. Probiotics, their action modality and the use of multi-omics in metamorphosis of commensal microbiota into target-based probiotics. Front Nutr 2022; 9:959941. [PMID: 36185680 PMCID: PMC9523698 DOI: 10.3389/fnut.2022.959941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
This review article addresses the strategic formulation of human probiotics and allows the reader to walk along the journey that metamorphoses commensal microbiota into target-based probiotics. It recapitulates what are probiotics, their history, and the main mechanisms through which probiotics exert beneficial effects on the host. It articulates how a given probiotic preparation could not be all-encompassing and how each probiotic strain has its unique repertoire of functional genes. It answers what criteria should be met to formulate probiotics intended for human use, and why certain probiotics meet ill-fate in pre-clinical and clinical trials? It communicates the reasons that taint the reputation of probiotics and cause discord between the industry, medical and scientific communities. It revisits the notion of host-adapted strains carrying niche-specific genetic modifications. Lastly, this paper emphasizes the strategic development of target-based probiotics using host-adapted microbial isolates with known molecular effectors that would serve as better candidates for bioprophylactic and biotherapeutic interventions in disease-susceptible individuals.
Collapse
Affiliation(s)
- Maryam Idrees
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naima Atiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabaab Zahra
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rameesha Abid
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
- Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | - Tim Roberts
- Metabolic Research Group, Faculty of Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, Australia
| | - Abdelmuhsin Abdelgadir
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Ha’il, Ha’il, Saudi Arabia
| | | | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Shakira Ghazanfar
- National Agricultural Research Centre (NARC), National Institute for Genomics and Advanced Biotechnology (NIGAB), Islamabad, Pakistan
| |
Collapse
|
20
|
Van Holm W, Verspecht T, Carvalho R, Bernaerts K, Boon N, Zayed N, Teughels W. Glycerol strengthens probiotic effect of Limosilactobacillus reuteri in oral biofilms: a synergistic synbiotic approach. Mol Oral Microbiol 2022; 37:266-275. [PMID: 36075698 DOI: 10.1111/omi.12386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022]
Abstract
Both in vitro and in vivo studies have shown that the probiotic Limosilactobacillus reuteri can improve oral health. L. reuteri species are known to produce the antimicrobial 'reuterin' from glycerol. In order to further increase its antimicrobial activity, this study evaluated the effect of the combined use of glycerol and Limosilactobacillus reuteri (ATCC PTA 5289) in view of using a synergistic synbiotic over a probiotic. An antagonistic agar growth and a multispecies biofilm model showed that the antimicrobial potential of the probiotic was significantly enhanced against periodontal pathobionts and anaerobic commensals when supplemented with glycerol. Synbiotic biofilms also showed a significant reduction in inflammatory expression of human oral keratinocytes (HOK-18A), but only when the keratinocytes were preincubated with the probiotic. Probiotic preincubation of keratinocytes or probiotic- and synbiotic treatment of biofilms alone were insufficient to significantly reduce inflammatory expression. Overall, this study shows that combining glycerol with the probiotic L. reuteri into a synergistic synbiotic can greatly improve the effectiveness of the latter. One sentence summary: The use of a synbiotic formulation of Limosilactobacillus reuteri with glycerol over the probiotic improves antimicrobial effects and reduced inflammatory response to oral biofilms. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wannes Van Holm
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Tim Verspecht
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Rita Carvalho
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| | - Kristel Bernaerts
- Bio- and Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, University of Leuven (KU Leuven), Leuven Chem&Tech, Celestijnenlaan 200F (bus 2424), Leuven, 3001, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium
| | - Naiera Zayed
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium.,Center for Microbial Ecology and Technology (CMET), Ghent University (UGent), Coupure links 653, Gent, 9000, Belgium.,Faculty of Pharmacy, Menoufia University, Egypt
| | - Wim Teughels
- Department of Oral Health Sciences, University of Leuven (KU Leuven), Kapucijnenvoer 33, Leuven, 3000, Belgium
| |
Collapse
|
21
|
Zubri NSM, Ramasamy K, Rahman NZA. Characterization and potential oral probiotic properties of Lactobacillus plantarum FT 12 and Lactobacillus brevis FT 6 isolated from Malaysian fermented food. Arch Oral Biol 2022; 143:105515. [PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties. DESIGN The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain. RESULTS Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis. CONCLUSIONS These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.
Collapse
|
22
|
Mosaico G, Artuso G, Pinna M, Denotti G, Orrù G, Casu C. Host Microbiota Balance in Teenagers with Gum Hypertrophy Concomitant with Acne Vulgaris: Role of Oral Hygiene Associated with Topical Probiotics. Microorganisms 2022; 10:1344. [PMID: 35889063 PMCID: PMC9323849 DOI: 10.3390/microorganisms10071344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Gum hypertrophy is a very frequent condition linked to orthodontic treatment, especially in teenagers, and the same time, about 80% of young adults are affected by acne vulgaris, a chronic inflammatory skin disease, typically treated with antibacterial therapy. The use of probiotics has gained popularity in the medical field, and many studies have demonstrated its effectiveness, such as the positive effects of some bacterial strains belonging to Lactobacillus species. The aim of this study is to document the effect of Lactobacillus reuteri (L. reuteri) on facial skin that was randomly observed in two orthodontic patients. We present two case reports of a 14-year-old female patient and a 15-year-old male patient suffering from acne vulgaris who, during fixed orthodontic treatment, showed clinical signs of gingivitis with high values of Full Mouth Plaque Score (FMPS) and Bleeding on Probing (BOP). The patients were treated first with professional oral hygiene sessions and Scaling and Root Planing (SRP) procedures, and then with the administration of a formulate containing L. reuteri as a probiotic. The follow-up was made at four weeks. During the follow-up analysis, both patients showed a significant clinical remission for gum hypertrophy and skin acne vulgaris.
Collapse
Affiliation(s)
- Giovanna Mosaico
- Independent Researcher, 72100 Brindisi, Italy
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.D.); (G.O.)
| | | | - Mara Pinna
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.D.); (G.O.)
| | - Gloria Denotti
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.D.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.D.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, Oral Biotechnology Laboratory, University of Cagliari, 09121 Cagliari, Italy; (M.P.); (G.D.); (G.O.)
| |
Collapse
|
23
|
Mulhall H, DiChiara JM, Huck O, Amar S. Pasteurized Akkermansia muciniphila reduces periodontal and systemic inflammation induced by Porphyromonas gingivalis in lean and obese mice. J Clin Periodontol 2022; 49:717-729. [PMID: 35415929 DOI: 10.1111/jcpe.13629] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the effect of the administration of pasteurized Akkermansia muciniphila and Amuc_1100 on periodontal destruction in lean and obese mice and to determine the impact of the mode of administration. MATERIALS AND METHODS Porphyromonas gingivalis-associated experimental periodontitis was induced in lean and obese mice. After 3 weeks, live, pasteurized A. muciniphila or Amuc_1100 was administered by oral or gastric gavage for three additional weeks. Moreover, an evaluation of the interaction between A. muciniphila and P. gingivalis was performed by RNA-sequencing, and cytokines secretion was measured in exposed macrophages. RESULTS Oral administration of live, pasteurized A. muciniphila or Amuc_1100 significantly decreased P. gingivalis-induced periodontal destruction and inflammatory infiltrate in lean and obese mice and contributed to the reduction of the plasma level of TNF-α and to the increase of IL-10. The co-culture of A. muciniphila and P. gingivalis induced an increased expression of genes linked to the synthesis of monobactam-related antibiotics in A. muciniphila, while a decrease of the gingipains and type IX secretion system was observed in P. gingivalis. In P. gingivalis-infected macrophages, pasteurized A. muciniphila decreased TNF-α and increased IL-10 levels. CONCLUSIONS Pasteurized A. muciniphila can counteract P. gingivalis-associated periodontal destruction.
Collapse
Affiliation(s)
- Hannah Mulhall
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Jeanne M DiChiara
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Salomon Amar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
24
|
Calciolari E, Ercal P, Dourou M, Akcali A, Tagliaferri S, Donos N. The efficacy of adjunctive periodontal therapies during supportive periodontal care in patients with residual pockets. A systematic review and meta-analysis. J Periodontal Res 2022; 57:671-689. [PMID: 35579234 DOI: 10.1111/jre.13001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
While it is well-established that patients that develop signs of relapsing periodontitis in supportive periodontal care (SPC) will need to repeat subgingival instrumentation of the residual pockets, less certainty is available in terms of which protocol should be followed and whether the use of adjunctive therapies or physical agents might provide additional benefits to repeated instrumentation alone. The aim of this systematic review was therefore to assess whether repeating subgingival instrumentation in combination with adjunctive therapies (other than antimicrobials) might provide a significant benefit in terms of pocket closure, probing pocket depth (PPD) reduction or clinical attachment level (CAL) gain in patients during SPC with residual/relapsing pockets. Four databases were searched to identify randomized controlled trials (RCTs) and controlled clinical trials (CCTs) with a minimum follow-up of 3 months that investigated the use of adjunctive therapies (other than antimicrobials) in case of residual/relapsing pockets in patients in SPC since at least 3 months. Data extraction and risk of bias assessment were performed in the studies meeting the inclusion criteria and meta-analysis was performed when ≥3 studies assessing the same adjunctive therapy were identified. 12 studies (2 CCTs and 10 RCTs) were included for qualitative analysis. Meta-analysis was performed only for 3 studies on the adjunctive use of photodynamic therapy (PDT) and it indicated a nonsignificant benefit compared to the placebo in terms of PPD reduction and CAL gain at 3 months (weighted mean difference 0.07 and -0.03, respectively) and at 6 months of follow-up (weighted mean difference -0.09 and -0.18, respectively). While antiseptics did not provide significant benefits, one study on probiotics and one on the use of vitamin D and calcium supplementation showed significant improvements in periodontal parameters. There is currently insufficient/poor evidence to determine the efficacy of adjunctive strategies (other than antimicrobials) to improve the outcomes of SPC in case of residual/relapsing pockets.
Collapse
Affiliation(s)
- Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Dental School, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Pinar Ercal
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marina Dourou
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, Izmir, Turkey
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Centre for Research in Toxicology (CERT), University of Parma, Parma, Italy
| | - Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
25
|
Wang J, Liu Y, Wang W, Ma J, Zhang M, Lu X, Liu J, Kou Y. The rationale and potential for using Lactobacillus in the management of periodontitis. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:355-363. [PMID: 35344188 DOI: 10.1007/s12275-022-1514-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 01/13/2023]
Abstract
Periodontitis refers to a wide range of the inflammatory conditions of supporting dental structures. For some patients with periodontitis, antibacterial agents are needed as an adjuvant to mechanical debridement treatments and oral hygiene maintenance. However, the widespread use of broad-spectrum antibiotics for the prophylaxis and treatment of periodontal infections results in the emergence of resistant pathogens. Therefore, probiotics have become markedly interesting to researchers as a potentially safe alternative to periodontal treatment and maintenance. Probiotics have been used in medicine for decades and extensively applied to the treatment of inflammatory diseases through the modulation of microbial synergy and other mechanisms. A growing amount of evidence has shown that using Lactobacillus strains for oral cavity maintenance could improve periodontal health. In this study, we reviewed studies showing proof of the inhibitory effects of Lactobacillus species on periodontal inflammation. We also explored the rationale and potential for using Lactobacillus species in the management of periodontitis.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Weiru Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, 110122, P. R. China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China. .,Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110122, P. R. China.
| |
Collapse
|
26
|
Gheisary Z, Mahmood R, Harri shivanantham A, Liu J, Lieffers JRL, Papagerakis P, Papagerakis S. The Clinical, Microbiological, and Immunological Effects of Probiotic Supplementation on Prevention and Treatment of Periodontal Diseases: A Systematic Review and Meta-Analysis. Nutrients 2022; 14:nu14051036. [PMID: 35268009 PMCID: PMC8912513 DOI: 10.3390/nu14051036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Periodontal diseases are a global health concern. They are multi-stage, progressive inflammatory diseases triggered by the inflammation of the gums in response to periodontopathogens and may lead to the destruction of tooth-supporting structures, tooth loss, and systemic health problems. This systematic review and meta-analysis evaluated the effects of probiotic supplementation on the prevention and treatment of periodontal disease based on the assessment of clinical, microbiological, and immunological outcomes. (2) Methods: This study was registered under PROSPERO (CRD42021249120). Six databases were searched: PubMed, MEDLINE, EMBASE, CINAHL, Web of Science, and Dentistry and Oral Science Source. The meta-analysis assessed the effects of probiotic supplementation on the prevention and treatment of periodontal diseases and reported them using Hedge’s g standardized mean difference (SMD). (3) Results: Of the 1883 articles initially identified, 64 randomized clinical trials were included in this study. The results of this meta-analysis indicated statistically significant improvements after probiotic supplementation in the majority of the clinical outcomes in periodontal disease patients, including the plaque index (SMD = 0.557, 95% CI: 0.228, 0.885), gingival index, SMD = 0.920, 95% CI: 0.426, 1.414), probing pocket depth (SMD = 0.578, 95% CI: 0.365, 0.790), clinical attachment level (SMD = 0.413, 95% CI: 0.262, 0.563), bleeding on probing (SMD = 0.841, 95% CI: 0.479, 1.20), gingival crevicular fluid volume (SMD = 0.568, 95% CI: 0.235, 0.902), reduction in the subgingival periodontopathogen count of P. gingivalis (SMD = 0.402, 95% CI: 0.120, 0.685), F. nucleatum (SMD = 0.392, 95% CI: 0.127, 0.658), and T. forsythia (SMD = 0.341, 95% CI: 0.050, 0.633), and immunological markers MMP-8 (SMD = 0.819, 95% CI: 0.417, 1.221) and IL-6 (SMD = 0.361, 95% CI: 0.079, 0.644). (4) Conclusions: The results of this study suggest that probiotic supplementation improves clinical parameters, and reduces the periodontopathogen load and pro-inflammatory markers in periodontal disease patients. However, we were unable to assess the preventive role of probiotic supplementation due to the paucity of studies. Further clinical studies are needed to determine the efficacy of probiotic supplementation in the prevention of periodontal diseases.
Collapse
Affiliation(s)
- Zohre Gheisary
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Razi Mahmood
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Aparna Harri shivanantham
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
| | - Juxin Liu
- Department of Mathematics and Statistics, College of Arts and Science, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada;
| | - Jessica R. L. Lieffers
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Petros Papagerakis
- Laboratory of Precision Oral Health and Chronobiology, College of Dentistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Silvana Papagerakis
- Laboratory of Oral, Head and Neck Cancer—Personalized Diagnostics and Therapeutics, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada; (Z.G.); (R.M.); (A.H.s.)
- Correspondence: ; Tel.: +1-3069661960
| |
Collapse
|
27
|
Probiotics During the Therapeutic Management of Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:353-375. [DOI: 10.1007/978-3-030-96881-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Meurman J, Stamatova I. Probiotics for oral health and disease treatment. PROBIOTICS FOR HUMAN NUTRITION IN HEALTH AND DISEASE 2022:413-430. [DOI: 10.1016/b978-0-323-89908-6.00008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Abdulkareem A, Abdulbaqi H, Gul S, Milward M, Chasib N, Alhashimi R. Classic vs. Novel Antibacterial Approaches for Eradicating Dental Biofilm as Adjunct to Periodontal Debridement: An Evidence-Based Overview. Antibiotics (Basel) 2021; 11:antibiotics11010009. [PMID: 35052887 PMCID: PMC8773342 DOI: 10.3390/antibiotics11010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontitis is a multifactorial chronic inflammatory disease that affects tooth-supporting soft/hard tissues of the dentition. The dental plaque biofilm is considered as a primary etiological factor in susceptible patients; however, other factors contribute to progression, such as diabetes and smoking. Current management utilizes mechanical biofilm removal as the gold standard of treatment. Antibacterial agents might be indicated in certain conditions as an adjunct to this mechanical approach. However, in view of the growing concern about bacterial resistance, alternative approaches have been investigated. Currently, a range of antimicrobial agents and protocols have been used in clinical management, but these remain largely non-validated. This review aimed to evaluate the efficacy of adjunctive antibiotic use in periodontal management and to compare them to recently suggested alternatives. Evidence from in vitro, observational and clinical trial studies suggests efficacy in the use of adjunctive antimicrobials in patients with grade C periodontitis of young age or where the associated risk factors are inconsistent with the amount of bone loss present. Meanwhile, alternative approaches such as photodynamic therapy, bacteriophage therapy and probiotics showed limited supportive evidence, and more studies are warranted to validate their efficiency.
Collapse
Affiliation(s)
- Ali Abdulkareem
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
- Correspondence:
| | - Hayder Abdulbaqi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Sarhang Gul
- College of Dentistry, University of Sulaimani, Sulaymaniyah 40062, Iraq;
| | - Mike Milward
- College of Dentistry, University of Birmingham, Birmingham B5 7EG, UK;
| | - Nibras Chasib
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| | - Raghad Alhashimi
- College of Dentistry, University of Baghdad, Medical City of Baghdad, Baghdad 10011, Iraq; (H.A.); (N.C.); (R.A.)
| |
Collapse
|
30
|
Lee Y, Yoon Y, Choi KH. Probiotics-Mediated Bioconversion and Periodontitis. Food Sci Anim Resour 2021; 41:905-922. [PMID: 34796320 PMCID: PMC8564330 DOI: 10.5851/kosfa.2021.e57] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Novel bioactive metabolites have been developed through a bioconversion of dairy products or other foods using probiotics isolated from dairy products or other fermented foods. These probiotics-mediated bioconversion (PMB) metabolites show antioxidant, anti-inflammatory, antimicrobial, epithelial barrier, and anticancer activities. In addition, the effect of PMB metabolites in periodontitis is recently reported in several studies. Periodontitis is a chronic inflammatory disease caused by infections, and the tooth support tissue is destroyed. Common treatments for periodontitis include scaling and root planning with systemic antibiotics. However, the overuse of antibiotics has led to the emergence of drug-resistant microorganisms and disturbs the beneficial bacteria, including lactobacilli in the oral cavity. For this reason, PMB metabolites, such as fermented milk, have been suggested as substitutes for antibiotics to reduce periodontitis. This paper reviews the recent studies on the correlation between periodontitis and PMB metabolites and classifies the efficacy of major PMB metabolites for periodontitis. The review suggests that PMB is effective for periodontitis, and further studies are needed to confirm the therapeutic effect of PMB metabolites on periodontitis.
Collapse
Affiliation(s)
- Yewon Lee
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310,
Korea
| | - Yohan Yoon
- Department of Food and Nutrition,
Sookmyung Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung
Women’s University, Seoul 04310,
Korea
| | - Kyoung-hee Choi
- Department of Oral Microbiology, College
of Dentistry, Wonkwang University, Iksan 54538,
Korea
| |
Collapse
|
31
|
Cagna DR, Donovan TE, McKee JR, Eichmiller F, Metz JE, Albouy JP, Marzola R, Murphy KG, Troeltzsch M. Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2021; 126:276-359. [PMID: 34489050 DOI: 10.1016/j.prosdent.2021.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/26/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2020 professional literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to this work to cover this broad topic. Specific subject areas addressed include prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders (TMDs); sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence day-to-day dental treatment decisions with a keen eye on future trends in the profession. With the tremendous volume of dentistry and related literature being published today, this review cannot possibly be comprehensive. The purpose is to update interested readers and provide important resource material for those interested in pursuing greater detail. It remains our intent to assist colleagues in navigating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the dental patients they encounter.
Collapse
Affiliation(s)
- David R Cagna
- Professor, Associate Dean, Chair and Residency Director, Department of Prosthodontics, University of Tennessee Health Sciences Center College of Dentistry, Memphis, Tenn.
| | - Terence E Donovan
- Professor, Department of Comprehensive Oral Health, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Frederick Eichmiller
- Vice President and Science Officer, Delta Dental of Wisconsin, Stevens Point, Wis
| | | | - Jean-Pierre Albouy
- Assistant Professor of Prosthodontics, Department of Restorative Sciences, University of North Carolina School of Dentistry, Chapel Hill, NC
| | | | - Kevin G Murphy
- Associate Clinical Professor, Department of Periodontics, University of Maryland College of Dentistry, Baltimore, Md; Private practice, Baltimore, Md
| | - Matthias Troeltzsch
- Associate Professor, Department of Oral and Maxillofacial Surgery, Ludwig-Maximilians University of Munich, Munich, Germany; Private practice, Ansbach, Germany
| |
Collapse
|
32
|
Schlagenhauf U, Jockel-Schneider Y. Probiotics in the Management of Gingivitis and Periodontitis. A Review. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.708666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the management of intestinal health problems, the targeted use of probiotic microorganisms is a common therapeutic measure with a long-standing tradition. In clinical dentistry however, probiotics-based therapy is still a rather new and developing field, whose usefulness for the control of gingivitis and periodontitis has been questioned by recent meta-analyses and systematic reviews. The purpose of the subsequent descriptive review is to provide an introduction to the concept of probiotic microorganisms and their multifaceted health-promoting interactions with the human host and microbial competitors, followed by a detailed comparison of the results of available controlled clinical trials assessing the use of probiotics in the control of gingival and periodontal inflammations. It aims at contributing to a deeper understanding of the unique capabilities of probiotics to resolve chronic plaque-induced inflammation even in the absence of mechanical plaque control and will discuss how possible misconceptions about the rationale for using probiotics may have led to the present controversies about their usefulness as a therapeutic option.
Collapse
|
33
|
Sang-Ngoen T, Czumbel LM, Sadaeng W, Mikó A, Németh DI, Mátrai P, Hegyi P, Tóth B, Csupor D, Kiss I, Szabó A, Gerber G, Varga G, Kerémi B. Orally Administered Probiotics Decrease Aggregatibacter actinomycetemcomitans but Not Other Periodontal Pathogenic Bacteria Counts in the Oral Cavity: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:682656. [PMID: 34447307 PMCID: PMC8383782 DOI: 10.3389/fphar.2021.682656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: At the initial part of the gastrointestinal tract, multiple tissues serve the normal function of food delivery. Periodontal structures are integral elements of these. When they deteriorate, it is extremely challenging to regenerate and reconstruct them. The conventional intervention for periodontal disease is scaling and root planning with the aim of reducing pathogenic bacteria. However, periodontal pathogens can rapidly recolonize treated areas. Probiotics have been proposed as novel tools for managing oral health by suppressing pathogenic bacteria through their anti-inflammatory effect, but the available data are controversial. Aim: Therefore, we performed a meta-analysis to study the effect of probiotics on periodontal pathogenic bacteria. Methods: The study was registered in PROSPERO under registration number CRD42018094903. A comprehensive literature search from four electronic databases (PubMed, Cochrane CENTRAL, Embase, and Web of Science) yielded nine eligible records for statistical analysis. Studies measuring bacterial counts in saliva and supra- and subgingival plaque were included. Bacterial counts were analyzed using standard mean difference (SMD) and by a random effects model with the DerSimonian-Laird estimation. Results: The results showed a significant decrease in the overall count of Aggregatibacter actinomycetemcomitans in the probiotic-treated group compared to the control at 4 weeks (SMD: -0.28; 95% CI: -0.56--0.01; p = 0.045) but not later. Analyzing the bacterial counts in subgroups, namely, in saliva and supra- and subgingival plaque, separately, yielded no significant difference. Probiotics had no significant effect on the overall count of Porphyromonas gingivalis at 4 weeks (SMD: -0.02; 95% CI: -0.35-0.31; p = 0.914) or later. Subgroup analysis also revealed no significant difference between treatment and control groups nor did probiotics significantly decrease the overall and subgroup bacterial counts of Prevotella intermedia, Tannerella forsythia, and Fusobacterium nucleatum. Conclusion: Our data support the beneficial effect of probiotics in reducing A. actinomycetemcomitans counts, but not of other key periodontal pathogenic bacteria in periodontal disease patients. However, due to the complex mechanism associated with periodontal disease and the limitations of the available studies, there is a further need for well-designed randomized clinical trials to assess the efficacy of probiotics.
Collapse
Affiliation(s)
| | | | - Wuttapon Sadaeng
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Alexandra Mikó
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dávid István Németh
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Mátrai
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Barbara Tóth
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Dezső Csupor
- Szentágothai Research Centre, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Szabó
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Gábor Gerber
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Beáta Kerémi
- Department of Oral Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Varsha KK, Maheshwari AP, Nampoothiri KM. Accomplishment of probiotics in human health pertaining to immunoregulation and disease control. Clin Nutr ESPEN 2021; 44:26-37. [PMID: 34330476 DOI: 10.1016/j.clnesp.2021.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
It is a well-established fact that the microbiome harboring the human body plays a critical role in maintaining human health and can influence treatments against various ailments. Human microbiome-based research contemplates the possibility of selecting and administering specific commensal bacterial strains to modulate the gut microbiota to attain favorable outcomes to the therapies. Consumption of probiotics and probiotic-based dietary supplements as functional foods has been a promising treatment strategy against various diseases. Clinical studies demonstrate that probiotic administration alters gut microbiota composition and instigates immune modulation in the host. The benefits of probiotics are reported to be strain-specific and depend on the host's baseline immune competence. This review explores the role of probiotics in alleviating symptoms of allergy, cancer, cardio vascular (CV) diseases, diabetes mellitus (DM), bowel diseases (IBD and IBS), periodontal disease, diseases affecting liver and kidney, neuroinflammatory diseases, and viral infections. Also, it surveyed the broad spectrum bioactive compounds produced by probiotics and possible mechanisms that trigger the immune system.
Collapse
Affiliation(s)
- Kontham Kulangara Varsha
- Microbial Processes and Technology Division (MPTD), CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Arun Padmakumar Maheshwari
- Microbial Processes and Technology Division (MPTD), CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division (MPTD), CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India.
| |
Collapse
|
35
|
Ng E, Tay JRH, Ong MMA. Minimally Invasive Periodontology: A Treatment Philosophy and Suggested Approach. Int J Dent 2021; 2021:2810264. [PMID: 34257659 PMCID: PMC8245214 DOI: 10.1155/2021/2810264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023] Open
Abstract
Severe periodontitis is a highly prevalent dental disease. With the advent of implant dentistry, teeth are often extracted and replaced. Periodontal surgery, where indicated, could also result in increased trauma to the patient. This literature review discusses different treatment modalities for periodontitis and proposes a treatment approach emphasizing maximum preservation of teeth while minimizing morbidity to the patient. Scientific articles were retrieved from the MEDLINE/PubMed database up to January 2021 to identify appropriate articles that addressed the objectives of this review. This was supplemented with hand searching using reference lists from relevant articles. As tooth prognostication does not have a high predictive value, a more conservative approach in extracting teeth should be abided by. This may involve repeated rounds of nonsurgical periodontal therapy, and adjuncts such as locally delivered statin gels and subantimicrobial-dose doxycycline appear to be effective. Periodontal surgery should not be carried out at an early phase in therapy as improvements in nonsurgical therapy may be observed up to 12 months from initial treatment. Periodontal surgery, where indicated, should also be minimally invasive, with periodontal regeneration being shown to be effective over 20 years of follow-up. Biomarkers provide an opportunity for early detection of disease activity and personalised treatment. Quality of life is proposed as an alternative end point to the traditional biomedical paradigm focused on the disease state and clinical outcomes. In summary, minimally invasive therapy aims to preserve health and function of the natural dentition, thus improving the quality of life for patients with periodontitis.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - Marianne Meng Ann Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
36
|
Elashiry M, Morandini AC, Cornelius Timothius CJ, Ghaly M, Cutler CW. Selective Antimicrobial Therapies for Periodontitis: Win the "Battle and the War". Int J Mol Sci 2021; 22:ijms22126459. [PMID: 34208697 PMCID: PMC8235535 DOI: 10.3390/ijms22126459] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional antimicrobial therapies for periodontitis (PD) have long focused on non-selective and direct approaches. Professional cleaning of the subgingival biofilm by instrumentation of dental root surfaces, known as scaling and root planning (SRP), is the mainstay of periodontal therapy and is indisputably effective. Non-physical approaches used as adjuncts to SRP, such as chemical and biological agents, will be the focus of this review. In this regard, traditional agents such as oral antiseptics and antibiotics, delivered either locally or systemically, were briefly reviewed as a backdrop. While generally effective in winning the “battle” against PD in the short term, by reducing its signs and symptoms, patients receiving such therapies are more susceptible to recurrence of PD. Moreover, the long-term consequences of such therapies are still in question. In particular, concern about chronic use of systemic antibiotics and their influence on the oral and gut microbiota is warranted, considering antibiotic resistance plasmids, and potential transfer between oral and non-oral microbes. In the interest of winning the “battle and the war”, new more selective and targeted antimicrobials and biologics for PD are being studied. These are principally indirect, blocking pathways involved in bacterial colonization, nutrient acquisition, inflammation or cellular invasion without directly killing the pathogens. This review will focus on current and prospective antimicrobial therapies for PD, emphasizing therapies that act indirectly on the microbiota, with clearly defined cellular and molecular targets.
Collapse
|
37
|
Hu D, Zhong T, Dai Q. CLINICAL EFFICACY OF PROBIOTICS AS AN ADJUNCTIVE THERAPY TO SCALING AND ROOT PLANNING IN THE MANAGEMENT OF PERIODONTITIS: A SYSTEMATIC REVIEW AND META-ANALYSIS OF RANDOMIZED CONTROLLED TRAILS. J Evid Based Dent Pract 2021; 21:101547. [PMID: 34391565 DOI: 10.1016/j.jebdp.2021.101547] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the efficacy of probiotics as an adjunctive therapy to scaling and root planning treatment (SRP) in the management of periodontitis. METHODS PubMed, Embase, Web of science, SCOPUS and the Cochrane library were systematically searched to identify eligible studies. Stata 12.0 software was used to calculate the weighted mean differences (WMD) and 95% confidential interval (CI). The primary outcomes were clinical attachment level (CAL), probing pocket depth (PPD) and bleeding on probing (BOP). RESULTS Twenty-four randomized controlled trials (RCT) were included in the meta-analysis. The pooled results showed CAL gain (WMD: 0.20, 95% CI 0.09 to 0.31), PPD reduction (WMD: -0.31, 95% CI -0.52 to -0.10) and BOP reduction (WMD: -2.98, 95% CI -4.70 to -1.26) in the SRP+ probiotics group were significantly improved compared to control group at 3 months follow-up, but no significant difference was observed at 6 months. In addition, the probiotics administration could improve Plaque index (WMD: -0.30, 95% CI -0.59 to -0.05) and Gingival index (WMD: -0.46, 95% CI -0.71 to -0.21) at short term. CONCLUSIONS The results support the clinical efficacy of probiotics as an adjunctive therapy to SRP in the management of periodontitis at least 3 months follow-up. Within the limits of the evidence, the long-term efficacy needs to further confirm.
Collapse
Affiliation(s)
- Daoyong Hu
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China
| | - Tian Zhong
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanchang University; The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China
| | - Qun Dai
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
38
|
Ng E, Tay JRH, Ong MMA, Bostanci N, Belibasakis GN, Seneviratne CJ. Probiotic therapy for periodontal and peri-implant health - silver bullet or sham? Benef Microbes 2021; 12:215-230. [PMID: 34057054 DOI: 10.3920/bm2020.0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are thought to be beneficial microbes that influence health-related outcomes through host immunomodulation and modulation of the bacteriome. Its reported success in the treatment of gastrointestinal disorders has led to further research on its potential applicability within the dental field due to similarities such as a polymicrobial aetiology and disease associated microbial-shifts. Although the literature is replete with studies demonstrating its efficacy, the use of probiotics in dentistry continues to polarise opinion. Here, we explore the evidence for probiotics and its effect on periodontal and peri-implant health. MEDLINE, EMBASE, and CENTRAL were systemically searched from June 2010 to June 2020 based on a formulated search strategy. Of 1,956 potentially relevant articles, we selected 27 double-blinded randomised clinical trials in the areas of gingivitis, periodontitis, residual pockets during supportive periodontal therapy, and peri-implant diseases, and reviewed their efficacy in these clinical situations. We observed substantial variation in treatment results and protocols between studies. Overall, the evidence for probiotic therapy for periodontal and peri-implant health appears unconvincing. The scarcity of trials with adequate power and follow-up precludes any meaningful clinical recommendations. Thus, the routine use of probiotics for these purposes are currently unsubstantiated. Further multi-centre trials encompassing a standardised investigation on the most promising strains and administration methods, with longer observation times are required to confirm the benefits of probiotic therapy for these applications.
Collapse
Affiliation(s)
- E Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - J R H Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore
| | - M M A Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, 5 Second Hospital Ave, 168938, Singapore.,Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - N Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - G N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, P.O. Box 4064, 14104 Huddinge, Sweden
| | - C J Seneviratne
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, 169857, Singapore.,Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Centre Singapore, Second Hospital Ave, 168938, Singapore
| |
Collapse
|
39
|
de Oliveira AM, Lourenço TGB, Colombo APV. Impact of systemic probiotics as adjuncts to subgingival instrumentation on the oral-gut microbiota associated with periodontitis: A randomized controlled clinical trial. J Periodontol 2021; 93:31-44. [PMID: 34028826 DOI: 10.1002/jper.21-0078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND The oral-gut axis may be a route linking periodontal and systemic diseases. Probiotics could be an alternative for the treatment of microbial dysbiotic conditions, including periodontitis. This randomized placebo-controlled clinical trial evaluated the short-term efficacy of systemic probiotics adjunctive to subgingival instrumentation (SI) in promoting a better restoration of the oral-gut microbiotas and greater periodontal clinical outcome. METHODS Systemically healthy adults with untreated periodontitis were recruited from a Dental School setting and allocated to receive SI plus placebo (n = 24) or probiotics (n = 24), one capsule/day for 30 days. Subgingival biofilm and stool were obtained at baseline and 2-months post-therapy for microbiological analyses by checkerboard and 16S rRNA gene sequencing. Differences in all parameters between placebo (n = 23) and probiotics (n = 19) groups were assessed by non-parametric tests. RESULTS Most subgingival species and α-diversity decreased after therapies (P <0.05), whereas gut composition/diversity were slightly or not affected by treatments. In parallel, significant clinical improvement (P <0.05) was similar between groups, although a trend for a higher proportion of poor responders in the placebo (60.8%) than the probiotic group (31.5%) was observed (P = 0.07). Strong correlations between oral and fecal species were found (P <0.01), and distinct species related to poor response for different therapies (P <0.05). Patients were classified into five periodontitis oral-gut microbial clusters, which correlated differently with attachment loss after therapies (P <0.05). CONCLUSION Systemic probiotics combined with SI did not provide short-term additional clinical or microbiological benefits in the treatment of periodontitis; however, response to therapies seemed to correlate with distinct oral-gut microbial profiles.
Collapse
Affiliation(s)
- Adriana Miranda de Oliveira
- Division of post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita Gomes Baêta Lourenço
- Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Vieira Colombo
- Division of post-graduate Periodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Oral Microbiology Laboratory, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
A concerted probiotic activity to inhibit periodontitis-associated bacteria. PLoS One 2021; 16:e0248308. [PMID: 33667279 PMCID: PMC7935250 DOI: 10.1371/journal.pone.0248308] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis can result in tooth loss and the associated chronic inflammation can provoke several severe systemic health risks. Adjunctive to mechanical treatment of periodontitis and as alternatives to antibiotics, the use of probiotic bacteria was suggested. In this study, the inhibitory effect of the probiotic Streptococcus salivarius subsp. salivarius strains M18 and K12, Streptococcus oralis subsp. dentisani 7746, and Lactobacillus reuteri ATCC PTA 5289 on anaerobic periodontal bacteria and Aggregatibacter actinomycetemcomitans was tested. Rarely included in other studies, we also quantified the inverse effect of pathogens on probiotic growth. Probiotics and periodontal pathogens were co-incubated anaerobically in a mixture of autoclaved saliva and brain heart infusion broth. The resulting genome numbers of the pathogens and of the probiotics were measured by quantitative real-time PCR. Mixtures of the streptococcal probiotics were also used to determine their synergistic, additive, or antagonistic effects. The overall best inhibitor of the periodontal pathogens was L. reuteri ATCC PTA 5289, but the effect is coenzyme B12-, anaerobiosis-, as well as glycerol-dependent, and further modulated by L. reuteri strain DSM 17938. Notably, in absence of glycerol, the pathogen-inhibitory effect could even turn into a growth spurt. Among the streptococci tested, S. salivarius M18 had the most constant inhibitory potential against all pathogens, followed by K12 and S. dentisani 7746, with the latter still having significant inhibitory effects on P. intermedia and A. actinomycetemcomitans. Overall, mixtures of the streptococcal probiotics did inhibit the growth of the pathogens equally or–in the case of A. actinomycetemcomitans- better than the individual strains. P. gingivalis and F. nucleatum were best inhibited by pure cultures of S. salivarius K12 or S. salivarius M18, respectively. Testing inverse effects, the growth of S. salivarius M18 was enhanced when incubated with the periodontal pathogens minus/plus other probiotics. In contrast, S. oralis subsp. dentisani 7746 was not much influenced by the pathogens. Instead, it was significantly inhibited by the presence of other streptococcal probiotics. In conclusion, despite some natural limits such as persistence, the full potential for probiotic treatment is by far not utilized yet. Especially, further exploring concerted activity by combining synergistic strains, together with the application of oral prebiotics and essential supplements and conditions, is mandatory.
Collapse
|
41
|
Balta MG, Papathanasiou E, Blix IJ, Van Dyke TE. Host Modulation and Treatment of Periodontal Disease. J Dent Res 2021; 100:798-809. [PMID: 33655803 DOI: 10.1177/0022034521995157] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is the sixth-most prevalent disease in the world and the first cause for tooth loss in adults. With focus shifted to the inflammatory/immune response in the pathogenesis of periodontitis, there is a critical need to evaluate host modulatory agents. Synthetic and biological disease-modifying antirheumatic drugs are a cornerstone for the treatment of inflammatory diseases. Recent prospective cohort studies showed that synthetic disease-modifying antirheumatic drugs improved periodontal clinical parameters following nonsurgical periodontal treatment in patients with rheumatoid arthritis. Treatment with recombinant humanized monoclonal antibodies against CD20 (rituximab) and IL-6 receptor (tocilizumab), the latter also in clinical trials for the treatment of COVID-19 pneumonia, resulted in decreased periodontal inflammation and improved periodontal status. Studies on the effect of TNF-α inhibitors in patients with periodontitis yielded inconsistent results. Recent data suggest that probiotics provide anti-inflammatory clinical benefit, as do nutritional supplements, such as n-3 fatty acids, when combined with periodontal therapy. Probiotics reduce the production of proinflammatory cytokines/chemokines by suppressing NF-κB pathways and promote the accumulation of T regulatory cells. Statins, like aspirin, have been shown to exhibit anti-inflammatory and bone-preserving actions by upregulating production of Specialized Proresolving Mediators (SPMs). Currently, there is insufficient scientific support for the topical delivery of statins or bisphosphonates as adjuncts to periodontal therapy. Here, we present a critical review of the most recent host modulatory agents applied in humans and the key immune pathways that they target. Emerging evidence from novel drug candidates, including SPMs and complement inhibitors as previously studied in animal models and currently in human clinical trials, suggests future availability of adjunctive therapeutic strategies for the management of periodontitis.
Collapse
Affiliation(s)
- M G Balta
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - E Papathanasiou
- Department of Periodontology, School of Dental Medicine, Tufts University, Boston, MA, USA.,Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA
| | - I J Blix
- The CrossTalk Group, Institute of Oral Biology, University of Oslo, Oslo, Norway.,Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - T E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection, and Immunity, Faculty of Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
42
|
Martínez M, Postolache TT, García-Bueno B, Leza JC, Figuero E, Lowry CA, Malan-Müller S. The Role of the Oral Microbiota Related to Periodontal Diseases in Anxiety, Mood and Trauma- and Stress-Related Disorders. Front Psychiatry 2021; 12:814177. [PMID: 35153869 PMCID: PMC8833739 DOI: 10.3389/fpsyt.2021.814177] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of anxiety, mood and trauma- and stress-related disorders are on the rise; however, efforts to develop new and effective treatment strategies have had limited success. To identify novel therapeutic targets, a comprehensive understanding of the disease etiology is needed, especially in the context of the holobiont, i.e., the superorganism consisting of a human and its microbiotas. Much emphasis has been placed on the role of the gut microbiota in the development, exacerbation, and persistence of psychiatric disorders; however, data for the oral microbiota are limited. The oral cavity houses the second most diverse microbial community in the body, with over 700 bacterial species that colonize the soft and hard tissues. Periodontal diseases encompass a group of infectious and inflammatory diseases that affect the periodontium. Among them, periodontitis is defined as a chronic, multi-bacterial infection that elicits low-grade systemic inflammation via the release of pro-inflammatory cytokines, as well as local invasion and long-distance translocation of periodontal pathogens. Periodontitis can also induce or exacerbate other chronic systemic inflammatory diseases such as atherosclerosis and diabetes and can lead to adverse pregnancy outcomes. Recently, periodontal pathogens have been implicated in the etiology and pathophysiology of neuropsychiatric disorders (such as depression and schizophrenia), especially as dysregulation of the immune system also plays an integral role in the etiology and pathophysiology of these disorders. This review will discuss the role of the oral microbiota associated with periodontal diseases in anxiety, mood and trauma- and stress-related disorders. Epidemiological data of periodontal diseases in individuals with these disorders will be presented, followed by a discussion of the microbiological and immunological links between the oral microbiota and the central nervous system. Pre-clinical and clinical findings on the oral microbiota related to periodontal diseases in anxiety, mood and trauma- and stress-related phenotypes will be reviewed, followed by a discussion on the bi-directionality of the oral-brain axis. Lastly, we will focus on the oral microbiota associated with periodontal diseases as a target for future therapeutic interventions to alleviate symptoms of these debilitating psychiatric disorders.
Collapse
Affiliation(s)
- María Martínez
- Etiology and Therapy of Periodontal and Peri-Implant Diseases Research Group, University Complutense Madrid, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Teodor T Postolache
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States.,Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Juan C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- Etiology and Therapy of Periodontal and Peri-Implant Diseases Research Group, University Complutense Madrid, Madrid, Spain.,Department of Dental Clinical Specialties, Faculty of Dentistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Christopher A Lowry
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO, United States.,Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States.,Department of Integrative Physiology, Center for Neuroscience, Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, United States.,Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,inVIVO Planetary Health of the Worldwide Universities Network, New York, NY, United States
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Santos TA, Scorzoni L, Correia R, Junqueira JC, Anbinder AL. Interaction between Lactobacillus reuteri and periodontopathogenic bacteria using in vitro and in vivo (G. mellonella) approaches. Pathog Dis 2020; 78:5897357. [DOI: 10.1093/femspd/ftaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT
Periodontitis is a multifactorial inflammatory disease, and the major cause of tooth loss in adults. New therapies have been proposed for its treatment, including the use of probiotics such as Lactobacillus reuteri. The objective of this study was to evaluate the antimicrobial effects of L. reuteri: live, heat-killed and culture filtrate (cell-free supernatant), on periodontopathogenic bacteria (Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans) in vitro, as well as the in vivo survival curve, hemocyte density and microbial recovery using Galleria mellonella. For in vitro assays, all preparations reduced colony forming units of F. nucleatum, while only live L. reuteri reduced the growth of A. actinomycetemcomitans. All treatments reduced periodontopathogenic bacteria growth in vivo. The treatment with the supernatant increased the survival of larvae infected with F. nucleatum more than the treatment with live L. reuteri, and none of the treatments altered the survival of A. actinomycetemcomitans-infected larvae. In addition, the treatment with L. reuteri preparations did not alter the hemocyte count of F. nucleatum- and A. actinomycetemcomitans-infected larvae. This study demonstrated that L. reuteri preparations exerted antimicrobial effects and increased the survival of G. mellonella infected by F. nucleatum, although only live L. reuteri was able to reduce the growth of A. actinomycetemcomitans in vitro.
Collapse
Affiliation(s)
- Thaís Aguiar Santos
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, Brazil. CEP: 12245-000
| | - Liliana Scorzoni
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, Brazil. CEP: 12245-000
| | - Raquel Correia
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, Brazil. CEP: 12245-000
| | - Juliana Campos Junqueira
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, Brazil. CEP: 12245-000
| | - Ana Lia Anbinder
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP. Address: Av Engenheiro Francisco José Longo, 777, Jardim São Dimas, São José dos Campos, SP, Brazil. CEP: 12245-000
| |
Collapse
|
44
|
Pelekos G, Acharya A, Eiji N, Hong G, Leung WK, McGrath C. Effects of adjunctive probiotic L. reuteri lozenges on S/RSD outcomes at molar sites with deep pockets. J Clin Periodontol 2020; 47:1098-1107. [PMID: 32511775 DOI: 10.1111/jcpe.13329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
AIM To evaluate effects of probiotic Lactobacillus reuteri (L. reuteri) lozenges as an S/RSD adjunct on site-level changes at molars with deep pockets. MATERIALS AND METHODS 447 molar sites with pockets ≥ 5 mm from a previous randomized clinical trial of adjunctive L. reuteri lozenges for 28 days were analyzed. Multilevel mixed-effect models (MLM) were constructed to analyze site-level outcomes "change in CAL" and "pocket closure" (residual PPD < 5 mm) in placebo and probiotic groups at 90 and 180 days. Possible patient-, tooth-, and site-level predictors were analyzed as fixed-effects. RESULTS Estimated change in CAL in probiotic (90 day: 0.87 mm, 180 day: 0.68 mm) was greater than placebo treated molar sites (90 day: 0.73 mm, 180 day: 0.66 mm) and the relative risk (RR) of pocket closure in the probiotic group (90 day: 1.7, 180 day: 1.6) was higher as compared to placebo. Furcation involvement and BOP at site predicted significantly worse treatment outcomes. CONCLUSION As compared to S/RSD with placebo, a 28-day course of adjunctive probiotic L. reuteri lozenges improved CAL change at molar sites with ≥ 5 mm deep pockets and conferred a higher probability of shallow residual pocket depth. Presence of furcation-involvement and bleeding on probing worsened treatment outcomes.
Collapse
Affiliation(s)
- Georgios Pelekos
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Aneesha Acharya
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.,Dr. D.Y. Patil Dental College and Hospital, D.Y Patil Vidyapeeth, Pune, India
| | - Nemoto Eiji
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Guang Hong
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Colman McGrath
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Laleman I, Pauwels M, Quirynen M, Teughels W. A dual-strain Lactobacilli reuteri probiotic improves the treatment of residual pockets: A randomized controlled clinical trial. J Clin Periodontol 2019; 47:43-53. [PMID: 31520543 PMCID: PMC6973056 DOI: 10.1111/jcpe.13198] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/16/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Aim To examine the adjunctive effect of a Lactobacillus reuteri probiotic (ATCC PTA 5289 & DSM 17938) on the re‐instrumentation of residual pockets. Materials and Methods This randomized, double‐blind, placebo‐controlled study included 39 previously non‐surgically treated periodontitis patients. A re‐instrumentation was carried out, and probiotic and/or placebo drops were applied according to the study protocoll. Patients afterwards received lozenges to use 2×/day for 12 weeks. Probing pocket depth (PPD), recession, bleeding on probing and plaque levels were analysed, next to the microbiological impact. Results No effects of the probiotic drops could be found. However, after 24 weeks, the overall PPD in the probiotic lozenges group (2.64 ± 0.33 mm) was significantly lower compared to the control lozenges (2.92 ± 0.42 mm). This difference was even more pronounced in moderate (4–6 mm) and deep (≥7 mm) pockets. In the probiotic lozenges group, there were also significantly more pockets converting from ≥4 mm at baseline to ≤3 mm at 24 weeks (67 ± 18% versus 54 ± 17%) and less sites in need for surgery (4 ± 4% versus 8 ± 6%). However, the probiotic products did not influence the microbiological counts of the periodontopathogens. Conclusion The adjunctive consumption of L. reuteri lozenges after re‐instrumentation improved the PPD reduction, without an impact on pocket colonization with periodontopathogens.
Collapse
Affiliation(s)
- Isabelle Laleman
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Martine Pauwels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Marc Quirynen
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|