1
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Ramji N, Xie S, Bunger A, Trenner R, Ye H, Farmer T, Reichling T, Ashe J, Milleman K, Milleman J, Klukowska M. Effects of stannous fluoride dentifrice on gingival health and oxidative stress markers: a prospective clinical trial. BMC Oral Health 2024; 24:1019. [PMID: 39215289 PMCID: PMC11365164 DOI: 10.1186/s12903-024-04785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Periodontal disease results in oral dysbiosis, increasing plaque virulence and oxidative stress. Stannous fluoride (SnF2) binds lipopolysaccharides to reduce plaque virulence. This study prospectively assessed SnF2 effects on oxidative stress in adults with gingivitis. METHODS This was a 2-month, single-center, single-treatment clinical trial. Twenty "disease" (> 20 bleeding sites with ≥ 3 pockets 3 mm-4 mm deep) and 20 "healthy" (≤ 3 bleeding sites with pockets ≤ 2 mm deep) adults were enrolled. All participants were instructed to use SnF2 dentifrice twice daily for 2 months. An oral examination, Modified Gingival Index (MGI) examination and Gingival Bleeding Index (GBI) examination were conducted at baseline, 1 month and 2 months. Gingival crevicular fluid (GCF), saliva, oral lavage and supragingival plaque were collected at each visit to evaluate: Endotoxins, Protein Carbonyls, L-lactate dehydrogenase (LDH), Ferric reducing antioxidant power (FRAP), Oxidized low density lipoproteins (oxi-LDL), IL-6 and C-reactive protein (CRP). A subset-analysis examined participants considered at higher risk of cardiovascular disease. Change-from-baseline analyses within each group were of primary interest. RESULTS The disease group showed statistically significant reductions in GBI at Month 1 (67%) and Month 2 (85%) and in MGI at Month 1 (36%) and Month 2 (51%) versus baseline (p < 0.001). At baseline, the disease group showed greater LDH in GCF and oxi-LDL levels in saliva versus the healthy group (p ≤ 0.01). Total antioxidant capacity (FRAP) in saliva increased versus baseline for the disease group at Months 1 and 2 (p < 0.05), and levels for the disease group were greater than the healthy group at both timepoints (p < 0.05). SnF2 treatment reduced endotoxins (lavage) for both disease and healthy groups at Month 2 (p ≤ 0.021) versus baseline. There was a reduction in oxidative stress markers, namely protein carbonyl in saliva, at Months 1 and 2 (p < 0.001) for both groups and a reduction in cytokine IL-6 (lavage) in the disease group at Month 2 (p = 0.005). A subset analysis of participants at higher coronary disease risk showed reductions in endotoxins in lavage, oxi-LDL, and CRP in saliva at Month 2 (p ≤ 0.04). CONCLUSION SnF2 dentifrice use reversed gingival inflammation, suppressed endotoxins and reduced some harmful oxidant products in saliva and gingiva. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT05326373, registered on 13/04/2022.
Collapse
Affiliation(s)
- Niranjan Ramji
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA.
| | - Sancai Xie
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Ashley Bunger
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Rachel Trenner
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Hao Ye
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Teresa Farmer
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Tim Reichling
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Julie Ashe
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Kimberly Milleman
- Salus Research Inc, 1220 Medical Park Drive, Building 4, Ft. Wayne, Fort Wayne, IN, 46825, USA
| | - Jeffery Milleman
- Salus Research Inc, 1220 Medical Park Drive, Building 4, Ft. Wayne, Fort Wayne, IN, 46825, USA
| | - Malgorzata Klukowska
- The Procter & Gamble Company, Mason Business and Innovation Center, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| |
Collapse
|
4
|
Cosín-Villanueva M, Almiñana-Pastor PJ, García-Giménez JL, López-Roldán A. Study of microRNAs in Gingival Crevicular Fluid as Periodontal Diseases Biomarkers: Systematic Review. Int J Mol Sci 2024; 25:8274. [PMID: 39125843 PMCID: PMC11311819 DOI: 10.3390/ijms25158274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
AIM The aim of this review was to identify the microRNAs (miRNAs) present in gingival crevicular fluid (GCF) that can be used as biomarkers for the diagnosis of periodontal diseases, and to determine which of them has a higher diagnostic yield for periodontitis. METHODS The review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines (reference number CRD42024544648). The Pubmed, Scopus, Cochrane Library, Embase, Web of Science, and Google Scholar databases were searched for clinical studies conducted in humans investigating periodontal diseases and miRNAs in GCF. The methodological quality of the articles was measured with the Newcastle-Ottawa Scale. RESULTS A total of 3222 references were identified in the initial literature search, and 16 articles were finally included in the review. The design of the studies was heterogeneous, which prevented a meta-analysis of the data. Most of the studies compared miRNA expression levels between patients with periodontitis and healthy controls. The most widely researched miRNA in periodontal diseases was miR-200b-3p and miR-146a. CONCLUSIONS the miRNAs most studied are miR-146a, miR-200b, miR-223, miR-23a, and miR-203, and all of them except miR-203 have an acceptable diagnostic plausibility for periodontitis.
Collapse
Affiliation(s)
- María Cosín-Villanueva
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| | - Pedro J. Almiñana-Pastor
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| | - Jose Luis García-Giménez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain;
- Consortium Center for Biomedical Network Research on Rare Diseases, CIBERER-ISCIII, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (M.C.-V.); (A.L.-R.)
| |
Collapse
|
5
|
Harvei S, Skogen V, Egelandsdal B, Birkeland S, Paulsen JE, Carlsen H. Chronic oral LPS administration does not increase inflammation or induce metabolic dysregulation in mice fed a western-style diet. Front Nutr 2024; 11:1376493. [PMID: 39077160 PMCID: PMC11284168 DOI: 10.3389/fnut.2024.1376493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharides (LPS) present in the intestine are suggested to enter the bloodstream after consumption of high-fat diets and cause systemic inflammation and metabolic dysregulation through a process named "metabolic endotoxemia." This study aimed to determine the role of orally administered LPS to mice in the early stage of chronic low-grade inflammation induced by diet. Methods We supplemented the drinking water with E. coli derived LPS to mice fed either high-fat Western-style diet (WSD) or standard chow (SC) for 7 weeks (n = 16-17). Body weight was recorded weekly. Systemic inflammatory status was assessed by in vivo imaging of NF-κB activity at different time points, and glucose dysregulation was assessed by insulin sensitivity test and glucose tolerance test near the end of the study. Systemic LPS exposure was estimated indirectly via quantification of LPS-binding protein (LBP) and antibodies against LPS in plasma, and directly using an LPS-sensitive cell reporter assay. Results and discussion Our results demonstrate that weight development and glucose regulation are not affected by LPS. We observed a transient LPS dependent upregulation of NF-κB activity in the liver region in both diet groups, a response that disappeared within the first week of LPS administration and remained low during the rest of the study. However, WSD fed mice had overall a higher NF-κB activity compared to SC fed mice at all time points independent of LPS administration. Our findings indicate that orally administered LPS has limited to no impact on systemic inflammation and metabolic dysregulation in mice fed a high-fat western diet and we question the capability of intestinally derived LPS to initiate systemic inflammation through a healthy and uncompromised intestine, even when exposed to a high-fat diet.
Collapse
Affiliation(s)
- Silje Harvei
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Vemund Skogen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Bjørg Egelandsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Signe Birkeland
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| | - Jan Erik Paulsen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, As, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, As, Norway
| |
Collapse
|
6
|
Chen H, Peng L, Wang Z, He Y, Zhang X. Influence of METTL3 knockdown on PDLSC osteogenesis in E. coli LPS-induced inflammation. Oral Dis 2024; 30:3225-3238. [PMID: 37807890 DOI: 10.1111/odi.14763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of METTL3 knockdown on osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) in the weak inflammation microenvironments, as well as the underlying mechanisms. MATERIALS AND METHODS PDLSCs were stimulated by lipopolysaccharide from Escherichia coli (E. coli LPS), followed by quantification of METTL3. METTL3 expression was assessed using RT-qPCR and Western blot analysis in periodontitis. METTL3 knockdown PDLSCs were stimulated with or without E. coli LPS. The evaluation included proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules. Bioinformatics analysis and Western blot determined the association between METTL3 and the PI3K/Akt pathway. RESULTS METTL3 was overexpressed in periodontitis. METTL3 knockdown in PDLSCs reduced proinflammatory cytokines, osteogenic markers, ALP activity, and mineralized nodules in both environments. Bioinformatics analysis suggested a link between METTL3 and the PI3K/Akt pathway. METTL3 knockdown inhibited PI3K/Akt signaling pathway activation. CONCLUSION METTL3 knockdown might inhibit osteogenesis in PDLSCs through the inactivation of PI3K/Akt signaling pathway. Concomitant findings might shed novel light on the roles and potential mechanisms of METTL3 in the LPS-stimulated inflammatory microenvironments of PDLSCs.
Collapse
Affiliation(s)
- Hang Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Limin Peng
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhenxiang Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| | - Yujuan He
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaonan Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Kandaswamy K, Subramanian R, Giri J, Guru A, Arockiaraj J. A Robust Strategy Against Multi-Resistant Pathogens in Oral Health: Harnessing the Potency of Antimicrobial Peptides in Nanofiber-Mediated Therapies. Int J Pept Res Ther 2024; 30:35. [DOI: 10.1007/s10989-024-10613-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 01/12/2025]
|
8
|
Koga A, Thongsiri C, Kudo D, Phuong DND, Iwamoto Y, Fujii W, Nagai-Yoshioka Y, Yamasaki R, Ariyoshi W. Mechanisms Underlying the Suppression of IL-1β Expression by Magnesium Hydroxide Nanoparticles. Biomedicines 2023; 11:biomedicines11051291. [PMID: 37238962 DOI: 10.3390/biomedicines11051291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, magnesium hydroxide has been widely studied due to its bioactivity and biocompatibility. The bactericidal effects of magnesium hydroxide nanoparticles on oral bacteria have also been reported. Therefore, in this study, we investigated the biological effects of magnesium hydroxide nanoparticles on inflammatory responses induced by periodontopathic bacteria. Macrophage-like cells, namely J774.1 cells, were treated with LPS derived from Aggregatibacter actinomycetemcomitans and two different sizes of magnesium hydroxide nanoparticles (NM80/NM300) to evaluate their effects on the inflammatory response. Statistical analysis was performed using an unresponsive Student's t-test or one-way ANOVA followed by Tukey's post hoc test. NM80 and NM300 inhibited the expression and secretion of IL-1β induced by LPS. Furthermore, IL-1β inhibition by NM80 was dependent on the downregulation of PI3K/Akt-mediated NF-κB activation and the phosphorylation of MAPK molecules such as JNK, ERK1/2, and p38 MAPK. By contrast, only the deactivation of the ERK1/2-mediated signaling cascade is involved in IL-1β suppression by NM300. Although the molecular mechanism involved varied with size, these results suggest that magnesium hydroxide nanoparticles have an anti-inflammatory effect against the etiologic factors of periodontopathic bacteria. These properties of magnesium hydroxide nanoparticles can be applied to dental materials.
Collapse
Affiliation(s)
- Ayaka Koga
- Department of Health Sciences, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Chuencheewit Thongsiri
- Department of Conservative Dentistry and Prosthodontics, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Daisuke Kudo
- SETOLAS Holdings Inc., Sakaide 762-0012, Kagawa, Japan
| | | | | | - Wataru Fujii
- Unit of Interdisciplinary Promotion, School of Oral Health Sciences, Faculty of Dentistry, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Yoshie Nagai-Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu 803-8580, Fukuoka, Japan
| |
Collapse
|
9
|
Yamaguchi T, Yamamoto Y, Egashira K, Sato A, Kondo Y, Saiki S, Kimura M, Chikazawa T, Yamamoto Y, Ishigami A, Murakami S. Oxidative Stress Inhibits Endotoxin Tolerance and May Affect Periodontitis. J Dent Res 2023; 102:331-339. [PMID: 36529984 DOI: 10.1177/00220345221138523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Periodontal disease is caused by dysbiosis of the dental biofilm and the host inflammatory response. Various pathogenic factors, such as proteases and lipopolysaccharides (LPSs) produced by bacteria, are involved in disease progression. Endotoxin tolerance is a function of myeloid cells, which sustain inflammation and promote tissue regeneration upon prolonged stimulation by endotoxins such as LPS. The role of endotoxin tolerance is gaining attention in various chronic inflammatory diseases, but its role in periodontal disease remains elusive. Oxidative stress, one of the major risk factors for periodontal disease, promotes disease progression through various mechanisms, of which only some are known. The effect of oxidative stress on endotoxin tolerance has not yet been studied, and we postulated that endotoxin tolerance regulation may be an additional mechanism through which oxidative stress influences periodontal disease. This study aimed to reveal the effect of oxidative stress on endotoxin tolerance and that of endotoxin tolerance on periodontitis progression. The effect of oxidative stress on endotoxin tolerance was analyzed in vitro using peritoneal macrophages of mice and hydrogen peroxide (H2O2). The results showed that oxidative stress inhibits endotoxin tolerance induced by Porphyromonas gingivalis LPS in macrophages, at least partially, by downregulating LPS-elicited negative regulators of Toll-like receptor (TLR) signaling. A novel oxidative stress mouse model was established using SMP30KO mice incapable of ascorbate biosynthesis. Using this model, we revealed that oxidative stress impairs endotoxin tolerance potential in macrophages in vivo. Furthermore, gingival expression of endotoxin tolerance-related genes and TLR signaling negative regulators was decreased, and symptoms of ligature-induced periodontitis were aggravated in the oxidative stress mouse model. Our findings suggest that oxidative stress may contribute to periodontitis progression through endotoxin tolerance inhibition.
Collapse
Affiliation(s)
- T Yamaguchi
- R&D Headquarters, LION Corporation, Tokyo, Japan.,Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Y Yamamoto
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - K Egashira
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - A Sato
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Y Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Faculty of Human Sciences, Waseda University, Tokyo, Japan
| | - S Saiki
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - M Kimura
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - T Chikazawa
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - Y Yamamoto
- R&D Headquarters, LION Corporation, Tokyo, Japan
| | - A Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - S Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Zhang S, Paul S, Kundu P. NF-κB Regulation by Gut Microbiota Decides Homeostasis or Disease Outcome During Ageing. Front Cell Dev Biol 2022; 10:874940. [PMID: 35846362 PMCID: PMC9285657 DOI: 10.3389/fcell.2022.874940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human beings and their indigenous microbial communities have coexisted for centuries, which led to the development of co-evolutionary mechanisms of communication and cooperation. Such communication machineries are governed by sophisticated multi-step feedback loops, which typically begin with the recognition of microbes by pattern recognition receptors (PRRs), followed by a host transcriptional response leading to the release of effector molecules. Our gastrointestinal tract being the main platform for this interaction, a variety of host intestinal cells tightly regulate these loops to establish tolerance towards the microbial communities of the gut and maintain homeostasis. The transcription factor, nuclear factor kappa B (NF-κB) is an integral component of such a communication apparatus, which plays a critical role in determining the state of homeostasis or inflammation associated with dysbiosis in the host. Here we outline the crucial role of NF-κB in host response to microbial cues in the context of ageing and associated diseases.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Soumyajeet Paul
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Parag Kundu,
| |
Collapse
|